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Abstract. We extend a construction of Jones to associate (n, n)-tangles with elements of
Thompson’s group F and prove that it is asymptotically faithful as n → ∞. Using this

construction we show that the oriented Thompson group F⃗ admits a lax group action on a
category of Khovanov’s chain complexes.

1. Introduction

Motivated by questions in conformal field theory, Vaughan Jones initiated the study of
Thompson’s groups F of certain piecewise linear homeomorphisms of the interval in the
context of quantum topology. As part of this program, Jones constructed unitary represen-
tations of F and showed how to associate a link in 3-space with any element of the group
[7, 8]. An analogue of the Alexander theorem [7, Theorem 5.3.1] states that any link type
arises from this construction. Jones suggested that the Thompson group can serve a role
similar to that of braid groups that have been classically used to represent links. It is worth
noting that F is a single group generating all links, as opposed to a collection Bn of braid
groups, n ≥ 1.
Using the theory of strand diagrams developed in [4, 12], we extend the Jones construction

to associate an (n, n)-tangle Tn(g), for certain values of n, with an element g of Thompson’s
group F . We show that this construction is asymptotically faithful:

Theorem 1.1. Suppose g, h ∈ F are two distinct elements. Then for sufficiently large n,
the tangles Tn(g), Tn(h) are not isotopic.

This result contrasts the original construction where different group elements may give
rise to the same link. In fact, finding a set of “Markov moves” relating any two such group
elements is an open problem [7, Remark 5.3.3 (2)]. The construction of tangles is given in
Section 3, and a more detailed version of the above result is stated as Theorem 3.7.

It was shown in [7, 1] that all oriented links arise from the “oriented” Thompson group F⃗ ,
a certain subgroup of F constructed by Jones. This notion was extended in [2] where coef-

ficients of unitary representations of F⃗ were analyzed in the context of oriented topological
quantum field theory (TQFT) invariants. We define oriented strand diagrams and use them

to associate oriented tangles with elements of F⃗ , see Section 4 for details.
Using these methods, we construct an action of Thompson’s group F on a certain category

of Khovanov’s chain complexes. Our result may be seen as an instance of the general frame-
work of group actions on triangulated categories. Such actions of braids groups, and more
generally of mapping class groups, are an expected feature of (3 + 1)-dimensional TQFTs;
see for example the discussion and references in [9, Section 6.5]. Recall the graded ring Hn,
constructed in [9] using the Temperley-Lieb 2-category. Khovanov defined a braid group
action on Km

n , the homotopy category of chain complexes of geometric (Hm, Hn)-bimodules
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[9]. Our main result, Theorem 5.20 in Section 5, may be thought of as an analogue for
Thompson’s group. In this case the action is lax, see Definition 5.4, due to the properties
of the construction of links and tangles from elements of the group F . This notion was also
considered in [11, Definition 8.4], under the name of a weak action. Theorem 15 in [11] con-
structed a weak action of mapping class groups in the context of bimodules in the bordered
Heegaard Floer theory.

Acknowledgements. The authors were supported in part by NSF grant DMS-2105467.
Louisa Liles was also supported in part by NSF RTG grant DMS-1839968.

2. Background on Thompson’s group F and strand diagrams

This section summarizes the relevant background on Thompson’s group F and its corre-
spondence with reduced (n, n)-strand diagrams. For more details, we direct the reader to [4,
Chapters 1 and 7] and [5]. The Thompson group F consists of piecewise linear orientation-
preserving self-homeomorphisms of the unit interval [0, 1] such that all derivatives are powers
of 2 and all points of non-differentiability occur at dyadic numbers, that is, numbers of the
form a

2b
for a, b ∈ Z.

One way to specify an element of the Thompson group is with a pair of standard dyadic
partitions, which are partitions of the unit interval in which every sub-interval is of the form
[ a
2b
, a+1

2b
]. Given an ordered pair (I, J) of standard dyadic partitions with the same number of

sub-intervals, there is a unique element g ∈ F such that g(I) = J . Standard dyadic partitions
correspond bijectively to planar, binary, rooted trees, so two such trees also determine an
element of F . It is convenient to represent the pair of trees TI , TJ by drawing the union of
TI and the vertical reflection of TJ , with their leaves identified, as shown on the right. (This
will be seen as a special case of the product of strand diagrams below.)

g(I) = J

I = {0, 1
2
], [1

2
, 3
4
], [3

4
, 1]}, J = {[0, 1

4
], [1

4
, 1
2
], [1

2
, 1]}

Figure 1. An element g ∈ F given by the ordered pair (I, J) and its associated
pair of trees.

Conversely, for every g ∈ F there is a standard dyadic partition I such that g(I) is
standard dyadic. The pair (I, g(I)) therefore determines g, but this pair is not unique. For
any refinement I ′ of I that is also standard dyadic, (I ′, g(I ′)) also represents g. The pair of
trees given by (I, g(I)) will differ from the pair of trees given by (I ′, g(I ′)) by finitely many
cancelling carets. An example of one cancelling caret is shown in Figure 2.

We say a pair of trees is reduced if it does not have any cancelling carets. For example,
the pair in Figure 1 is reduced. It is known that elements F are in bijection with reduced
pairs of planar, rooted, binary trees [5].
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g(I ′) = J ′

I ′ = {[0, 1
4
], [1

4
, 1
2
], [1

2
, 3
4
], [3

4
, 1]}, J ′ = {[0, 1

8
], [1

8
, 1
4
], [1

4
, 1
2
], [1

2
, 1]}.

Figure 2. The same element g as in Figure 1, but the pair of partitions (I ′, J ′) is a
refinement of (I, J) and the pair of trees differs by a cancelling caret, shown in red.

Jones introduced a construction of links from the elements of Thompson group F , using
their associated pairs of trees [7]. In fact, it was shown in [7] that this method gives rise to
every link type.

We will generalize Jones’ construction to build (n, n)-tangles from F using strand diagrams,
objects first introduced in [4, 3]. These can be thought of as generalizations of the previously
discussed pair-of-trees diagrams. We define them as in [4]:

Definition 2.1. An (m,n)-strand diagram Γ is a finite graph embedded in [0, 1]× [0, 1] such
that:

• Γ has m univalent vertices on the top edge of the square, and n univalent vertices on
the bottom edge of the square.

• Every vertex in the interior is either a merge or a split (see Figure 4)
• All edges have nonzero slope.

Figure 3. an example of a (5, 3)-strand diagram

Strand diagrams are similar to braids, but instead of twists there are merges and splits,
which may cause the number of points at the bottom of the square to differ from the number
of points at the top. Isotopic strand diagrams are considered to be equal. We denote the

Figure 4. A split (left) and a merge (right).

collection of (m,n)−strand diagrams as Dm
n .
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−→ −→

Figure 5. Cancellation moves of type I (left) and Type II (right). Type I moves
are applied when a split contains a merge directly below it, and the two share a pair
of edges. Type II moves are applied when a merge occurs directly above a split, and
the two share one edge.

