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ABSTRACT. We introduce and study the notion of filling links in 3-manifolds: a link L is
filling in M if for any 1-spine G of M which is disjoint from L, π1(G) injects into π1(MrL).
A weaker “k-filling” version concerns injectivity modulo k-th term of the lower central
series. For each k ≥ 2 we construct a k-filling link in the 3-torus. The proof relies on
an extension of the Stallings theorem which may be of independent interest. We discuss
notions related to “filling” links in 3-manifolds, and formulate several open problems. The
appendix by C. Leininger and A. Reid establishes the existence of a filling hyperbolic link
in any closed orientable 3-manifold with π1(M) of rank 2.

1. INTRODUCTION

There is an old theme in 3-manifold topology that links or even knots can be built inside a
general 3-manifold which in one sense or another are as robust as an embedded 1-complex
can be. Here are several examples (in historical order):

1. Bing’s theorem [Bi58] that a closed 3-manifold M is diffeomorphic to S3 if and only if
every knot K in M is contained (“engulfed”) in a 3-ball.

2. “Disk busting curves”: Theorem [My82]: for any compact 3-manifold M there is a
knot K in M so that every essential sphere or disk meets K.

3. Suppose X −→ B−→V is a manifold (X)-bundle over a 3-manifold V . Then there is
a link L in V so that B restricted to V rL admits a flat topological connection, i.e. a
foliation of class C1 transverse to the fibers [Me18, Fr20].

In all three examples the theorem becomes trivial if instead of considering a knot or link,
we replace those words in the statement with an embedded 1-complex. So the pattern
seems to be that by knotting and linking one can make 1-submanifolds nearly as “filling”
as a 1-complex: hard to engulf, hard to avoid, and hard to flatten over. Our first intent was
to extend this theme to higher dimensions, but the natural questions have proved difficult
and we just state a few of them for further thought:

Q1. If M is a smooth homotopy 4-sphere with the property that every smoothly embedded
surface (or perhaps just every 2-sphere?) lies in a ball, is M invertible?
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Q2. Is there an analog of (2) in high dimensions (being careful with respect to homotopy
spheres)?

Q3. In higher dimensions can such bundles be flattened over the complement of a codi-
mension 2 link, or even of a Cantor set?

In this paper we consider only 3-manifolds and attempt to add a 4th example of “filling”
by a link or knot. To formulate the question, we start by discussing the relevant versions
of the notion of a spine of a 3-manifold M:

(a) (The “rank” definition) A spine is a 1-complex in M of least first Betti number, sur-
jecting onto π1(M). We always consider 1-complexes up to I−H moves (also known
as Whitehead moves); for this reason we also refer to them as handlebodies.

(b) (“local isotopy of handlebody”) A spine is a handlebody in M up to isotopy with the
property that it is onto on π1 but no smaller handlebody obtained from compression of
a non-separating disk is onto.

(c) (“local homotopy”) The same definition as (ii) but replacing isotopy with homotopy.

The following question may be formulated for each of the definitions above.

Q4. Given a compact 3-manifold M, is there a link L in M so that whenever G is a spine
in M and G is disjoint from L, then π1(G)−→ π1(MrL) is injective?

If there is such a link L, we call it filling in M. As we prove below any 1-spine for M, if
allowed to play the role of L would have this injectivity property. So as in the first three
examples the question is whether a link can “do the work of”, or “be as filling as” a 1-
complex. This question and its relatives actually seem difficult to get a hold of and we are
only able establish some partial results. We present them in the hope that others will find
these “filling” questions of interest.

The definitions (b), (c) of a spine give the same answer as to whether a link (or more gen-
erally a 1-complex) is or is not filling. The reason is that the difference between homotopy
and isotopy is finger moves. And these finger moves can miss the link or 1-complex L (that
we are trying to decide if it is filling.) These finger moves in the complement of L do not
change maps on π1 so we get the same answers for both definitions (b) and (c) of spine,
when it comes to deciding if L is filling.

We start with π1-injectivity in the complement of a 1-complex, the case that is much easier
than the complement of a link, similarly to examples 1 – 3 in the beginning of the intro-
duction. In the following lemma, the 1-complex that is shown to be filling is a spine of a
Heegaard handlebody:

Lemma 1. Let M = H ∪H∗ be a Heegaard decomposition. Then for each definition (a,
b, c) of a spine G ⊂ M, any embedding i : G −→ M rH∗ induces an injection π1G �
π1(MrH∗).
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Proof. Let π be the image of π1(G) in π1(M rH∗) ∼= π1(H). Being a subgroup of a free
group, π is free. Also rank(π) is less than or equal rank(π1(G)) since the map π1(G)−→
π is onto. If that map has a kernel, by the Hopfian property of free groups rank(π) <
rank(π1(G)), contradicting minimal rank in the context of definition (a).

Now consider a spine satisfying definition (b) or (c). As in the previous paragraph, π1(G)−→
π is onto, implying rank(π)< rank(π1(G)). By [MKS66, Theorem 3.3], there is a basis B
for π1(G) so that a subset of B generates ker[π1(G)−→ π].

Proposition 2. Let G be a handlebody of genus g > 0 and assume that b ∈ π1(G) is a free
basis element. Then G contains a properly embedded disk D so that

π1(G) = 〈b〉 ∗π1(GrD).

