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Let X be an input measurement and Y the output reading of a calibrated instrument, with Y(X) as the
calibration curve. Solving X(Y) projects an instrumental reading back onto the scale of measurements as
an object of pivotal interest. The arrays of instrumental readings are projected in this manner in practice,
yielding arrays of calibrated measurements, typically subject to errors of calibration. The effects of cal-
ibration errors on the properties of calibrated measurements are examined here under linear calibration.
Irregularities arise as induced dependencies, inflated variances, non-standard distributions, inconsistent
sample means, the underestimation of measurement variance, and other unintended consequences. On the
other hand, conventional properties are seen to remain largely in place in the use of selected regression
diagnostics and in one-way comparative experiments using calibrated data.

Keywords: linear calibration; induced dependencies; non-standard distributions; diagnostics; case studies

1. Introduction

Measurements enable the sciences and engineering, typically through calibrated instruments
subject to errors of calibration. Statistical issues in calibration were considered in [1–11]; for
example, all focused on the calibration of instruments per se rather than on their subsequent and
repeated usage. All are linked to error-induced irregularities in arrays of calibrated measurements,
but these have been largely overlooked in the archival literature. Our intent here is to bridge these
gaps for the case of classically calibrated data, as are often encountered in practice.

To fix ideas, instrumental readings {U1, . . . , Um} during calibration are observed at measure-
ments {X1, . . . , Xm} without error, under the model U(X), namely {Ui = β0 + β1Xi + εi; 1 ≤ i ≤
m}, giving the least-squares calibration line Û = β̂0 + β̂1X, together with the calibrated mea-
surement Y = X̂(U) = (U − β̂0)/β̂1 from a subsequent instrumental reading U. For example, in
calibrating a laboratory colorimeter for assessing phosphorus content, light transmittance (Ui)

from its photocell relates linearly (Beer’s law) to input (Xi) in known milligrams of phosphorus.
Subsequent colorimetric readings {Z1, . . . , Zn}, taken during the course of an experiment, then are
projected back onto the scale of phosphorus measurements as {Yi = (Zi − β̂0)/β̂1; 1 ≤ i ≤ n}, to
be analysed as the calibrated entities of note. Periodic checks against a standard then determine
when recalibration is required. Often referred to as classical calibration, this is the model of choice
here. In contrast, inverse calibration, as set forth in the above-cited references, is based on the
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1808 D.R. Jensen and D.E. Ramirez

unconventional model {Xi = γ0 + γ1Ui + εi; 1 ≤ i ≤ m}, unconventional in that {Xi; 1 ≤ i ≤ m}
continue to be taken as measured without error.

There is a long-standing but unresolved debate on the merits of classical versus inverse cali-
bration; see the aforementioned references. Our choice here is guided by its tractability, resting
on mathematical statistics in lieu of the simulation studies often employed in support of inverse
regression. Moreover, parametric and non-parametric procedures often require that sample data
{Y1, . . . , Yn} be uncorrelated or even independent. This clearly fails in calibrated data, regardless
of the method of calibration, owing to the propagation of calibration errors across the cali-
brated measurements. Here, we examine these and other irregularities attributable to errors of
calibration.

To place the current work in perspective, the following antecedents are germane. As noted
previously, [1–11] focused exclusively on the calibration of instruments per se rather than on the
consequences of their subsequent usage, as also found in a burgeoning literature in the field of
chemometrics. In contrast, subsequent effects of classical calibration errors were studied in [12],
where actual levels for one-sample confidence intervals were found to be always less than nominal
values, with further results regarding tolerance intervals. Moreover, findings in tandem with the
present study are reported in [13], but for the case of direct assays taking {Xi = γ0 + γ1Ui +
εi; 1 ≤ i ≤ m} as a conventional model having chance variation in Xi but with {Ui; 1 ≤ i ≤ m}
as regressors determined without error. The focus there was on the effects of calibration errors
on subsequent statistical analyses, where mixing distributions are required to properly account
for stochastic variation attributable to calibration errors. This feature carries over to the present
study on subsequent effects of classical calibration errors, but with further technical complications
surrounding the use of negative moments. An outline follows.