Strand diagrams can be reduced using two local moves, pictured in Figure 5. Cancelling
carets can be seen as Type I moves in D1

1.
Strand diagrams related by a finite sequence of these moves and their inverses are called

equivalent. We let Dm
n refer to equivalence classes of (m,n)−strand diagrams.

We call a strand diagram reduced if it is not subject to any further reductions, and we
denote by Rm

n the set of reduced (m,n)-strand diagrams. Every (m,n)-strand diagram is
equivalent to a unique reduced (m,n)-strand diagram, therefore, the reduction map ρ : Dm

n →
Rm

n is a bijection.
Given Γ1 ∈ Dk

m and Γ2 ∈ Dm
n , we denote Γ2 ◦Γ1 ∈ Dk

n to be the result of placing Γ2 below
Γ1 and joining them at their common endpoints. This vertical stacking induces a well-defined
binary operation on Dn

n, from which we get a group structure. The identity element in Dn
n is

[Idn], the class of the trivial (n, n)-strand diagram, which is n vertical strands. The inverse
of any [Γ] ∈ Dn

n is [Γ∗], where Γ∗ is the vertical reflection of Γ. Given Γ1 ∈ Rk
m,Γ2 ∈ Rm

n we
let Γ2 ∗Γ1 ∈ Rk

n denote the result of vertically stacking and then reducing. Observe that Rn
n

is a group with multiplication ∗. It can also be considered as a subset of Dn
n, but it is not a

subgroup as Rn
n is not closed with respect to the ◦ operation.

Recall that elements of Thompson’s group F are in bijection with reduced pairs of planar
rooted binary trees, which can now be recognized as elements of R1

1.

Definition 2.2. Let δ : F → R1
1 be the map sending a function in the Thompson group to

its reduced pair of trees. By [3, Prop 2.5], δ is a group isomorphism.

More generally, F ∼= Rn
n for any n ∈ N, via isomorphisms R1

1 → Rn
n given in [12]. For

a (1, 1)-reduced strand diagram Γ, this isomorphism sends Γ to vn ∗ Γ ∗ v∗n, where vn is the
“right vine” with n leaves (see Figure 6). This map represents conjugation by vn, and has
an inverse map which is conjugation by v∗n. More generally, this conjugation map gives an
isomoprhism if we replace vn with any element of R1

n. Specifically, this paper will focus on
isomorphisms that use symmetric trees Sk ∈ R1

2k
(see Figure 7).

Definition 2.3. Let Θk : F → R2k

2k
be the isomorphism resulting from conjugating by the

symmetric tree with 2k leaves, i.e. Θk(g) = Sk ∗ δ(g) ∗ S∗
k . Observe Θ0 = δ as in Definition

2.2

3. From elements of Thompson’s groups F to tangles

The aim of this section is to introduce the method by which we construct (2k+1, 2k+1)-
tangles from elements g ∈ F , and to prove that this construction is asymptotically faithful.

4



Figure 6. The right vine vn

Figure 7. A symmetric tree S3, with 8 leaves

Specifically, we will define a functor T sending strand diagrams to unoriented tangles, as
a generalization of Jones’ functor from forests to tangles introduced in [7]. A forest is a
strand diagram with only splits. We follow the convention of Jones in [7] that forests grow
downward, see Figure 8. Forests growing upward will be referred to as inverse forests. By
specifying a functor from strand diagrams to tangles, each g ∈ F will have an associated
(2k+1, 2k+1) tangle T (Θk(g)), where Θk was given in Definition 2.3.

Figure 8. An example of a forest D ∈ D2
8.

Definition 3.1. Let D be the category whose objects are positive integers, and the mor-
phisms from m to n are (m,n)-strand diagrams. Compositions are concatenations of strand
diagrams.

Similarly, let T be the category whose objects are positive integers, and the morphisms
from m to n are unoriented (2m, 2n)-tangles. Compositions are concatenations of tangles.

Now we define a functor T : D → T. First, T acts by the identity on objects. Given an
(m,n)-strand diagram Γ embedded in [0, 1]× [0, 1], we construct an (2m, 2n)-tangle T (Γ) as
follows.

Observe that the complement of Γ is a disjoint union of some polygons P1, P2, ..., PN .
Assume Pi is neither the leftmost region nor the rightmost region, then the boundary of Pi

consists of:

(1) only some edges of Γ, or
(2) some edges of Γ and an interval on the lower side, or
(3) some edges of Γ and an interval on the upper side, or

5



(4) some edges of Γ, an interval on the lower side, and an inteval on the upper side

See Figure 11 where the regions are labeled 1 – 4, according to the definition above.

Proposition 3.2. If Pi has boundary of type (1), then Pi has a unique maximum point at
a split, and a unique minimum point at a merge. If Pi has boundary of type (2), then Pi

has a unique maximum point at a split. If Pi has boundary of type (3), then Pi has a unique
minimum point at a merge.

Proof. We give a proof for the regions of type (1); the argument for the other two cases is
directly analogous. The given polygonal region Pi is topologically a disk. A priori, there
are two types of minima and maxima of the boundary ∂D of a planar region D. This
first type is where the minimum of the boundary is also a minimum of the region D, and
similarly a maximum of ∂D is also a maximum of D. The second type is where a minimum,
respectively maximum of ∂D is a maximum, respectively minimum of D. Since the edges of
a strand diagram have non-zero slopes (see Definition 2.1), the boundary of Pi does not have
extrema of the second type. The extrema of the first kind take place precisely at merges and
splits, as shown in Figure 9. Suppose Pi has more than one local minimum. It follows from

Pi

Pi

Figure 9. A maximum and a minimum of Pi.

ambient Morse theory (or in this case, also from planar topology) that, looking at sublevel
sets of the height function, the minima of the first kind give rise to 0-handles of Pi. Since
Pi is connected, these 0-handles eventually must be connected by 1-handles. Attaching a
1-handle to Pi correspond to a maximum of ∂Pi of the second type. Since this is impossible
in a strand diagram, Pi has a unique minimum. The same argument shows that there is also
a unique maximum. □

Consider each polygon Pi which is not leftmost or rightmost. If Pi has boundary of type
(1), we introduce an edge connecting the unique maximum point and the unique minimum
point of Pi. If Pi has boundary of type (2), we add an edge connecting the unique maximum
point of Pi to a point in the interior of the interval in ∂Pi on the bottom of the square. The
definition for type (3) is analogous. If Pi has boundary of type (4), we connect a point in
the interior of the top interval to a point in the interior on the bottom. Let Γ′ denote the
resulting graph. The new edges are drawn red in Figure 10.

Note that Γ′ is a graph with (2m − 1) univalent vertices on the top side of the square,
(2n−1) univalent vertices on the bottom side, and all other vertices are 4-valent, containing
either a split or a merge of the original strand diagram. We replace each 4-valent vertex by
a crossing as in Figure 10. Finally, we add a trivial strand on the leftmost side to get an
unoriented (2m, 2n)-tangle T (Γ). See Figure 11 for an example.