Proof of Proposition 2: Stated geometrically, the hypothesis says that there is a map
f : G −→W to a wedge of g circles inducing an isomorphism on π1 and taking b to the
generator of the first S1 factor S of W . Let p ∈ S be a point on S different form the base-
point, and P ⊂ G be the transverse preimage, f−1(p), of p in G. By standard 3-manifold
techniques, we may assume that P is an incompressible surface in G. (If there is an es-
sential loop γ on P which is nullhomotopic in G, consider its null homotopy J. Choose
an innermost essential circle α in J; α bounds a singular disk in GrP, which by Loop
theorem/Dehn’s lemma may be replaced with an embedded disk E ⊂ GrP with essential
boundary in P. Compressing along E reduces the complexity of P. This process must
eventually make P incompressible.) Since f is an isomorphism on π1 and P is the preim-
age of a point it follows that the map induced by inclusion: π1(P)−→ π1(G) is the trivial
map. So incompressibility implies that P is a disjoint union of disks. P is Poincaré dual
to the homology class [b] so it follows that at least one of these disks D is homologically
essential, i.e. non-separating. This is the D claimed in the proposition. �

By Proposition 2, a free generator in the kernel corresponds to a non separating reducing
disk in G. Cutting along that disk gives a sub-handlebody still generating π1(M), contra-
dicting minimality. This concludes the proof of Lemma 1. �

Now we turn to the main problem, the existence of filling links. While the notion of
“filling” is interesting for both definitions (a) and (b,c), in this paper we will focus on the
slightly simpler rank definition (a). Logically it is harder to show that a link is filling with
respect to (b, c), since this definition allows more “spines” which need to all inject. As we
see below, the analysis in the easier case (a) is already quite subtle.

One may find a knot K giving π1-injectivity for a fixed embedding of a spine as follows.
Consider a minimal genus Heegaard decomposition M3 = H∪H∗, and let K be a diskbust-
ing curve in the handlebody H∗. If π1H −→ π1(M rK) had kernel, by the loop theorem
there would be a compressing disk in H∗ disjoint from K, a contradiction.

The problem of finding a filling link L (so an arbitrary embedding of a spine is π1-injective
in MrL) has a trivial solution for genus one 3-manifolds. In this case, M3 =H∪H∗ where
H,H∗ are solid tori, and a filling knot is given by the core circle of H∗.
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The appendix by C. Leininger and A. Reid establishes the existence of a filling hyperbolic
link in any closed orientable 3-manifold with π1(M) of rank 2. In particular, it follows that
a closed orientable 3-manifold with finite fundamental group contains a filling link, see
Corollary A.3.

In the main body of this paper we focus on the case of the 3-torus T 3, although it seems
likely that the approach (which involves equivariant homological analysis in the universal
cover of M3) should work for hyperbolic 3-manifolds as well.

The problem of analyzing π1-injectivity of any embedding of a spine G in the complement
of a given link in the 3-torus T 3 turned out to be quite subtle. The kernel of π1G−→ π1T 3

is the commutator subgroup of the free group π1G on 3 generators. A standard classical
tool for showing injectivity of maps of the free group is the Stallings theorem, see Section
2.1. However the Stallings theorem does not directly apply in our context. Specifically,
it does not apply to the map π1G −→ π1(T 3 r L) because it is not surjective on second
homology, and it is injective, rather than an isomorphism, on H1. The complexity of the
problem reflects the fact that the image of the map on π1 depends on the embedding of the
handlebody G. One may attempt to apply the Stallings theorem to the map [π1G,π1G]−→
K, where K is the kernel π1(T 3 rL)−→ π1(T 3) for a suitable choice of L. But injectivity
of the infinitely generated first homology of the commutator subgroup is hard to establish
when the embedding G−→ T 3rL changes by an arbitrary homotopy, as we discuss below.
To our knowledge, the existence of a filling link in T 3 is an open problem, but we are able
to find links with a weaker property. We call a link L ⊂M “k-filling” if the injectivity in
Q4 above holds modulo the kth term of the lower central series, π1G/(π1G)k � π1(M r
L)/π1(MrL)k.

Theorem 3. For any k ≥ 2 there exists a k-filling link in the T 3.

To prove this theorem we give an extension of the Stallings theorem using powers of an
augmentation ideal, which applies uniformly to all embeddings G −→ T 3 rL, where the
conclusion holds modulo a given term of the lower central series. Powers of the augmen-
tation ideal of a group ring have been classically studied in low-dimensional topology, cf.
[CG83, St75], and are related to the lower central series of the group. We analyze a differ-
ent aspect of the theory, focusing on the connection between the lower central series of a
group π and powers of the augmentation ideal of the group ring of H1(π).

It is interesting to note the similarity of Theorem 3 with the current state of knowledge of
the topological 4-dimensional surgery theorem for free non-abelian groups (see [FQ90]).
The underlying technical statement, the disk embedding conjecture, also has a variable
homotopy, and the question is whether the map on π1 can be made trivial. One can solve
the problem modulo any term of the lower central series, but the question itself is open.
(See [FK20] for recent developments.)

The proof of Theorem 3 follows from Lemmas 5, 7, 9 given in the following sections.
Section 2 and Lemma 5 set up the equivariant homological framework for analyzing the
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effect of homotopies of a spine in terms of powers of the augmentation ideal. Lemma 7
and its analogue for T 3 in section 3 construct links satisfying the conditions of Lemma 5.
Lemma 9 in section 4 gives an extension of the Stallings theorem, relating powers of the
augmentation ideal to the lower central series, needed to complete the proof of the theorem.

2. THE RELATIVE CASE: T 2× I

2.1. Notation and background. The coefficients of homology groups are set to be Z
throughout the paper. We start by recalling the Stallings theorem. Given a group A, its
lower central series is defined inductively by A1 = A, Ak = [Ak−1,A]; Aω = ∩∞

k=1Ak.