Section 2 develops notation and other technical support, to include the required mixing distri-
butions of Equations (1) and (2). Section 3 reexamines the process of calibration, together with
irregularities attributable to errors of calibration. Section 4 traces the imprint of these irregu-
larities on various issues in statistical inference. These include inferences regarding the mean
and variance in a single sample, with mixing distributions as given in Equations (6) and (7) of
Theorem 3. Extensions include the near preservation of inferences for location and scale in com-
parative experiments, to include the analysis of one-way experiments as in Equations (11) and
(12) of Theorem 4. The choice of truncation point for slope, as in Remark 1, is based on the
correlation between X and U. Section 5 examines the ability of model diagnostics to uncover
violations incurred through classical calibration based on observations Y = X(U). Section 6 enu-
merates a variety of illustrative case studies, and Section 7 ends on summary conclusions and a
cautionary note. Some collateral details are referred to an appendix, to include critical features of
negative moments, their expansions, and properties. A comprehensive list of references is cited
encompassing supporting material.

2. Preliminaries

2.1. Notation

Designate Rn as the Euclidean n-space, Rn+ as its positive orthant, Sn as the real symmetric (n × n)

matrices, and S+
n and S0

n as their positive definite and positive semidefinite varieties. Arrays are set
in bold type, to include the transpose A′ and inverse A−1 of A, the unit vector 1n = [1, . . . , 1]′ ∈ Rn,
the identity matrix In, a block-diagonal matrix Diag (A1, . . . , Ak), and Bn = (In − n−11n1′

n). The
trace, determinant, and rank of A are tr (A), | A |, and r(A), respectively. The eigenvalues of A ∈ Sn

are designated as {chi(A); 1 ≤ i ≤ n}. Operators E(Y) and V(Y) designate the expectation vector
and dispersion matrix for Y ∈ Rn, with E(Y) and Var (Y) as the corresponding values on R1. Other
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Journal of Statistical Computation and Simulation 1809

moments, to include negative moments on R1, are {μr(Z) = E(Zr); r ∈ {−2, −1, 1}} as moments
about zero and {μr(Z) = E(Z − μ1)

r); r ∈ {2, 3, 4}} as central moments. Specifically, let κ1 =
μ−1(β̂), κ2 = μ−2(β̂), and κ11 = Var (β̂−1) = κ2 − κ2

1 in terms of an estimator β̂. Expansions
and approximations to selected negative moments are given in Appendix 1.

2.2. Special distributions

Probability density and cumulative distribution functions are identified as pdf and cdf, with L(Y)

as the law of distribution of Y ∈ Rn. Distributions of note on R1 include N1(μ, σ 2) as the Gaussian
law with parameters (μ, σ 2); Nb

a (μT , σ 2
T ) as N1(μ, σ 2) restricted to [a, b]; and non-central versions

of Student’s t(ν, λ), chi-squared χ2(ν, λ), and Snedecor–Fisher F(ν1, ν2, λ) distributions, having
{ν, ν1, ν2} as degrees of freedom and non-centrality λ. Specifically, gt2(u; ν, λ) and gF(u; ν1, ν2, λ)

designate the densities corresponding to t2(ν, λ) and F(ν1, ν2, λ), respectively, and 
d
c (ν, λ) is the

restriction of χ2(ν, λ) to the interval [c, d] in R1+.
Distributions on Rn include Nn(θ, �) as the Gaussian law, and gn(x; θ, �) as its pdf, having

location–scale parameters (θ, �). Gaussian mixtures include

fn(x; θ, �, G1) =
∫ ∞

−∞
gn(x; t−1θ, t−2�) dG1(t) (1)

as translation–scale mixtures, with G1(·) as a cdf on R1, giving purely scale mixtures on R1+ when
θ = 0. Distributions for quadratic forms emerge on letting L(U | w) be the scaled gamma density
g0(u; α, β/w) = (w/β)αuα−1e−wu/β/
(α), then compounding as

f (u; α, β, G2) = uα−1

βα
(α)

∫ ∞

0
wαe−wx/β dG2(w) (2)

with G2(w) as a cdf on R1+.