If E is a forest, then the complement of E does not contain any polygons with boundary of
type (1) and (3). In the definition of T (E) above, we just need to connect each split with the
interval on the bottom of the square, and we add a strand connecting the top and bottom

6



−→
split

−→merge

Figure 10. The local replacement at 4-valent vertices of Γ′, with added edges in
Γ′ marked in red.

Γ T (Γ)

Figure 11. A (5, 3)-strand diagram Γ and its associated (10, 6)-tangle T (Γ). Each
polygon P in the complement of Γ (except the leftmost one and the rightmost one)
is marked by a number k, meaning that P has boundary of type (k).

intervals of each type (4) polygon except the rightmost one. Each split in E gives rise to
an arc connecting two points on the bottom edge of the square in T (E), and we refer to
these arcs as turnbacks. Jones also constructed tangles from forests in [7]; comparing T (E)
with Jones’ functor, the only difference is that in our construction, T (E) has an extra trivial
strand on the left. For an example, see Figure 12.

Figure 12. The tangle T (D), with D as in Figure 8.

Definition 3.3. A strand diagram Γ is called a biforest if Γ = F1 ◦ F ∗
2 for some forests F1

and F2.

Proposition 3.4. Given two biforests Γ and Γ′ with the same number of endpoints, Γ ̸= Γ′

implies that T (Γ) ̸∼= T (Γ′).

Here tangles are considered equivalent, T (Γ) ∼= T (Γ′), if they are related by an isotopy
fixing the endpoints.
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F ∗
2

F1

Figure 13. A biforest in D8
6

Proof. Let Γ = F1 ◦ F ∗
2 , Γ

′ = G1 ◦G∗
2. Since Γ ̸= Γ′, Fi ̸= Gi for some i = 1, 2. Without loss

of generality, suppose F1 ̸= G1. Then T (Γ) and T (Γ′) differ by at least one turnback near
[0, 1]× {0}. □

Remark 3.5. Proposition 3.4 does not hold for arbitrary strand diagrams. For example, an
infinite family of (1, 1)-strand diagrams, coming from an infinite family of distinct Thompson
group elements given by the ordered pairs ({[0, 1

2
], [1

2
, 3
4
], [3

4
, 7
8
], . . . }, {. . . , [1

8
, 1
4
], [1

4
, 1
2
], [1

2
, 1]}),

produce the trivial tangle with two vertical strands. Similarly, it is known that Jones’
construction in [7] produces the unlink from many distinct elements of F .

3.1. The statement and the proof of faithfulness. In this section we prove asymptotic
faithfulness of the construction of tangles from F . More precisely, we show that given any
g ̸= h ∈ F , there exists some K such that for k ≥ K, T (Θk(g)) ̸≃ T (Θk(h)). This statement
highlights a key difference between the creation of tangles from F in this paper, and that of
links in [7]. In general, the construction of links from F is not faithful.
In this section we refer to the maximum height of a tree S to be the maximum distance

from a leaf in S to the root. For example, the maximum height of Sk is k.

Lemma 3.6. Let Γ ∈ R1
n, i.e. Γ is a binary tree with n leaves. If d is the maximum height

of Γ and k ≥ d, then Γ ∗ S∗
k ∈ R2k

n contains only merges.

Imprecisely, the resulting strand diagram Γ ∗S∗
k ∈ R2k

n may be thought of as encoding the
“difference” between Sk and Γ.

Proof. It follows from the fact that Γ is a sub-tree of Sk that Sk contains every split of Γ
(and sometimes more). In the concatenated but unreduced picture Γ ◦ S∗

k , every split in T
and its corresponding merge in S∗

k can be eliminated by a reduction of Type II. The resulting
reduced diagram only has merges, given by merges in S∗

k that do not correspond to splits
in T . □

The following result is a more detailed version of Theorem 1.1 in the Introduction. To
relate the notation in the two statements, n = 2k and Tn = T ◦Θk.

Theorem 3.7. Suppose g, h ∈ F, g ̸= h. Let m = max(height(g), height(h)). For k such that
2k ≥ m, we have T (Θk(g)) ̸∼= T (Θk(h)).

Proof. Let δ(g) = T ∗
2 ∗ T1, and δ(h) = U∗

2 ∗ U1, where (T1, T2) and (U1, U2) both are reduced
as pairs of trees. Note that

Θk(g) = Sk ∗ T ∗
2 ∗ T1 ∗ S∗

k = (Sk ∗ T ∗
2 ) ∗ (Sk ∗ T ∗

1 )
∗

8



Γ Γ ◦ S∗
2 Γ ∗ S∗

2

Figure 14. The tree S2 has one more split than the tree Γ. When Γ◦S∗
2 is reduced

to Γ ∗ S∗
2 , the single merge remaining corresponds to this split.

By Lemma 3.6 we know that Sk ∗ T ∗
2 and Sk ∗ T ∗

1 both are forests, so the unreduced con-
catenation (Sk ∗T ∗

2 ) ◦ (Sk ∗T ∗
1 )

∗ is a biforest. However, reducing a biforest results in another
biforest, so Θk(g) and Θk(h) are biforests.
Because Θk is an isomorphism, g ̸= h implies Θk(g) ̸= Θk(h). Proposition 3.4 implies

T (Θk(g)) ̸∼= T (Θk(h)). □

4. Orientability

The Khovanov chain complexes, considered in Section 5, are defined for oriented tangles.
To this end, we will now consider the analogues of the above constructions and results in
the oriented case.

4.1. Oriented strand diagrams and the oriented Thompson group. Orientations of
forests were introduced in [2]. In this section we extend this to a notion of oriented strand
diagrams, from which we can build oriented tangles.

Definition 4.1. An orientation on an (m,n)-strand diagram Γ is an assignment of + or −
to each component of the complement of Γ, except for the rightmost region, such that the
signs around each trivalent vertex correspond to one of the four cases shown in Figure 15.
The region on the right of the crossing in each case appears to be unlabelled; however in
fact it has a sign determined near its right boundary. An exception is the rightmost region
which does not have a sign. Γ is said to be orientable if it admits an orientation.

+

−
(a)

−

+

(b)

+

−

(c)

−
+

(d)

Figure 15. (A) A positive split. (B) A negative split. (C) A positive merge. (D)
A negative merge.

Any forest is orientable. We can arbitrarily put a sign in the leftmost region and in the
type (4) regions between the components; then the signs in the other regions are determined
uniquely (see [2, Proposition 3.2]). Therefore any forest with n roots admits exactly 2n

orientations, and any tree s admits exactly two orientations, corresponding to the two choices
of a sign in the leftmost region. We denote the positively oriented s (with + in the leftmost
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region) by s⃗. By convention, we will assume that every oriented tree is positively oriented
from now on.

Definition 4.2. An n-sign is a sequence of n +’s or −’s. We will follow the convention in
the literature [2] that the first two signs in the sequence are +,−.