Theorem 4 (Stallings’ theorem [St65]). Let f : A−→ B be a group homomorphism induc-
ing an isomorphism on H1 and an epimorphism on H2. Then f induces an isomorphism
A/Ak −→ B/Bk for all finite k, and an injective map A/Aω −→ B/Bω .

Dwyer [Dw75] extended the theorem, relaxing the surjectivity to be onto H2 modulo the
k-th term of the Dwyer filtration:

φn(A) = ker[H2(A)−→ H2(A/An)]

Assuming that f : A −→ B is an isomorphism on H1, the result of [Dw75] is that f
induces an isomorphism A/Ak+1 −→ B/Bk+1 if and only if it induces an epimorphism
H2(A)/φk(A) −→ H2(B)/φk(B).

2.2. Relative spine and equivariant homology in the universal cover. In this section
we consider the relative case where the construction of k-filling links is easier to describe,
M = T 2× I. Fix the standard “relative spine” G = ({∗}× I)∪(T 2×∂ I), and the dual spine
G∗ = S1∨S1 ⊂ T 2×{1/2}. Their preimages in the universal cover are illustrated in figure
1.

FIGURE 1. The preimage G̃ in the universal cover R2× I of the standard
relative spine G = ({∗} × I)∪ (T 2 × ∂ I) consists of the top and bottom
shaded panels union the vertical line segments. The mid-level horizontal
grid is the preimage of the dual spine S1∨S1 ⊂ T 2×{1/2}.

An analogue of lemma 1 shows that for any proper embedding of the line segment {∗}× I
into ((T 2× I)rG∗,T 2×∂ I) the fundamental group Z2 ∗Z2 of the resulting relative spine
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injects into π1(T 2× I rG∗). This may be seen using the Stallings theorem. Note that
π1G∼= Z2 ∗Z2 is a right-angled Artin group, and it is also a free product of surface groups;
these classes of groups are residually nilpotent [DK92], [CO98].

The goal is to analyze the map on π1 induced by inclusion when G∗ is replaced by a link.
This is illustrated in figure 2 where the link L ⊂ T × (0,1) is obtained by “resolving”
the dual spine G∗ into two disjoint essential circles. Different embeddings of the vertical
interval are related by homotopies that may pass through link components and may be
thought of as finger moves; the equivariant lift of an elementary finger move is illustrated
on the right in figure 2.

We will continue denoting by G the standard embedding of the relative spine into T 2× I,
and by G̃ its preimage in the universal cover. The notation G′, G̃′ will be used when the
embedding of the vertical arc is arbitrary, i.e. related to the standard embedding by finger
moves. The fundamental group of G̃, and also of G̃′ is

K := ker[Z2 ∗Z2 −→ Z2].

FIGURE 2. An example of a link L⊂ T 2× (0,1), and a finger move.

Let L be any link in T 2× (0,1) whose components are all essential in π1(T 2), and let L̃
denote its preimage: a Z2-equivariant collection of lines in the universal cover. We restrict
to the case where the components are all essential curves in π1(T 2) since in this case
π1(R2× I r L̃) is free; links with nullhomotopic components would require an extension
of the group theoretic analysis developed in this paper. The starting point is to analyze the
injectivity of the map α in the commutative triangle

π1(G) π1(T 2× I rL)

π1(T 2× I)

α

β
γ

where all maps are induced by inclusions. Here α is induced by the standard embedding
G ⊂ T 2× I rL; the general case of G′ is discussed in section 2.3. It is clear that ker[α]
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equals the kernel of the map ker[β ]−→ ker[γ]. Here ker[β ] = K, and ker[γ]∼= π1(R2× Ir
L̃). Therefore the focus is on the map

(1) K −→ π1(R2× I r L̃).

Denote by J the first homology of G̃, J = K/[K,K], and let H denote H1(R2× Ir L̃). Since
π1(R2×Ir L̃) is a free group, if J−→H were injective, the Stallings theorem would imply
that the map (1) is injective (for the standard spine G). We will give a construction of links
L satisfying weaker injectivity, modulo powers of the augmentation ideal (see below), for
any embedding G′ ⊂ T 2× I rL.

Denote the map J −→H by Lk. The group H is generated by meridians m(l), one for each
line l in L̃. The map Lk is given by Z2-equivariant linking, sending a 1-cycle c in G̃ to a
linear combination of meridians ∑i ai m(li), where the coefficient ai ∈ Z[Z2] is the linking
“number” of c and li. Since there is a single generator m(l) for each line l, when there is
no risk of confusion we will write

Lk(c) = ∑
i

ai li.

An example calculating the linking map is given below.

As a module over Z[Z2], J is generated by the boundaries of two vertical “plaquettes”,
denoted Px and Py in figure 3a. We will think of elements of J as linear combinations of
these plaquettes, with coefficients in Z[Z2]. The translations in the directions perpendicular
to Px,Py are denoted respectively by x,y. Note that the relation

(2) (1− x)Px +(1− y)Py = 0

holds in J.

Px

Py

(a)

Px

−yPx

Px −xPx

(b) (c)l l

FIGURE 3.
(a): Plaquettes Px,Py generating J over Z[Z2].
(b), (c): Projection onto R2; dots represent the preimage of the edge {∗}× I
of the relative spine.

Figure 3 illustrates the case when the link L has a single component, the (1,1)-curve in
the torus T 2×{1/2}. In this case the two translations act the same way on L̃: for any line
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l, xl = yl. Figures 3 (b, c) show the projection onto R2 of two elements of J: (1− y)Px,
(1− x)Px. Denoting the line intersecting the plaquette Px by l0, we have

Lk((1− y)Px) = (1− y) l0, Lk((1− x)Px) = (1− x) l0.