2.3. Structured dispersion

Errors having non-scalar dispersion matrices often are encountered in practice. Their relevance
here is to examine the superposition of calibrative errors on such pre-existing structures. Accord-
ingly, let �0(n) = {�0(γ); γ ∈ 
n} comprise the matrices �0(γ) = (In + 1nγ

′ + γ1′
n − γ̄ 1n1′

n)

in S+
n , such that γ ′ = [γ1, . . . , γn] and γ̄ = (γ1 + · · · + γn)/n. Such matrices and their equivalents

were considered in [14] in connection with the analysis of variance; they comprise the within-
subject dispersion matrices preserving validity of F-tests in the analysis of repeated measurements
[15,16], and they determine equivalence classes of Pitman [17] estimators for a mean [18]. Related
work [19–21] found Grubbs’ [22] test for a single shifted outlier to be exact in level and power
under normality for all dispersion matrices in �0(n). The form (D + 1nγ

′ + γ1′
n) emerges in the

study [23] of Euclidean distance matrices, having applications in linear inference [24].
Designate by �1(n) = {�(ρ) = [(1 − ρ)In + ρ1n1′

n]; −(n − 1)−1 < ρ < 1} the equicorrela-
tion matrices in S+

n , together with the ensemble �(n) = {�(γ , φ); (γ , φ) ∈ �n} in S+
n , such that

�(γ , φ) = [In + 1nγ
′ + γ1′

n − φ1n1′
n] is positive definite, where �0(n) ⊂ �(n) since �0(γ) =

�(γ , γ̄ ). Eigenvalues and conditions for positive definiteness are found on writing �(γ , φ) =
In + An(γ , φ)with An(γ , φ) = 1nγ

′ + γ1′
n − φ1n1′

n. To these ends, letAn = {An(γ , φ) = (1nγ
′ +

γ1′
n − φ1n1′

n); (γ , φ) ∈ �n}, and for each An(γ , φ), let τ1 = tr [An(γ , φ)] = 2(γ1 + · · · + γn) −
nφ = n(2γ̄ − φ) and τ2 = (γ1 − γ̄ )2 + · · · + (γn − γ̄ )2. Essential properties follow.
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1810 D.R. Jensen and D.E. Ramirez

Lemma 1 Suppose that �(γ , φ) = In + An(γ , φ) with An(γ , φ) = 1nγ
′ + γ1′

n − φ1n1′
n, and let

�(n) comprise all such matrices in S+
n .

(i) If γ �= 0, then An(γ , φ) has rank r[An(γ , φ)] = 2; otherwise r[An(0, φ)] = 1.
(ii) If γ �= 0, then An(γ , φ) is an indefinite matrix, with its positive and negative eigenvalues

given, respectively, by α1 = [τ1 + (τ 2
1 + 4nτ2)

1/2]/2 and αn = [τ1 − (τ 2
1 + 4nτ2)

1/2]/2.
(iii) The ordered eigenvalues {ξ1 ≥ · · · ≥ ξn} of �(γ , φ) are given by {ξ1 = 1 + α1, ξ2 = · · · =

ξn−1 = 1, ξn = 1 + αn}.
(iv) �(γ , φ) ∈ �(n) if and only if (γ , φ) ∈ �n, such that τ1 > nτ2 − 1, or equivalently 2γ̄ − φ >

τ2 − 1/n.

Proof (i) Write An(γ , φ) = 1n(γ − η1n)
′ + (γ − η1n)1′

n = 1nθ
′ + θ1n with η = φ/2 and θ =

(γ − η1n). For γ �= 0, this clearly has rank 2; otherwise, An(0, φ) = φ1n1′
n has unit rank. With

γ �= 0, the leading terms of the characteristic polynomial Pn(·) for An(γ , φ) are Pn(An) = αn −
c1α

n−1 + c2α
n−2, where c1 = tr [An(γ , φ)] = τ1 and c2 is the sum of all (2 × 2) principal minors.