Definition 4.3. If ν is an n-sign, we can replace each (...,+, ...) in ν by (...,+,−, ...), and
each (...,−, ...) by (...,−,+, ...), and denote the resulting 2n-sign by 2ν. Let 2kν denote the
n-sign that results from repeating this process k times.

Note that an oriented (m,n)-strand diagram Γ⃗ induces a sequence of m signs on the top
side of the square, and a sequence of n signs on the bottom side. If both of them start with
+,−, let µ denote the top m-sign and ν the bottom n-sign ν; in this case we say that Γ⃗
is an oriented strand diagram from µ to ν, or Γ⃗ is a (µ, ν)-strand diagram. We denote the
collection of (µ, ν)-strand diagrams by Dµ

ν .
We get an (m,n)-strand diagram by forgetting the orientation of a (µ, ν)-strand diagram.

Also note that an orientation of an orientable (m,n)-strand diagram is determined by the
m-sign or the n-sign induced by it. So we may consider Dµ

ν as a subset of Dm
n .

Given a (µ, ν)-strand diagram Γ⃗, we define (Γ⃗)∗ to be the (ν, µ)-strand diagram obtained

by taking vertical symmetry of Γ⃗. Given a (µ, ν)-strand diagram Γ⃗1 and a (ν, ρ)-strand

diagram Γ⃗2, we define Γ⃗2 ◦ Γ⃗1 to be the (µ, ρ)-strand diagram obtained by concatenating
strand diagrams and signed regions. The following extends the notion of a reduced strand
diagrams to the oriented case.

Definition 4.4. A reduction of an oriented strand diagram is a sequence of moves shown in
Figure 16.

An oriented strand diagram is said to be reduced if it is not subject to any reductions.
We denote the collection of reduced (µ, ν)-strand diagrams as Rµ

ν ; it can be regarded as a
subset of Dµ

ν .

Given a reduced (µ, ν)-strand diagram Γ⃗1 and a reduced (ν, ρ)-strand diagram Γ⃗2, we define

Γ⃗2 ∗ Γ⃗1 to be the reduced (µ, ρ)-strand diagram obtained by fully reducing Γ⃗2 ◦ Γ⃗1. Similarly
to the case of reduced unoriented strand diagrams, Rµ

µ is a group with multiplication ∗.

−→+ − +

(a)

−→− + −

(b)

→+

−

−

+ −

(c)

→−

+

+

− +

(d)

Figure 16. (A) A positve Type I move. (B) A negative Type I move. (C) A
positive Type II move. (D) A negative Type II move.

Forgetting orientations, we may consider Rµ
ν as a subset of Rm

n . In particular, Rµ
µ can be

regarded as a subgroup of Rm
m. In Section 2 we established an isomorphism between F and

Rm
m, for each m. Next we will consider an analogue for Rµ

µ.

Jones introduced the subgroup F⃗ ≤ F , defined as elements g ∈ F for which the resulting
link diagram bounds an orientable surface, obtained by checkerboard coloring, see Figure
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4.1. Fixing the leftmost region of this surface to be positive, every element of F⃗ produces
an oriented link, whose orientation is induced by that of the surface it bounds [7].

+ − + −

Figure 17. An oriented link built from an element of F⃗ .

As a key step toward generalizing this to build oriented (n, n)-tangles from F⃗ , we now

discuss isomorphisms between F⃗ and groups of oriented strand diagrams. Starting with the
previously discussed isomorphism Θ0, observe that for g ∈ F⃗ each region of the complement
of Θ0(g) corresponds to a unique shaded region of the checkerboard surface resulting from g.
This can be used to produce an orientation on Θ0(g), by letting regions of the complement
of Θ0(g) inherit the signs of their associated regions of the checkerboard surface. Due to the
convention that the leftmost region is always assigned +, the orientation on Θ0(g) results in
an element of R+

+. Here R+
+ stands for Rµ

µ where µ is the 1-sign +. We now show that this

restriction Θ⃗0 := Θ0|F⃗ : F⃗ → R+
+ is surjective, and therefore an isomorphism.

Proposition 4.5. The map Θ⃗0 : F⃗ → R+
+ is an isomorphism.

Proof. We just need to show Θ⃗0 is surjective.
Indeed, for any Γ⃗ ∈ R+

+, we can decompose Γ⃗ into a tree s⃗ and an inverse tree (⃗t)∗ satisfying
σs = σt. Here, given an oriented tree s⃗ with n leaves, σs denotes the n-sign induced by the
orientation of s⃗. Let g be the element in F corresponding to the tree diagram (s, t). Then

g ∈ F⃗ and Γ⃗ = Θ⃗0(g). □

For any oriented tree s⃗, we have an isomorphism Φ⃗s : R+
+ → Rσs

σs
sending Γ⃗ to its conjugate

s⃗ ∗ Γ⃗ ∗ (s⃗)∗. The maps Φ⃗s are analogous to the isomorphisms R1
1 → Rn

n, considered in

the unoriented case in the paragraph preceding Definition 2.3. The inverse (Φ⃗s)
−1 uses

conjugation with (s⃗)∗ instead.

Corollary 4.6. Given any n ∈ N and an n-sign ν, we have F⃗ ∼= Rν
ν.

Proof. If ν is an n-sign, we can find a tree s⃗ such that ν = σs ([7], Section 5.2). Then

Φ⃗s ◦ Θ⃗0 : F⃗ → Rσs
σs

= Rν
ν is the desired isomorphism. □

Therefore, for any n-sign ν, we have a nonempty family of isomorphisms {Γ⃗s = Φ⃗s◦Θ⃗0}σs=ν

from F⃗ to Rν
ν . Note that the oriented strand diagram Γ⃗s(g) is the unoriented strand diagram

Γs(g) with an orientation on it.
11



Remark 4.7. The map Φ⃗s : R+
+ → Rσs

σs
is given by conjugation by an oriented tree s⃗. More

generally, we can take conjugate by a positively oriented (1, n)-strand diagram γ⃗, where γ is
an orientable (1, n)-strand diagram and we let γ⃗ have positive orientation.

Similarly to the case of an oriented tree s⃗, an oriented (1, n)-strand diagram γ⃗ also induces
a sequence of +’s and −’s, denoted as σγ. However, it is possible that the second sign in
this sequence is not −. We call such a sequence a generalized n-sign. It turns out that every
generalized n-sign can be induced by some γ, so we can follow the same strategy to prove
F⃗ ∼= Rν

ν for any generalized n-sign ν.

As in the unoriented case, we will always take s to be the symmetric tree Sk for some
positive integer k. It turns out that the 2k-sign induced by Sk has a special form. Recall
that for any n-sign ν and positive integer k, we introduced a (2kn)-sign 2kν in Definition
4.2.

Proposition 4.8. Given a positive integer k, the 2k-sign σSk
induced by symmetric tree Sk

is 2k+, where + is considered as a 1-sign.