Since (1− y) l0 = (1− x) l0 in this example, the map J −→ H is certainly not injective.
Since the map Lk turned out to have kernel in this example, it is no surprise to observe that
the boundary curve of Px∪Py in Figure 3 (a) is null homotopic in R2× I r L̃.

2.3. Finger moves and the kernel of the linking map. Next we extend this discussion
to the case of an arbitrary embedding G′ ⊂ T 2× I r L. Let j denote the inclusion of 1-
cycles into cellular 1-chains of the preimage of the standard spine G̃, j : J ↪→C1. Here we
consider G̃ as a 1-complex where R2×{0} and R2×{1} are contracted to points, and C1
is generated by a single vertical line segment and as a module over Z[Z2]. The linking map
Lk′ : J′ −→ H for any G′ is given by Lk+F ◦ j, where F : C1 −→ H is the “finger move”
map which measures the difference in H between the standard embedding {∗}× I and its
homotopic image in G′. It follows that a 1-cycle c is in the kernel of Lk′ if and only if

(3) Lk(c) =−F( j(c))

It is convenient to represent this using diagram (4) of Z2-equivariant maps. (Note that this
diagram does not commute; the two maps are equal precisely on the kernel of Lk′.)

(4)
c ∈ J H

C1

Lk

j
−F

2.4. Powers of the augmentation ideal. Consider elements of Z[Z2] as Laurent polyno-
mials in two commuting variables x,y. Let I denote the augmentation ideal of Z[Z2]. The
following lemma provides a convenient tool for analyzing the injectivity of the linking map
for an arbitrary spine, modulo powers of the augmentation ideal.

Lemma 5. If
ik : IkJ/Ik+1J −→ IkH/Ik+1H

is injective for some k, then for any relative spine G′ ⊂ T 3 rL,

i′k : IkJ′/Ik+1J′ −→ IkH/Ik+1H

is injective. Here ik, i′k are the map induced by the inclusions of G,G′ into T 3 rL.
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Proof. The maps in (4) are equivariant over Z[Z2]; consider

(5)

c ∈ IkJ/Ik+1J IkH/Ik+1H

IkC1/Ik+1C1

Lkk

jk −Fk

The module J is generated by the plaquettes Px,Py, and their images under j in C1 are

j(Px) = (1− y)Z, j(Py) = (1− x)Z,

where Z denotes a generator (vertical line segment) of the module C1. Suppose c ∈ IkJ.
Then c = aPx +bPy for some a,b ∈ Ik, and

jk(c) = (a(1− y)+b(1− x))Z ∈ Ik+1C1.

It follows that jk(IkJ)⊂ Ik+1C1, and so

ker[Lkk +Fk ◦ jk] = ker[Lkk]

�

Corollary 6. If
i j : I jJ/I j+1J −→ I jH/I j+1H

is injective for all 1≤ j ≤ k, then for any spine G′ ⊂ T 3 rL,

J′/Ik+1J′ −→ H/Ik+1H

is injective. So finger moves do nothing to this algebra; in other words they have no effect
on injectivity modulo powers of the augmentation ideal.

2.5. Construction of the links. In this section we construct links in T 2× I satisfying the
conditions in Corollary 6.

Lemma 7. For any k there exists a link Lk⊂ T 2×I such that i j : I jJ/I j+1J−→ I jH/I j+1H
is injective for all 1≤ j ≤ k.

Proof. To illustrate the idea of the proof, consider small values of k. For k = 0, let L0 be the
2-component link consisting of a symplectic basis (1,0),(0,1) curves on the torus, shifted
to disjoint levels in T 2× I. Two lines in their preimage in R2× I are denoted lx, ly, figure 4.
In this case J/IJ is 2-dimensional, generated by the plaquettes Px,Py, figure 3. The linking
map i0 : J/IJ −→H/IH is represented by the identity 2×2 matrix over the integers. (Here
the linking numbers are elements of Z[Z2]/I ∼= Z.)

For k = 1, L1 is defined to be L0 union the (1,−1) curve on the torus, shifted to a different
level in T 2× I; a line in its preimage is denoted lxy. (In our convention the slopes are
negative, as shown in Figures 3, 4.) In this case IJ/I2J is 3-dimensional, spanned by
(1− x)Px,(1− y)Px,(1− x)Py (recall the relation (2) (1− x)Px +(1− y)Py = 0).
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lx

ly

lxy lxy2

FIGURE 4. The preimage of the curves in T 2 × I, used in the proof of
lemma 7, in the universal cover: projection of R2× I onto R2 is shown;
as in figure 3 dots represent the preimage of the edge {∗}× I of the relative
spine.

IH/I2H is generated by (1− x),(1− y) times the lines lx, ly, lxy. Note however that

(1− x)lx = 0, (1− y)ly = 0, (1− x)lxy = (1− y)lxy.

Therefore IH/I2H is 3-dimensional. The 3× 3 matrix over I/I2 representing the linking
map i1 : IJ/I2J −→ H/I2H is

ly lx lxy
(1− x)Py 1− x 0 1− x
(1− y)Px 0 1− y 1− y
(1− x)Px 0 0 1− x

The map i1 is seen to be injective. Note that even though the linking is measured over I/I2,
the entries in the first column are taken modulo the relation 1−x = 0, in the second column
modulo 1− y = 0, and in the last column modulo x = y, because these relations hold for
the lines defining the columns.

The final example we consider is k = 2. Using relation (2), consider the generators

(1− x)2Px,(1− x)(1− y)Px,(1− y)2Px,(1− x)2Py

of I2J/I3J. Let L2 denote the 4-component link, obtained from L1 by adding the (1,−2)
curve on the torus; a line in its preimage is denoted lxy2 in figure 4. Like in the previous
case, linking with lxy is defined modulo x = y; it is convenient to represent the entries in
the third column of the linking matrix below in terms of y.