Further terms vanish since An(γ , φ) has rank 2. A typical principal (2 × 2) submatrix is An(i, j) =[
2γi−c γi+γj−c

γi+γj−c 2γj−c

]
with c = φ and its minor is |An(i, j)| = −(γi − γj)

2 independently of c, so that

c2 = − ∑
i<j(γi − γj)

2 = −n
∑n

i=1(γi − γ̄ )2 = −nτ2 from a standard formula. It follows that
Pn(An) = αn−2(α2 − τ1α − nτ2), with roots as given in conclusion (ii). Conclusion (iii) follows
directly since {chi(In + An(γ , φ)) = 1 + chi(An(γ , φ)); 1 ≤ i ≤ n}, and conclusion (iv) follows
from the requirement that 1 + αn = 1 + [τ1 − (τ 2

1 + 4nτ2)
1/2]/2 > 0 in order that �(γ , φ) be

positive definite. �

Conclusion (ii) and thus conclusion (iii) hold generally, whether γ = 0 or not. Here, γ = 0
implies τ2 = 0, so that α1 = τ1 = nφ and αn = 0, giving the well-known array {1 + nφ, 1, . . . , 1}
as eigenvalues of �(0, φ) = (In + φ1n1′

n).
Further reproductive, annihilative, and preservative properties are associated with An =

{An(γ , φ); (γ , φ) ∈ �n}. Let Gn = {G ∈ Sn : G = ξ1ee′ + ξ2q2q′
2 + · · · + ξnqnq′

n} comprise the
matrices in Sn having orthonormal eigenvectors {e, q2, . . . , qn} such that e = n−1/21n. For each
G ∈ Gn, let G1 = ξ1ee′ and G2 = G − G1. Further partition γ ′ = [γ ′

1, . . . , γ ′
k] with {γ i ∈ Rni ; 1 ≤

i ≤ k} and n1 + · · · + nk = n; let L′
n = Diag (n−1

1 1′
n1

, . . . , n−1
k 1′

nk
); and note that L′

n1n = 1k .
Essential properties follow.

Lemma 2 Let An = {An(γ , φ); (γ , φ) ∈ �n}; consider Gn = {G ∈ Sn : G = ξ1ee′ + G2}; and let
L′

n = Diag (n−1
1 1′

n1
, . . . , n−1

k 1′
nk

).

(i) For G = (G1 + G2) ∈ Gn, G2 has the annihilative property that G21n = 0, so that G1n =
(G1 + G2)1n = ξ1ee′1n = ξ11n and G2An(γ , φ)G2 = 0.

(ii) An is closed under G ∈ Gn acting by congruence, that is, GAn(γ , φ)G = An(ω, α) ∈ An with
ω = ξ1Gγ and α = φξ 2

1 for each G ∈ Gn.
(iii) The structure of An(γ , φ) ∈ An is preserved under An(γ , φ) → L′

nAn(γ , φ)Ln in the sense that
L′

nAn(γ , φ)Ln = Ak(γ̄ , φ) ∈ Ak , with γ̄ ′ = [γ̄1, . . . , γ̄k] and {γ̄i = (γi1 + · · · + γini)/ni; 1 ≤
i ≤ k}.

Proof Conclusion (i) follows since G21n = (ξ2q2q′
2 + · · · + ξnqnq′

n)1n = 0 from the orthonor-
mality of {e, q2, . . . , qn}, so that (G1 + G2)1n = ξ1ee′1n = ξ11n and G2An(γ , φ)G2 = 0. To see
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conclusion (ii), write GAn(γ , φ)G as

G(1nγ
′ + γ1′

n − φ1n1′
n)G = G1nγ

′G + Gγ1′
nG − φG1n1′

nG

= G11nγ
′G + Gγ1′

nG1 − φG11n1′
nG1

= ξ11nγ
′G + Gγ1′

nξ1 − φξ 2
1 1n1′

n

= 1nω
′ + ω1′

n − α1n1′
n

from conclusion (i), with ω = ξ1Gγ and α = φξ 2
1 as asserted. Conclusion (iii) follows directly

on noting that L′
n1n = 1k and L′

nγ = γ̄ ∈ Rk , to complete our proof. �

3. Calibration

Here, we seek the properties of calibrated measurements X(Y) under classical assays based on
the calibration line Y(X). A first look reexamines calibration itself.