Proof. We give a proof by induction. When k = 1, S1 has a single split. After we put a
+-sign in the leftmost region, this split becomes a positive split. By Figure 15a, a positive
split induces (+,−), so the 2-sign induced by S1 is (+,−) = 2+.

Assume Sk induces the 2k-sign σSk
= 2k+. Then notice that to get Sk+1, we just need to

add a split at each leaf of Sk. The split at the ith leaf of Sk is a positive (resp. negative)
split if the ith sign in σSk

is + (resp. −), because this sign is in the upper left region of
the split. By Figure 15a and Figure 15b, a positive split induces (...,+,−, ...), a negative
split induces (...,−,+, ...). Thus, to obtain σSk+1

, we just need to replace each (...,+, ...) in
σSk

by (...,+,−, ...), each (...,−, ...) in σSk
by (...,−,+, ...). It follows that σSk+1

= 2σSk
=

2(2k+) = 2k+1+. □

Thus for any positive integer k, we have F⃗ ∼= R2k+
2k+

, with an explicit isomorphism given

by Θ⃗k := Φ⃗Sk
◦ Θ⃗0.

4.2. From oriented strand diagrams to oriented tangles. Let S be an oriented (p, q)-
tangle in the square (with p points on the top side and q points on the bottom side of the
square), and consider the induced upward or downward orientations at its endpoints. On
both the top and the bottom, we indicate the downward orientation of an endpoint with
a +, and the upward orientation with a − sign. Note that the signs are positioned at the
endpoints of the tangle; this is different from the case of strand diagrams where signs denote
orientations of the subintervals on the top and the bottom of the square, separated by the
endpoints. If S induces a p-sign ζ on the top, and a q-sign η on the bottom side, we say that
S is an oriented tangle from ζ to η.

Definition 4.9. Let D⃗ be the category with objects n-signs for arbitrary positive integers
n. The morphisms from µ to ν are oriented strand diagrams from µ to ν. Compositions are
concatenations of strand diagrams and signed regions.

Similarly, let T⃗ be the category with objects n-signs for arbitrary positive integers n. The
morphisms from µ to ν are oriented tangles from 2µ to 2ν. Compositions are concatenations
of tangles.

12
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Figure 18. Around each crossing of T⃗ (Γ⃗), its orientation can be equivalently ob-
tained by replacing 4-valent vertices of Γ′ by oriented crossings.

Similarly to the functor T : D → T, we construct a functor T⃗ : D⃗ → T⃗ sending oriented
strand diagrams to oriented tangles. T⃗ acts by the identity on objects. Then suppose that
we have an oriented strand diagram Γ⃗ from an m-sign µ to an n-sign ν. Denote by Γ the
unoriented strand diagram underlying Γ⃗. We will construct T⃗ (Γ⃗) by assigning an orientation
to the unoriented tangle T (Γ).

Suppose P1, P2, ..., PN are signed polygons in the complement of Γ⃗, excluding the rightmost
one. Recall that to construct T (Γ), we add an edge in each polygon Pi to get a graph Γ′,
then replace each 4-valent vertex by a crossing as in Figure 18. Notice that each time we
add an edge, some signed polygon Pi is split into two regions. To obtain an orientation on
T (Γ), we move the sign of each Pi to the region to the right of the added edge. Now consider
the induced orientation of the boundary arcs of each signed region.

The orientation of T⃗ (Γ⃗) around each crossing can also be obtained by a local replacement
at 4-valent vertices of Γ′ as in Figure 18. So the induced orientations of arcs are compatible
around crossings.

Note that each +-signed region induces the downward (+) orientation on its left boundary
arc, and the upward (−) orientation on its right boundary arcs. The induced orientations

are reversed for a − signed region. So if Γ⃗ is an oriented strand diagram from µ to ν, then
T⃗ (Γ⃗) is indeed an oriented strand diagram from 2µ to 2ν (see Figure 19).

Similarly to the asymptotic faithfulness of the construction of unoriented tangles from F ,
we have an oriented counterpart as follows.

Theorem 4.10. Suppose g, h ∈ F⃗, g ̸= h. Let n = max(height(g), height(h)). For k such

that 2k ≥ n, we have T⃗ (Θ⃗k(g)) ̸∼= T⃗ (Θ⃗k(h)).

The proof is immediate, since T (Θk(g)) ̸= T (Θk(h)), where Θk(g),Θk(h) denote the un-

oriented strand diagrams underlying Θ⃗k(g), Θ⃗k(h).

5. A lax group action on Khovanov’s chain complexes

5.1. Definition of a lax group action. We now introduce two bicategories involved in the
definition of a lax group action. For the relevant background material, we refer the reader
to [6, Ch. 2].

13



Γ⃗ T⃗ (Γ⃗)

Figure 19. An oriented strand diagram Γ⃗ from (+,−,−) to (+,−) and its associ-

ated oriented tangle T⃗ (Γ⃗) from (+,−,−,+,−,+) to (+,−,−,+).

Definition 5.1. Let G be a group. Define ∗G to be the bicategory with the single object {∗}
and Mor(∗, ∗) = G, where composition of morphisms g ◦ h is given by the group operation
gh for all g, h ∈ G. We define the 2-morphisms to be trivial, and the associator and unitors
to be identity natural transformations.

Remark 5.2. Note that ∗G is also a 2-category, since its associators and unitors are identity
natural transformations.

Definition 5.3. Consider the 2-category Cat, whose objects are small categories, the mor-
phisms are functors, and the 2-morphisms are natural transformations between functors.

Definition 5.4. Given a group G and a small category C, a lax group action of G on C is
defined to be a lax functor P : ∗G → Cat such that P (∗) = C.

We refer the reader to [6, Definition 4.1.2] for the definition of a lax functor. From this
definition and the properties of Cat and of ∗G, it follows that a lax group action is determined
by the following data:

(a) a family of functors {Pg : C → C | g ∈ G},
(b) a natural transformation λ : Id → Pe, where Id is the identity endofunctor of C and

e ∈ G is the identity element,
(c) a family of natural transformations {th,g : Ph ◦ Pg → Phg | g, h ∈ G},

satisfying

(1) For any g ∈ G, any A ∈ C, we have te,g(A) ◦ λPg(A) = IdPg(A) and tg,e(A) ◦ Pg(λA) =
IdPg(A),

(2) For any g, h, k ∈ G, any A ∈ C, the following diagram commutes

Pk ◦ Ph ◦ Pg(A)

Pkh ◦ Pg(A) Pk ◦ Phg(A)

Pkhg(A)

tk,h(Pg(A))

tkh,g(A)

Pk(th,g(A))

tk,hg(A)

14



Remark 5.5. A genuine group action of G on C is a pseudo functor (cf. [6, Definition 4.1.2])
Q : ∗G → Cat such that Q(∗) = C, and Qg ∈ Mor(C, C) is an autoequivalence for any g ∈ G.
In other words, a lax group action P is a genuine group action if P further satisfies

(3) Pg : C → C is an autoequivalence for any g.
(4) λ : Id→ Pe is a natural isomorphism.
(5) th,g : Ph ◦ Pg → Phg is a natural isomorphism for any g, h ∈ G.