The actions of x,y on the new line are related by xlxy2 = y2lxy2 , so linking with this line is
defined modulo x = y2. Note the equality

(6) (1− y2) = (1− y)(1+ y) = 2(1− y) in I/I2

Using (6), for example the linking number of (1−x)2Px and lxy2 in I2/I3 equals (1−x)2 =

(1− y2)2 = 4(1− y)2.



11

ly lx lxy lxy2

(1− x)2Py (1− x)2 0 (1− y)2 4(1− y)2

(1− y)2Px 0 (1− y)2 (1− y)2 (1− y)2

(1− x)(1− y)Px 0 0 (1− y)2 2(1− y)2

(1− x)2Px 0 0 (1− y)2 4(1− y)2

The lower right 2×2 block of the matrix is
(

1 2
1 4

)
times (1− y)2, a non-singular matrix.

Thus i2 is injective.

Continuing the inductive construction, the link Lk ⊂ T 2× I is defined to be Lk−1 union the
(1,−k) curve on the torus, shifted in the I coordinate to be disjoint from Lk−1. The group
IkJ/Ik+1J is generated by k+2 elements:

{(1− x)a(1− y)bPx, a+b = k, a,b≥ 0} and (1− x)kPy.

Using the equality 1− y j = j(1− y) in I/I2, the linking number in Ik/Ik+1 of (1− x)a(1−
y)k−aPx, and lxy j equals

(7) (1− x)a(1− y)k−a = (1− y j)a(1− y)k−a = ja(1− y)a(1− y)k−a = ja(1− y)k.

Therefore the linking matrix has an upper triangular block decomposition with the diagonal
2×2 block

(
(1− x)k 0

0 (1− y)k

)
and (1− y)k times the k× k Vandermonde matrix V whose

(m,n)-th entry is Vm,n =mn−1. Its determinant is non-zero, showing that ik : IkJ/Ik+1J −→
IkH/Ik+1H is injective. This concludes the proof of lemma 7. �

3. THE 3-TORUS

This section extends the construction from the relative case T 2× I above to T 3. After
setting up the notation and giving details of the construction, we will outline the analogues
of lemmas 5, 7.

Let T 3 = H ∪H∗ be the genus 3 Heegaard decomposition, and let G,G∗ denote the spines
of the two handlebodies. Denote F := π1G, the free group on three generators. The funda-
mental group of the preimage G̃ in R3 is the commutator subgroup F2. Denote by J the first
homology of the cubical lattice G̃ (the “jungle gym”), J = F2/[F2,F2]. As in the previous
section, we think of generators of J as plaquettes. As a module over Z[Z3], J is generated
by three plaquettes Px,Py,Pz, figure 5. Denoting the three covering translations by x,y,z,
observe the relation

(8) (1− x)Px +(1− y)Py +(1− z)Pz = 0,

in J, analogous to (2).
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Px Py

Pz

lxz
lyz

FIGURE 5. Lines and plaquettes.

Consider a link L ⊂ T 3 r G whose components are homologically essential in T 3. Its
preimage, a Z3-equivariant collection of lines in R3, will be denoted L̃⊂ R3. Consider

K := ker [π1(T 3 rL)−→ π1T 3 ].

K ∼= π1(R3r L̃) is a free group. Denote by H the first homology of R3r L̃, H = K/[K,K].
Consider the map Lk : J −→ H induced by the inclusion G ↪→ T 3 r L. It is the Z[Z3]-
equivariant linking map, or in other words it is given by equivariant intersection between
the plaquettes and the lines L̃. Elements of R := Z[Z3] are represented as Laurent polyno-
mials in commuting variables x,y,z. Denote the augmentation ideal of R by I.

Let i′ : G′ −→ T 3 rL be a spine homotopic to G. Such a homotopy may be thought of as
finger moves of the three edges of G, intersecting the components of L during the homo-
topy. Lifting this to the universal cover, we have a Z[Z3]-equivariant map F : C1(G̃)−→H.
Here the chain group C1 of G̃ is a free module over R of rank three. With this notation in
place, the statement and the proof of lemma 5 and corollary 6 hold without any changes.

Next we adapt the construction of links Lk in lemma 7 to the setting of T 3. For k = 0 it
suffices to consider a 3-component link L0 obtained as a “resolution” of the 1-spine G∗ of
T 3. Its preimage in R3, the lines lx, ly, lz, pair δi, j with the plaquette generators of J, and
the map J/IJ −→ H/IH is an isomorphism for L0.

Consider generators of Ik/Ik+1 of the form

(9) Ck
a,b,c := (1− x)a(1− y)b(1− z)c, a+b+ c = k, a,b,c≥ 0.

It follows from equation (8) that

(10) {Ck
a,b,c Px, Ck

a,b,c Py, Ck
a,b,0 Pz}

is a basis for IkJ/Ik+1J. Consider the (2k + 3)-component link Lk given by L0 union
(1,0,− j) and (0,1,− j) curves in T 3, j = 1, . . . ,k}. Their preimages are denoted lxz j , lyz j .
The claim is that as in lemma 7, i j : I jJ/I j+1J −→ I jH/I j+1H is injective for all 1≤ j≤ k.
The proof is an extension of the analysis in section 2.5, which we outline next.