3.1. The calibration process

Consider {Ui = β0 + β1Xi + εi; 1 ≤ i ≤ m} under Gauss–Markov assumptions with {Var (Ui) =
σ 2

U ; 1 ≤ i ≤ m}, giving (β̂0, β̂1) as least-squares estimators, and collateral values Suu =∑m
i=1(Ui − Ū)2, Sxu = ∑m

i=1(Xi − X̄)(Ui − Ū), and Sxx = ∑m
i=1(Xi − X̄)2. Here, Var (β̂0) = σ 2

0

and Var (β̂1) = σ 2
1 = σ 2

U/Sxx. Gaussian calibration refers to {ε1, . . . , εm} as iid N1(0, σ 2
U) ran-

dom variables. Subsequent readings {Z1, . . . , Zn}, taken independently of {U1, . . . , Um}, give the
calibrated measurements {Yi = (Zi − β̂0)/β̂1; 1 ≤ i ≤ n}, or equivalently Y = β̂−1

1 (Z − β̂01n). If
elements of Z′ = [Z1, . . . , Zn] have means μ′

Z = [μ1, . . . , μn] and second moments V(Z) = � =
[σij], independently of (β̂0, β̂1), then conditional moments follow directly as

E(Y | β̂1) = β̂−1
1 [μZ − E(β̂0 | β̂1)1n], (3)

V(Y | β̂1) = β̂−2
1 [� + Var (β̂0 | β̂1)1n1′

n]. (4)

Expressions simplify if neither E(β̂0 | β̂1) nor Var (β̂0 | β̂1) depends on β̂1. This holds in Gaussian
calibration where {X1, . . . , Xm} have been centred to {(X1 − X̄), . . . , (Xm − X̄)}, so that new out-
puts {Z1, . . . , Zn} first are projected onto the scale of measurements and then shifted by X̄ units. For
this case, β̂0 = Ū; Var (β̂0) = σ 2

0 = σ 2
U/m; Var (β̂1) = σ 2

1 = σ 2
U/Sxx as before; and (β̂0, β̂1) are

now uncorrelated and, under Gaussian calibration, are independent. We take the initial calibration
to have been centred.

3.2. Truncation

Unconditional moments of {Y1, . . . , Yn}, as crafted, are undefined, owing to outcomes of β̂1 near
zero. However, a routine exclusion rule accepts a provisional calibration if β̂1 ∈ [a, b] for fixed
a < b not spanning zero and recalibrates otherwise; see [1,6,8], for example. This effectively
truncates the distribution of β̂1, guaranteeing in turn all moments of {Y1, . . . , Yn}. Accordingly,
let I[a,b] be the indicator of the set [a, b] ∈ R1 not spanning zero; designate β̂T = I[a,b]β̂1 as the
resulting restricted estimator; and let βT = E(β̂T ) and σ 2

T = Var (β̂T ). Clearly, βT ∈ [a, b] and,
under Gaussian calibration, Var (β̂T ) = σ 2

T < σ 2
1 = Var (β̂1), from a result reported in [25]. More-

over, the restriction L(β̂T ) = Nb
a (βT , σ 2

T ), together with L(β̂2
1/σ 2

1 ) = χ2(1, δ) with δ = β2
1/σ 2

1 , is
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1812 D.R. Jensen and D.E. Ramirez

tantamount to restricting (β̂2
1/σ 2

1 ) to [c, d], with c = a2/σ 2
1 and d = b2/σ 2

1 , to be designated as
L(β̂2

1/σ 2
1 ∈ [c, d]) = 
d

c (1, δ) in the parlance of Section 2.2. The following concept is germane.

Definition 1 Let L(W) be the distribution of W ∈ R1 having the density fW (·); let [a, b] be
an interval of truncation; let WT = I[a,b]W ; and let L(W | W ∈ [a, b]) = L(WT ) designate the
distribution of W restricted to [a, b]. Then, coverage is defined as Cg = ∫ b

a fW (t) dt, so that the
density of WT is fWT (·) = C−1

g fW (·) on [a, b].