5.2. Khovanov Chain Complexes. We assume the reader is familiar with Khovanov’s
functor-valued invariant of tangles, specifically, the construction of the ring Hn [9, Section
2.4] and the chain complex of geometric (Hm, Hn)-bimodules associated to each (m,n)-tangle
[9, Section 3.4]. Following Khovanov’s notation, for a tangle T we refer to its Khovanov chain
complex as F(T ).

Recall that an (Hm, Hn)-bimodule is called geometric if it is isomorphic to a finite direct
sum of bimodules F(a), where a are flat tangles with 2n boundary points on the lower
edge, and 2m boundary points on the upper edge [9, Section 2.8]. We use the notation of
[9, Section 2.8] and let Km

n refer to the category of bounded chain complexes of geometric
(Hm, Hn)-bimodules, up to chain homotopy. We will consider the homotopy category Km

n

of (not necessarily bounded) chain complexes of (Hm, Hn)-bimodules which are countable
direct sums of bimodules F(a).

Remark 5.6. We note that some of the usual features of the category Km
n are not available

for Km

n ; for example its Grothendieck group is undefined. This triangulated category will
be the setting of the action of the Thompson group constructed below. In fact, the chain
complexes associated with strand diagrams in Definition 5.9 are just a mild generalization
of Khovanov’s invariant of tangles, see Remark 5.10.

In [10], Khovanov defined a 2-category C to be a combinatorial realization of the 2-category

of tangle cobordisms. C has the same objects and 1-morphisms as T⃗. The 2-morphisms of
C are “movies” of tangle diagrams describing tangle cobordisms, up to Carter-Saito’s movie

moves. He also defined a 2-category of geometric bimodule complexes K̂, with objects
nonnegative integers, 1-morphismsMor(m,n) = Km

n and 2-morphisms defined to be all (not
necessarily grading preserving) morphisms of complexes of bimodules up to chain homotopy

and up to a sign. A well-defined 2-functor F : C → K̂ is constructed in [10, Section 4].

Remark 5.7. One can define a ring similar to Khovanov’s ring Hn, using tangles associated
with strand diagrams. Here a direct sum is taken over strand diagrams, as opposed to the
direct sum over flat tangles in [9]. The multiplication in this ring may be thought of as being
modeled on the multiplication in Thompson’s group F . We will not pursue this construction
in the present paper.

5.3. Construction of the lax group action. We begin by introducing, for each reduced
(m,n)-strand diagram D, a chain complex C∗(D) ∈ Ob(Km

n ). Recall that every reduced
oriented strand diagram is equal to F ∗

1 ◦ F2 for some pair of oriented forests F1, F2. In
this section we assume that all strand diagrams and tangles are oriented, and for brevity of
notation we will omit arrows on symbols denoting oriented tangles and strand diagrams.

Definition 5.8. Let D = F ∗
1 ◦F2 be a reduced oriented (m,n)-strand diagram, and let ℓ ∈ N

be the number of leaves in F1 and F2. If L is some forest with ℓ roots whose orientation is
15



compatible with that of F1 and F2, we can create a new (not necessarily reduced) strand
diagram D(L) given by

D(L) := F ∗
1 ◦ L∗ ◦ L ◦ F2.

Definition 5.9. Let D = F ∗
1 ◦ F2 ∈ R⃗µ

ν be a reduced oriented strand diagram, where µ is
an m-sign and ν is an n-sign, and let ℓ be as above. We use F (ℓ) to refer to the set of all
oriented forests with ℓ roots and orientations compatible with that of F1, F2. Then we define

C∗(D) :=
⊕

L∈F (ℓ)

F(T⃗ (D(L))) ∈ Km

n ,

where T⃗ is the functor defined in Section 4 and F(T⃗ (D(L))) is the Khovanov chain complex.

Remark 5.10. The strand diagram D(L) is equivalent to D; in fact L∗ ◦L may be reduced to
the identity strand diagram using type I moves. Thus the chain complex C∗(D) is assembled
of Khovanov complexes of tangles corresponding to all ways of stabilizing D using the type
I move. The reason for this definition will be clear in the construction of the lax group
action below; specifically, Proposition 5.15 shows that the chain map corresponding to a
composition of type II reductions is well-defined but this is not necessarily the case for a
composition of both type I and type II reductions. Also note that the effect on the tangle
T⃗ (D) of a stabilization by L∗ ◦L is an introduction of unknots which may be isotoped off of

the tangle diagram for T⃗ (D) using Reidemeister II moves. Therefore up to chain homotopy,

each summand F(T⃗ (D(L))) is a direct sum of several copies of F(T⃗ (D)) with q-degree shifts.

We now introduce the first bit of data required to determine a lax group action, that is,

a family of functors {Pg : K
2k

n → K2k

n | g ∈ F⃗}.

Definition 5.11. Fix k ≥ 0, n ≥ 0. Let A∗, B∗ be chain complexes in K2k

2k , and let f : A∗ →
B∗ be a chain map. For each g ∈ F⃗ define an endofunctor Pg of K2k

n by

Pg(A
∗) := C∗(Θk(g))⊗H2k A

∗,

and

Pg(f) := Id⊗ f : C∗(Θk(g))⊗H2k A
∗ → C∗(Θk(g))⊗H2k B

∗.

Next we introduce the natural transformation λ from the identity endofunctor of K2k

n to

Pe, the functor associated to the identity element e ∈ F⃗ as above. This consists of, for each

A∗ ∈ K2k

n , a chain map λA∗ : A∗ → C∗(Θk(e))⊗H2k A
∗.

By definition, C∗(Θk(e)) =
⊕

L∈F (2k) F(T⃗ (Θk(e)(L))). Consider the direct summand given

by letting L be Id2k , the identity (2k+, 2k+)-strand diagram. It is also true that Θk(e) = Id2k .

The functor T⃗ sends Θk(e) to the identity (2k+1+, 2k+1+)-tangle Vert2k+1 , by introducing an
extra strand to the left of each component. Therefore

F(T⃗ (Θk(e)(Id2k))) = F(T⃗ (Θk(e))) = F(Vert2k+1)

is a chain complex with a single homological grading. Note that F(Vert2k+1) = H2k as

H2k-bimodules [9]. We denote the unit in H2k by 12k .
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Definition 5.12. For each A∗ ∈ K2k

n the natural transformation

λA∗ : A∗ → C∗(Θk(e))⊗H2k A
∗

from the identity endofunctor to Pe is given by tensoring with 12k , i.e. taking A∗ by the
identity map to the direct summand 12k ⊗ A∗.

In order to give a family of natural transformations {th,g : Ph ◦ Pg → Phg | g, h ∈ F⃗}, we
introduce some preliminary definitions and lemmas.

Definition 5.13. Let the 2-category D have the same objects and 1-morphisms as D⃗. Define
the 2-morphisms in D to be sequences of Type II moves (see Definition 4.4).