13

The linking pairing over Ik/Ik+1 between the basis elements B0 of IkJ/Ik+1J of the form
{Ck

0,b,c Px, Ck
a,0,c Py, Ck

a,b,0 Pz} and the lines lx, ly, lz is non-degenerate. (For example, the
linking number of Ck

0,b,c Px with lx equals (1− y)b(1− z)c and with ly, lz it is zero.) Since
the linking pairing of lx, ly, lz is trivial with all other basis elements (denote them B6=0) of
IkJ/Ik+1J, it suffices to analyze the linking pairing between B 6=0 and the lines {lxz j , lyz j}.
It decomposes as the direct sum of the linking matrix for

(11) {Ck
a6=0,b,c Px, a+b+ c = k, a,b,c≥ 0} and {lxz j , j = 1, . . . ,k}

and the analogous pairing for {Ck
a,b6=0,c Py} and {lyz j}. Consider (11); the analysis for y in

place of x is directly analogous.

The linking number (element of Ik/Ik+1) of Ck
a,b,c Px with lxz j equals (1− x)a(1− y)b(1−

z)c = ja(1− y)b(1− z)a+c, see (7). For different values of b, the linking numbers corre-
spond to different basis elements of Ik/Ik+1. For a given value of b, the linking matrix
of {Ck

a,b,c Px, a = 1, . . . ,k−c−b} and {lxz j , j = 1, . . . ,k−c−b} is the Vandermond matrix
times (1−y)b(1−z)a+c, as in the proof of lemma 7, showing that ik is injective as claimed.

Remark. If a link L is replaced with the dual spine G∗ (as in the setting of lemma 1), the
analysis above substantially simplifies. Recall the following result, an instance of a more
general statement in terms of the torsion-free derived series from [CH08]:

Theorem 8. [CH08, Corollary 2.2] Suppose F is a free group, B is a finitely-related group,
φ : F −→ B induces a monomorphism on H1(−;Q), and H2(B;Q) is spanned by B(n)-
surfaces. Then φ induces a monomorphism F/F(n+1) ⊂ B/B(n+1).

Here for a group B, its derived series is defined by B(0) = B, B(n+1) = [B(n),B(n)]. The
notion of B(n)-surfaces (maps of surfaces into K(B,1) where the image on π1 is in B(n)

[CH08, Definition 1.5]) gives an analogue of the Dwyer filtration in the derived setting.

Any embedding i : G −→ T 3 rG∗, induces an isomorphism on H1, because both φ ,ψ in
the diagram below are isomorphisms:

(12)

H1(G) H(T 3)

H1(T 3 rG∗)

φ

i∗
ψ

Theorem 8 applies to F = π1(G),B = π1(T 3 rG∗); the assumption on H2 is satisfied triv-
ially since H2(T 3rG∗)= 0. It follows that the map J−→H (where H now denotes the first
homology of the preimage of G∗ in R3) is injective, since J = F(1)/F(2), H = B(1)/B(2).

This approach does not work for links in place of the 1-complex G∗ because H2(T 3 rL)
is non-zero, and for a given link L it is a non-trivial problem to determine what the second
homology is of the image on π1 of an arbitrary map G−→ T 3 rL.
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4. POWERS OF THE AUGMENTATION IDEAL AND THE LOWER CENTRAL SERIES

The result of this section, in conjunction with corollary 6 and lemma 7 and their analogues
for T 3 discussed in section 3, completes the proof of theorem 3. Let i′ : G′ −→ T 3 r L
denote any spine homotopic to the standard spine G, where L is a link whose components
are all essential in π1T 3, as in section 3. The analysis below also applies to the relative
case T 2× I, considered in section 2.

We start by recalling the notation and summarizing basic consequences of the topological
setup. F denotes π1G′, the free group on three generators, and

K := ker [π1(T 3 rL)−→ π1T 3 ]

is isomorphic to π1(R3 r L̃), a free group. J′ denotes the first homology of the preimage
G̃′ of G′ in R3 and H denotes H1(R3 r L̃),

J′ ∼= F2/[F2,F2], H ∼= K/[K,K].

J′ and H are considered as modules over Z[Z3], and Ik denotes the k-th power of the
augmentation ideal I of Z[Z3]. The following statement is the main result of this section,
relating the filtrations of J′, H in terms of powers of the augmentation ideal and the lower
central series of F , π1(T 3 rL).

Lemma 9. Suppose J′/IkJ′ −→ H/IkH is injective for some k. Then the map

F/Fk+1 −→ π1(MrL)/π1(MrL)k+1

is injective.

It is convenient to introduce the following notation, so that the proof involves isomorphisms
rather than injections. Consider

(13) π := image [F
i′∗−→ π1(T 3 rL) ].

Since the composition F −→ π −→ π1T 3 is an isomorphism on H1, H1F −→ H1π is an
isomorphism. Note that for k > 1, πk is contained in K, and so is a free group. Consider

H := image[J′
i′∗−→ H ] ∼= (π ∩ K)/[π ∩ K,π ∩ K].

Observe that π ∩ K = π2. Indeed, as noted above π2 ⊂ K. To prove the opposite inclusion,
consider g∈ π∩K. Then g= i′∗( f ) for some f ∈F , see diagram (14). Since f ∈ ker [F −→
π1T 3 ] = F2, it follows that g ∈ π2.

(14)
1 π ∩ K π π1T 3 1

F
i′∗
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Therefore H could also be defined as H = π2/[π2,π2].

Proof of lemma 9. The proof is by induction on k; the inductive assumption is that F/Fk−→
π/πk is an isomorphism. The overall strategy is motivated by the proof of the Stallings
theorem [St65]; in particular we use the isomorphism H2(F/Fk) ∼= H2(π/πk) which is a
consequence of the inductive assumption. It is worth noting again that both F2 and π2 are
free groups but the map F2 −→ π2 is not an isomorphism on H1. Being an isomorphism on
H1 is equivalent to J′/IkJ′ ∼= H/IkH for all k. Rather the lemma has a weaker assumption,
J′/IkJ′ ∼= H/IkH for some fixed k.