Guidelines are sought in choosing points of truncation. Without loss of generality, we take
β̂1 > 0, correspondingly Sxu > 0; otherwise reflect {U1, . . . , Um} and {Z1, . . . , Zn} about zero;
and take [a, b] ∈ R1+ as points of truncation with a > 0. In practice, it often suffices to restrict β̂1

to [c, ∞) with c > 0. Regarding the choice of c, we note that a typical calibration, if effective,
will have squared correlation over 90%. Moreover, the squared correlation R2

(X ,U) is functionally

related to the OLS estimator β̂1 by the standard relationship

R2
(X ,U) = β̂2

1
Sxx

Suu
.

In order to assure finite negative moments {μ−1(β̂T ), μ−2(β̂T )}, as required subsequently, we
stipulate a working rule of thumb as follows, subject of course to user discretion.

Remark 1 (Rule of Thumb) Take the squared correlation to satisfy R2
(X ,U) > 5%. With {Sxx, Suu}

as given by the data, requiring that 5% < R2
(X ,U) necessarily restricts β̂1 to the interval

[√0.05Suu/Sxx, ∞).

Remark 2 It can be seen in Section 6 that this choice on occasion yields coverage near unity, so
that L(β̂T ) and L(β̂1) largely coincide.

3.3. Error analysis

If instead (β0, β1) were known, then {Yi = (Zi − β0)/β1; 1 ≤ i ≤ n} would be recovered without
errors of calibration, in which case E(Yi) = (μi − β0)/β1 = μY (β1), Var (Yi) = Var (Zi)/β

2
1 =

σ 2
Y (β1), and ρ(Yi, Yj) = ρ(Zi, Zj). This ‘ideal’ case serves as a reference against which recovery

under calibrative errors may be gauged. From expression (4), the conditional correlation param-
eter becomes ρ(Yi, Yj | β̂1) = (σij + σ 2

0 )/[(σii + σ 2
0 )(σjj + σ 2

0 )]1/2 independently of β̂1. Even if
V(Z) = σ 2

Z In, where σij = 0 for i �= j, conditional correlations will have been induced through
calibration. Unconditional properties of {Y1, . . . , Yn} follow through deconditioning, to include
negative moments κ1 = μ−1(β̂T ), κ2 = μ−2(β̂T ), and κ11 = Var (β̂−1

T ) of β̂T , as follows.

Theorem 1 Let {Yi = (Zi − β̂0)/β̂T ; 1 ≤ i ≤ n} be the measurements inverse to outputs
{Z1, . . . , Zn} from a calibrated instrument observed independently of {U1, . . . , Um}, such that
E(Z) = μZ and V(Z) = �; and let σ 2

0 = Var (β̂0), σ 2
T = Var (β̂T ), κ1 = μ−1(β̂T ), κ2 = μ−2(β̂T ),

and κ11 = Var (β̂−1
T ). Then, unconditional moments, to be designated as E(Y) = μY and V(Y) =

�, are given by

(i) μY = κ1(μZ − β01n).
(ii) � = κ2(� + σ 2

0 1n1′
n) + κ11(μZ − β01n)(μZ − β01n)

′.
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(iii) Moreover, if L(Z) = Nn(μZ , �) independently of Gaussian calibrative errors, with β̂T as β̂1

restricted to [a, b] in R1+, then the unconditional joint density of the elements of Y is the
translation–scale mixture

fn(y; μY , �, G1) = C−1
g

∫ b

a
gn(y; μ(t), �(t)) dG1(t) (5)

as in Equation (1), where μ(t) = t−1(μZ − β01n), �(t) = t−2(� + σ 2
0 1n1′

n), Cg =∫ b
a dG1(t), and with mixing distribution G1(·) = N1(β1, σ 2

1 ).