Recall Khovanov’s 2-category C, mentioned at the end of Section 5.2. We extend the

1-functor T⃗ : D⃗ → T⃗ to a 2-functor T : D → C, by keeping its action on objects and on 1-
morphisms, and defining its action on 2-morphisms of D as follows. We let T send a positive
Type II move to the movie shown in Figure 20a, which is a saddle cobordism followed by
a Reidemeister II move. Reversing orientations, we obtain the movie of a negative Type II
move, see Figure 20b.

(a)

(b)

Figure 20. Movies of (A) positive Type II move. (B) negative Type II move.

Definition 5.14. An oriented strand diagram is said to be Type II-reduced if it is not subject
to any Type II moves.

Given a (µ, ν)-strand diagram Γ, let r denote a sequence of Type II moves taking Γ to Γ′,
where Γ′ is Type II-reduced. By an argument similar to the proof of [12, Proposition 2.1.1],
Γ′ is unique. However the choice of a sequence r from Γ to Γ′ is not unique in general. Note
that each Type II move in r corresponds to a pair of vertices, the endpoints of the edge
which is removed.

Proposition 5.15. T(r) is independent of a choice of r.
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Proof. To prove the statement, we will characterize pairs of vertices in Γ encoding the Type
II moves in a sequence reducing Γ to Γ′. To this end, consider paths (geodesics) in Γ which
are monotonic with respect to the height function, parametrized so that the height is a
decreasing function of the parameter. It is convenient to consider paths which start and
end at mid-points of edges of the strand diagram. Any such path γ follows a sequence of
merges and splits. In more detail, consider a sequence of labels corresponding to each path
γ: label it with l (respectively r) whenever it enters a merge from the left (respectively from
the right), and similarly label it with l−1, r−1 whenever it exits a split on the left or on the
right. For example, the path shown in Figure 21 is labeled lll−1rr−1l−1. Consider the free
group Fl,r generated by l, r; then the sequence of labels may be thought of as a word wγ in
the generators.

l

l

l−1

r

r−1

l−1

Figure 21. Left: a part of a strand diagram. Center: an admissible path γ, colored
blue, with wγ = lll−1rr−1l−1. Right: the weight function corresponding to γ.

Now define integer weights labeling γ as it passes mid-points of edges of the strand dia-
gram. The beginning point of γ is assigned weight 0. The weight function is given by the
augmentation of the word wγ, that is the sum of exponents of the letters along the path,
from the start to the given point. The weights may also be characterized by requiring that
passing a merge adds 1, passing a split split subtracts 1. Type II moves in a sequence r
reducing Γ to Γ′ are in bijection with pairs of vertices in Γ corresponding to admissible paths
γ satisfying the following properties:

(1) The exponent of the first letter in wγ is +1,
(2) The word wγ represents the trivial element of the free group Fl,r,
(3) The endpoint of γ has weight 0,
(4) The weights between the beginning and the end of γ are strictly positive.

An example of an admissible path is shown in Figure 21. The pair of vertices (specifying a
type II move) corresponding to γ are the first and the last vertices of Γ it passes through,
which are a merge and a split respectively, by properties (1), (3) and (4). Condition (2)
corresponds to the fact that the “vertical” center interval (as shown in Figure 5) of each
type II move in a sequence reducing Γ to Γ′ is a result of previous type II moves in the
sequence.

It follows from conditions (3), (4) that two admissible paths γ1, γ2 cannot be interlaced,
meaning that γ1 ∩ γ2 contains precisely one endpoint of both γ1 and γ2. In other words, any
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two admissible paths are either (a) disjoint, (b) nested, say γ1 is in the interior of γ2, or (c)
they overlap, meaning that the intersection γ1 ∩ γ2 is an interval contained in the interior
of γ1 and in the interior of γ2. The saddle maps on Khovanov chain complexes arising from
Type II moves along disjoint paths commute. The case (b) corresponds to the γ1 move being
done before the γ2 move. In the case (c), a preceding move along γ1 ∩ γ2 makes γ1 and γ2
disjoint. In any of these case, either the order of moves is well-defined, or they commute,
showing that the map on Khovanov chain complexes is independent of a choice of r. □

Remark 5.16. The piece-wise linear graphs of admissible weight functions along admissible
paths are precisely Dyck paths studied in combinatorics and statistical mechanics.

Suppose Γ is a Type II-reduced (σ, µ)-strand diagram and Λ is a Type II-reduced (µ, ρ)-
strand diagram. Let Λ · Γ denote the Type II-reduced (σ, ρ)-strand diagram corresponding
to Λ ◦ Γ. Note that only type II moves are used here, and in general Λ · Γ is different from
the reduced strand diagram Λ ∗ Γ defined in Section 2, where both types I and II moves are
used. Let r be a sequence of type II moves reducing Λ ◦ Γ to Λ · Γ. Khovanov’s functor F
gives a chain map

F(T(r)) : F(T(Λ ◦ Γ)) → F(T(Λ · Γ)).
By [10, Proposition 13], there is an isomorphism ψ : F(T(Λ))⊗Hm F(T(Γ)) → F(T(Λ) ◦

T(Γ)) = F(T(Λ ◦ Γ)).

Definition 5.17. Let Γ,Λ be as above. Define the map

(1) ϕ(Γ,Λ) := F(T(r)) ◦ ψ : F(T(Λ))⊗Hm F(T(Γ)) → F(T(Λ · Γ))

By Proposition 5.15, T(r) is independent of a choice of r, so ϕ(Γ,Λ) is well defined.

Let g, h be any two elements in F⃗ . Considering Θk(g),Θk(h) and Θk(hg) as pairs of forests,
let u, v and w denote their respective numbers of leaves.

Lemma 5.18. For any U ∈ F (u) and V ∈ F (v), there exists W ∈ F (w) such that

Θk(h)(V ) ·Θk(g)(U) = Θk(hg)(W ).

Proof. Letting ∼ denote the equivalence of strand diagrams, notice that

Θk(h)(V ) ·Θk(g)(U) ∼ Θk(h)(V ) ◦Θk(g)(U) ∼ Θk(h) ◦Θk(g) ∼ Θk(h) ∗Θk(g) = Θk(hg).

Therefore Θk(h)(V )·Θk(g)(U) is a Type II-reduced strand diagram equivalent to the reduced
strand diagram Θk(hg). Next, observe that the type II-reduced strand diagram Θk(h)(V ) ·
Θk(g)(U) can be fully reduced by Type I moves. Said differently, Θk(h)(V ) · Θk(g)(U) can
be obtained by a sequence of reversed Type I moves (inserting carets) from Θk(hg).
Moreover, as we explain next, these carets can only be put on certain edges. We know

from the fact that Θk(hg) is reduced that Θk(hg) = E∗
2 ∗ E1 for some forests E1 and E2.