Therefore the main technical ingredient in the proof, the diagram of exact sequences (19),
is formulated with the goal of comparing the lower central series to powers of the augmen-
tation ideal and it differs from the one used in the Stallings theorem in [St65].

We start by setting up the relevant short exact sequences. Let φk denote the inclusion
Fk ⊂ F2 composed with the quotient map F2 −→ F2/[F2,F2], and consider its kernel:

(15) 1−→ Fk∩ [F2,F2]−→ Fk
φk−→ F2/[F2,F2]

Denote the generators of F by x,y,z; the same letters will denote the covering transla-
tions of R3. To relate the map φk to the geometric discussion of the “jungle gym” J in
the previous section, consider a basic example, the triple commutator [[x,y],z] ∈ F3. The
map φk is implemented by first expanding [[x,y],z] = [x,y] · ([x,y]−1)z. The first factor is
mapped to the boundary of the plaquette Pz, figure 5. The second factor is mapped to the
boundary of this plaquette with the opposite orientation and shifted one unit up, −zPz. So
φ3([[x,y],z]) = (1− z)Pz. An arbitrary element of F3 expands as a product of conjugates of
elements of the form [g1,g2]

g3 ·([g1,g2]
−1)g4 , where each gi ∈ F . The map φ3 takes [g1,g2]

to a cycle c in G̃′, and

(16) φ3([g1,g2]
g3 · ([g1,g2]

−1)g4 = (g3−g4) · c ∈ IJ′.

It follows that the map φ3 surjects onto IJ′. The analogous statements hold for Fk: the map
φk takes a basic commutator [. . . [[x1,x2],x3], . . . ,xk], where x1, . . . ,xk ∈ {x,y,z}, x1 6= x2,
to the plaquette determined by [x1,x2], miltiplied by (1− x3) . . .(1− xk) ∈ Ik−2. More
generally, the image of φk is in Ik−2J ⊂ J, and moreover any element of Ik−2J is in the
image of φk. Consider the exact sequence (15) for k,k+1:

(17)

1 Fk∩ [F2,F2] Fk Ik−2J 1

1 Fk+1∩ [F2,F2] Fk+1 Ik−1J 1

φk

φk+1

The quotients of the respective groups form the short exact sequence
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(18) 1−→ Fk∩ [F2,F2]

Fk+1∩ [F2,F2]
−→ Fk

Fk+1
−→ Ik−2J

Ik−1J
−→ 1

Recall that for k > 1, πk is contained in K, and is a free group. We would like to compare
the short exact sequence (18) for F to the corresponding one for π . The sequence for π

is obtained by starting with the map πk −→ π2/[π2,π2] as in (15). The same analysis as
above, for example equation (16) with J′ replaced with H, shows that πk surjects onto
Ik−2H. The vertical maps in the following diagram, relating the short exact sequences (18)
for F,π , are induced by the inclusion G′ ⊂ T 3 rL.

(19)

1 Fk∩ [F2,F2]
Fk+1∩ [F2,F2]

Fk
Fk+1

Ik−2J
Ik−1J 1

1 πk∩ [π2,π2]
πk+1∩ [π2,π2]

πk
πk+1

Ik−2H
Ik−1H

1

α β
γ

The inductive assumption is that F/Fk −→ π/πk is an isomorphism, and the goal is to
show that the middle vertical map β is an isomorphism, to propagate the inductive step. A
separate assumption in the statement of the lemma, based on the link L, is that the map γ

is an isomorphism. The goal is to show that α is an isomorphism; then it will follow that
β is an isomorphism too, concluding the inductive step.

Recall that F −→ π is surjective and F/Fk −→ π/πk is assumed to be an isomorphism.
It follows that F2/Fk −→ π2/πk is an isomorphism, and so is H2(F2/Fk) −→ H2(π2/πk).
Consider Hopf’s characterization of H2 of a group Free/R:

(20) H2(F/R) ∼=
R∩ [F,F]
[F,R]

Apply this to H2(F2/Fk)∼= H2(π2/πk) to get

(21)
Fk ∩ [F2,F2]

[Fk,F2]
∼=

πk ∩ [π2,π2]

[πk,π2]

In the Stallings’ proof of his theorem, the second homology groups are terms in the 5-term
exact sequence [St65, Theorem 2.1]; in our context the relation is not as immediate: the
map α in (19) and the isomorphism (21) are related by the short exact sequences

(22)

1 Fk+1∩ [F2,F2]
[Fk,F2]

Fk∩ [F2,F2]
[Fk,F2]

Fk∩ [F2,F2]
Fk+1∩ [F2,F2]

1

1 πk+1∩ [π2,π2]

[πk,π2]
πk∩ [π2,π2]
[πk,π2]

πk∩ [π2,π2]
πk+1∩ [π2,π2]

1

∼= α
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The middle vertical map is an isomorphism by (21). It follows that the left vertical map is
injective. Since F −→ π is surjective, the left map is in fact an isomorphism. It follows
that α is an isomorphism. �

4.1. Discussion and questions. For each k > 1, the combination of corollary 6, lemma 7
and lemma 9 gives a k-filling link Lk ⊂ T 3: for any 1-spine G′ of T 3 which is disjoint from
Lk,

F/Fk −→ π1(T 3 rLk)/π1(T 3 rLk)k

is injective. (As above, F denotes π1G′.) Denoting by π the image of F as in (13), this
means F/Fk

∼= π/πk. It is interesting to note that by Dwyer’s theorem (see section 2.1) this
implies that H2(π) is contained in the (k−1)st term of the Dwyer filtration φk−1(π). This
is true for any map G′ ⊂ T 3 rLk, a fact that seems quite non-trivial to prove directly since
H2(T 3 rLk)* φ3(T 3 rLk).