Proof Conclusion (i) follows directly from Equation (3), and conclusion (ii) from Equation (4),
on using Cov (Yi, Yj) = Eβ̂T

[Cov (Yi, Yj | β̂T )] + Covβ̂T
[E(Yi | β̂T ), E(Yj | β̂T )] for covariances

and similarly for variances. Noting for fixed β̂T that Y is a linear function of (Z, β̂0), we see
that L(Y | β̂T ) = Nn(μY (β̂T ), �(β̂T )) as in Equations (3) and (4). Expression (5) now follows on
mixing over the conditioning distribution. �

Further irregularities, beyond induced correlations, are now apparent. Conclusion (ii) asserts
that {Var (Yi) = κ2(σii + σ 2

0 ) + κ11(μi − β0)
2; 1 ≤ i ≤ n}. Even if the elements of {Z1, . . . , Zn}

are homoscedastic, such that V(Z) = σ 2
Z In, it follows that the homogeneity of the unconditional

variances of {Y1, . . . , Yn} is tantamount to the homogeneity of their means. We next examine these
and other issues incurred in the analysis and interpretation of measurements classically calibrated
and subject to errors of calibration.

4. Topics in inference

Model irregularities, to include induced correlations and possible heteroscedasticity, violate the
tenets of conventional data analysis in estimation and hypothesis testing. We focus on normal-
theory inferences, lacking the independence often required by non-parametrics. We next specialize
earlier findings, as they apply in a single sample and in selected comparative experiments.

4.1. Single sample

The elements of Z = [Z1, . . . , Zn]′ now are taken to be uncorrelated and homogeneous in
mean and variance in keeping with conventional assumptions, that is, E(Z) = μZ1n and
V(Z) = σ 2

Z In. At issue are the properties of L(Y) and of (Ȳ , S2
Y , t2

0 , R) as the sample mean,
the sample variance, Student’s statistic t2

0 = n(Ȳ − μ0
Y )2/S2

Y with reference to two-sided alter-
natives, and R = [(Y1 − Ȳ), . . . , (Yn − Ȳ)]′ = BnY as the ordinary residuals. Conditional and
unconditional means are E(Y | β̂T ) = β̂−1

T (μZ − β0)1n and E(Y) = κ1(μZ − β0)1n. Second
moments exhibit common correlations, namely V(Y | β̂T ) = �(β̂T ) = β̂−2

T (σ 2
Z + σ 2

0 )�(ρ) with
ρ = σ 2

0 /(σ 2
Z + σ 2

0 ) and V(Y) = � = κ2(σ
2
Z In + σ 2

0 1n1′
n) + κ11(μZ − β0)

21n1′
n, the latter with

ρ0 = [κ2σ
2
0 + κ11(μZ − β0)

2]/[κ2(σ
2
Z + σ 2

0 ) + κ11(μZ − β0)
2]. Recall here that κ1 = μ−1(β̂1),

κ2 = μ−2(β̂1), and κ11 = Var (β̂−1
1 ) = κ2 − κ2

1 . The means and variances of {Y1, . . . , Yn}, both
conditionally and unconditionally, are homogeneous, but correlations may become large. Essential
moments and related properties are considered next; it is seen that S2

Y may grossly underesti-
mate the actual measurement variance σ 2

Y and that induced dependencies preempt conventional
asymptotics for Ȳn = (Y1 + · · · + Yn)/n.

Theorem 2 Let {Yi = (Zi − β̂0)/β̂T ; 1 ≤ i ≤ n} be the measurements inverse to outputs
{Z1, . . . , Zn} from a calibrated instrument observed independently of {U1, . . . , Um}, such that

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
V

ir
gi

ni
a,

 C
ha

rl
ot

te
sv

ill
e]

, [
D

. E
. R

am
ir

ez
] 

at
 0

6:
37

 2
0 

M
ay

 2
01

5 



1814 D.R. Jensen and D.E. Ramirez

E(Z) = μZ1n and V(Z) = σ 2
Z In, and consider the sample quantities (Ȳn, S2

Y , R), with R′ =
[(Y1 − Ȳ), . . . , (Yn − Ȳ)] as the ordinary residuals. Then,

(i) Ȳn is unbiased but inconsistent for estimating E(Yi) = κ1(μZ − β0).
(ii) E(S2

Y ) = κ2σ
2
Z = σ 2

Y − [κ2σ
2
0 + κ11(μZ − β0)

2], so that S2
Y underestimates Var (Yi) = σ 2

Y .
(iii) {E(Ri) = 0; 1 ≤ i ≤ n}.