We say an edge in Θk(hg) is a bridge if a concatenation point between E∗
2 and E1 is on this

edge. If a Type II-reduced graph differs from E∗
2 ∗ E1 by carets, it can only be obtained

from E∗
2 ∗ E1 by inserting carets on bridges, or on new bridges created by other previously

inserted carets. Putting carets elsewhere creates a diagram that is not Type II-reduced, as
such carets can always be cancelled in a Type II move.
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The process of putting carets on bridges is equivalent to the process of inserting W ∗ ◦W
between E∗

2 and E1, for some forest W . Therefore,

Θk(h)(V ) ·Θk(g)(U) = E∗
2 ◦W ∗ ◦W ◦ E1 = Θk(hg)(W )

. □

Definition 5.19. Given g, h ∈ F⃗ , define

(2) ϕ(h, g) =
⊕

U∈F (u),V ∈F (v)

ϕ(Θk(h)(V ),Θk(g)(U)),

a chain map from

C∗(Θk(h))⊗H2k C
∗(Θk(g)) =

⊕
U∈F (u),V ∈F (v)

F(T(Θk(h)(V )))⊗
H2k F(T(Θk(g)(U)))

to

C∗(Θk(hg)) =
⊕

W∈F (w)

F(T(Θk(hg)(W ))).

Then for any A∗ ∈ K2k

n , define

(3) th,g(A
∗) = ϕ(h, g)⊗ id

from Ph ◦Pg(A
∗) = C∗(Θk(h))⊗H2k C

∗(Θk(g))⊗H2k A
∗ to Phg(A

∗) = C∗(Θk(hg))⊗H2k A
∗.

Theorem 5.20. The data ({Pg}g∈F⃗ , λ, {th,g}g,h∈F⃗ ) determines a lax action of F⃗ on K2k

n .

Next, we verify that the collection of functors {Pg}g∈F⃗ , the natural transformation λ, and

the collection of natural transformations {th,g}g,h∈F⃗ , satisfy the necessary properties outlined
after Definition 5.4.

5.4. Verifying the axioms. To check the first axiom of a lax group action, we need the
following lemma.

Lemma 5.21. For any g ∈ F⃗ and any chain u in C∗(Θk(g)), we have (ϕ(g, e))(u⊗ 12
k
) = u

and (ϕ(e, g))(12
k ⊗ u) = u.

Proof. We will prove the first equation; a similar argument proves the second equation.
By definition, C∗(Θk(g)) =

⊕
L∈F (l) F(T(Θk(g)(L))), so we can assume u ∈ F(T(Θk(g)(L)))

for some L ∈ F (l) and check that ϕ(Θk(g)(L),Θk(e))(u⊗ 12
k
) = u.

Notice that Θk(e) is a trivial strand diagram, so Θk(g)(L) ◦ Θk(e) = Θk(g)(L) is Type
II-reduced, i.e. the Type II move sequence r from Θk(g)(L) ◦ Θk(e) to Θk(g)(L) · Θk(e) is
empty. Thus F(T(r)) is identity map and

ϕ(Θk(g)(L),Θk(e)) = F(T(r)) ◦ ψ = ψ

Here ψ is the isomorphism from F(T(Θk(g)(L))) ⊗H2k F(T(Θk(e)) to F(T(Θk(g)(L) ◦
Θk(e))) = F(T(Θk(g)(L))). To see ψ(u ⊗ 12

k
) = u, we just need to observe that ψ is

equivalent to the right H2k-action on chain modules of F(T(Θk(g)(L))). So the unit 12
k
acts

trivially. □
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Using the above Lemma we may verify the first axiom. For any u⊗ a ∈ Pg(A
∗), we have

(te,g(A
∗) ◦ λPg(A∗))(u⊗ a) = te,g(A

∗)(12
k ⊗ u⊗ a) = ϕ(e, g)(12

k ⊗ u)⊗ a = u⊗ a

(tg,e(A
∗) ◦ Pg(λA∗))(u⊗ a) = tg,e(A

∗)(u⊗ 12
k ⊗ a) = ϕ(g, e)(u⊗ 12

k

)⊗ a = u⊗ a

So te,g(A
∗) ◦ λPg(A∗) = IdPg(A∗) and tg,e(A

∗) ◦ Pg(λA∗) = IdPg(A∗).

For the associativity axiom, we need to check that the following diagram commutes for
any f, g, h ∈ F⃗ .

C∗(Θk(h))⊗H2k C
∗(Θk(g))⊗H2k C

∗(Θk(f)) C∗(Θk(h))⊗H2k C
∗(Θk(gf))

C∗(Θk(hg))⊗H2k C
∗(Θk(f)) C∗(Θk(hgf))

id⊗ϕ(g,f)

ϕ(h,g)⊗id

ϕ(hg,f)

ϕ(h,gf)

Recall that C∗(Θk(g)) is defined to be a direct sum of F(T(Θk(g)(L))) over forests L,
where Θk(g)(L) is obtained by inserting L∗L in the middle of Θk(g). The commutativity of
the above diagram is therefore equivalent to the commutativity of the following diagram for
any Γ,Λ,Π obtained by inserting forests in the middle of Θk(f),Θk(g),Θk(h) respectively.

F(T(Π))⊗
H2k F(T(Λ))⊗

H2k F(T(Γ)) F(T(Π))⊗
H2k F(T(Λ · Γ))

F(T(Π · Λ))⊗
H2k F(T(Γ)) F(T(Π · Λ · Γ))

id⊗ϕ(Λ,Γ)

ϕ(Π,Λ)⊗id

ϕ(Π·Λ,Γ)

ϕ(Π,Λ·Γ)

In the above diagram, we choose a Type II move sequence p from Π ◦ Λ to Π · Λ, a
sequence q from (Π · Λ) ◦ Γ to Π · Λ · Γ, a sequence r from Λ ◦ Γ to Λ · Γ, a sequence s from
Π◦ (Λ ·Γ) to Π ·Λ ·Γ, then let ϕ(Π,Λ) = F(T(p)), ϕ(Π ·Λ,Γ) = F(T(q)), ϕ(Λ,Γ) = F(T(r)),
ϕ(Π,Λ · Γ) = F(T(s)).
If we regard p as a sequence of Type II moves from Π ◦ Λ ◦ Γ to (Π · Λ) ◦ Γ and r as a

sequence of Type II moves from Π ◦Λ ◦ Γ to Π ◦ (Λ · Γ), then we can rewrite the diagram as

F(T(Π ◦ Λ ◦ Γ))

F(T((Π · Λ) ◦ Γ)) F(T(Π ◦ (Λ · Γ)))

F(T(Π · Λ · Γ))

F(T(p))

F(T(q))

F(T(r))

F(T(s))

Note that qp and sr are two sequences of Type II moves from Π ◦ Λ ◦ Γ to Π · Λ · Γ,
so T(qp) = T(sr) by Proposition 5.15. Then we have F(T(q)) ◦ F(T(p)) = F(T(qp)) =
F(T(sr)) = F(T(s)) ◦ F(T(r)).
This concludes the proof of the associativity axiom and of Theorem 5.20.
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