The cardinality of the links Lk grows linearly with k, and the problem of finding a genuine
filling link L in T 3 remains open. In this paper we considered only links L with essential
components in T 3, ensuring that the complement in the universal cover has free fundamen-
tal group. To use this approach in the general case, where some of the components of the
link are contractible, would require a non-trivial extension of the group-theoretic analysis
developed above.

To illustrate the last point, we present a specific example, a “dense chain mail link”, for
which the property of being filling is not known to us. Consider the unit cubical T 3, and
take an ε-net of points in T 3×S2, the Grassmanian of all tangent 2-planes to T 3, for some
small ε . Now define the link L to be the link of circles of radius 1/10 in T 3 centered at and
oriented by each point of the net. By perturbing the net we may assume L is an embedded
link. Now suppose G is a spine of T 3 embedded disjointly from L. Each component of
L bounds a disk in T 3; of course the disks for nearby components intersect. Thin finger
move homotopies can be used to push G off these disks, ensuring trivial linking number
with L. (Generically these finger moves will acquire intersections with other disks, but the
new intersections come in ±1 pairs and thus do not contribute to linking numbers.) The
linking number gives information about the induced map on homology but the question of
injectivity modulo the third and higher terms of the lower central series is open.

Acknowledgements. We would like to thank Danny Calegary for discussions on the still
open question of the existence of filling links for closed 3-manifolds of rank greater than
2.
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APPENDIX A. FILLING LINKS IN 3-MANIFOLDS OF RANK 2

by Christopher J. Leininger1 and Alan W. Reid2

In this appendix we prove the following result which provides the first examples of closed
orientable 3-manifolds with Heegaard genus > 1 that contain a filling link.

Theorem A.1. Let M be a closed orientable 3-manifold such that π1(M) has rank 2. Then
M contains a filling hyperbolic link.

Closed orientable 3-manifolds of Heegaard genus 2 are examples of manifolds covered by
Theorem A.1, so an immediate corollary is:

Corollary A.2. Let M be a closed orientable 3-manifold such that M has Heegaard genus
2. Then M contains a filling hyperbolic link.

Note that there are closed orientable 3-manifolds M for which π1(M) has rank 2, but the
Heegaard genus is 3 (see [BZ84]). However, an interesting case of Corollary A.2 is the
following.

Using Perelman’s resolution of the Geometrization Conjecture [KL08]) it is known that
all closed orientable 3-manifolds with non-trivial finite fundamental group have Heegaard
genus 1 or 2. To see this, the resolution of the Geometrization Conjecture proves that
a closed 3-manifold M with finite fundamental group is covered by S3, in which case
M is a Seifert fibered space. Assuming that M is not S3, or a Lens Space, then M is a
Seifert fibered space over S2 with three exceptional fibers (see [Ja80, VI.11]), from which
a genus 2 Heegaard splitting may be constructed directly (see [BZ84, Proposition 1.3] for
example). The existence of filling links in manifolds of genus 1 was noted after the proof
of Proposition 2, so Theorem A.1 now shows.

Corollary A.3. Let M be a closed orientable 3-manifold such that π1(M) is finite and
non-trivial. Then M contains a filling link.

Remark A.4. An alternative proof of Corollary A.3 bypassing the use of Heegaard genus
is the following. Using [Mi57, Section 3], one obtains a classification of finite groups that
act freely on S3. Perelman’s resolution of the Geometrization Conjecture eliminates the
one class of finite groups from [Mi57] that are not subgroups of SO(4). The five families
of non-cyclic subgroups of SO(4) can all be seen to have rank 2.

Proof of Theorem A.1. We begin with a preliminary remark. The hypothesis that M is
closed, orientable and π1(M) has rank 2 implies that π1(M) is non-Abelian. The reason
is this: From [He76, Theorem 9.13] the only abelian groups occurring as the fundamental
group of a closed orientable 3-manifold are Z, Z/nZ, and Z3, and these are all excluded
by the rank hypothesis.

1Supported in part by NSF grant DMS-2106419
2Supported in part by NSF grant DMS-1812397
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Let L ⊂M be a hyperbolic link with at least 3 components. To find such a link, one may
start with any link L′ in M with at least 2 components, then appealing to [My82, Corollary
6.3] we may choose a knot K in M \L′ with hyperbolic complement, and set L = L′∪K.

Since M \L is hyperbolic, it follows from [JS79, Theorem VI.4.1] that the possibilities for
the image H of π1(G) in π1(M \L) are:

(1) H is free of rank 2, or
(2) H is free abelian of rank ≤ 2, or
(3) H has finite index in π1(M \L).

If H is free abelian of rank 1 or 2, then the image in π1(M) via the homomorphism induced
by inclusion M \L→ M is the quotient of a free abelian group of rank at most 2, and is
in particular abelian. Since G is a spine, H surjects π1(M), which contradicts the fact that
π1(M) is non-abelian. Therefore, case (2) is impossible. Case (3) can also be eliminated
as follows. Recall that the first Betti number of a 3-manifold is at least half the first Betti
number of its boundary, and thus H3/H has at most two cusps. This is a contradiction
since M \L has at least 3 cusps. We therefore conclude that the only possibility for H is
free of rank 2 and the proof is complete. �
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