Proof The unbiasedness of Ȳn follows routinely, and its variance from

Var (n−11′
nY) = n−21′

n[κ2(σ
2
Z In + σ 2

0 1n1′
n) + κ11(μZ − β0)

21n1′
n]1n

= n−1κ2σ
2
Z + κ2σ

2
0 + κ11(μZ − β0)

2.

Since limn→∞ Var (Ȳn) = [κ2σ
2
0 + κ11(μZ − β0)

2] > 0, its limit distribution is not degenerate at
μY , so that the consistency of Ȳn does not hold in probability or in mean square or, almost surely,
in agreement with assertion (i). Conclusion (ii) follows on evaluating the expected value of the
quadratic form (n − 1)S2

Y = Y ′BnY as E[(n − 1)S2
Y ] = tr BnV(Y) + μ′

Y BnμY . The details are

E[(n − 1)S2
Y ] = tr Bn[κ2(σ

2
Z In + σ 2

0 1n1′
n) + κ11(μZ − β0)

21n1′
n] + μ′

Y BnμY

= (n − 1)κ2σ
2
Z ,

where μ′
Y BnμY = κ2

1 (μZ − β0)
21′

nBn1n = 0, since Bn is idempotent of rank (n − 1) and Bn1n =
0. Conclusion (iii) follows from E(R) = E(BnY) = κ1(μZ − β0)Bn1n = 0, to complete our
proof. �

The following consequences are noteworthy.

• Conclusion (i) preempts the usual expectation that lengths of (1 − α) confidence intervals for
μY will decrease at the rate O(n−1/2).

• Conclusion (ii) asserts that S2
Y underestimates Var (Yi) = σ 2

Y , with bias B = [κ2σ
2
0 + κ11(μZ −

β0)
2].

To continue, unconditional moments of calibrated measurements are seen to depend on those of
the conditioning variable β̂T . It remains to examine the effects of calibration on unconditional
distributions, to include those of the sample statistics (Ȳ , S2

Y , t2
0 , R). Under Gaussian calibration

without exclusion, we have L(β̂1) = N1(β1, σ 2
1 ) and L(β̂2

1/σ 2
1 ) = χ2(1, δ) with δ = β2

1/σ 2
1 . With

exclusion, the mixing distributions in expressions (1) and (2) now are G1(β̂T ) = Nb
a (βT , σ 2

T ),
whereas G2(β̂

2
T ; δ) is a version of 
d

c (1, δ) found on restricting χ2(1, δ) to [c, d] in R1+. Details
follow.

Theorem 3 Let {Yi = (Zi − β̂0)/β̂T ; 1 ≤ i ≤ n} be the calibrated measurements based on
{Z1, . . . , Zn} as iid N1(μZ , σ 2

Z ) random variables independent of (β̂0, β̂T ) under Gaussian
calibration, with β̂T restricted to [a, b] in R1+, and let δ = β2

1/σ 2
1 . Consider statistics (Ȳ , S2

Y , t2
0 , R),

where t2
0 = n(Ȳ − μ0

Y )2/S2
Y and R = [(Y1 − Ȳ), . . . , (Yn − Ȳ)]′ consists of ordinary residuals.

Then, the following properties hold.

(i) L(Ȳ) has the density f1(u; μ, τ 2(n), G1) as in Equation (5) for distributions on R1, where
μ = (μZ − β0) and τ 2(n) = n−1(σ 2

Z + nσ 2
0 ), with mixing distribution G1(t) = N1(β1, σ 2

1 )

on R1.
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(ii) L(R) has the density

fn(r; 0, σ 2
Z Bn, G1) = C−1

g

∫ b

a
gn(y; 0, t−2σ 2

Z Bn) dG1(t) (6)

as in Equation (5), with mixing distribution G1(t) = N1(β1, σ 2
1 ) on R1.

(iii) L[(n − 1)S2
Yσ 2

1 /σ 2
Z ] has the density f (u; α, 2, G2) = (uα−1/βα
(α))

∫ d
c wαe−wx/2 dG2(w) as

in Equation (2) with α = ν/2 and ν = (n − 1) and mixing distribution G2(β̂
2
1 ; δ) as 
(1, δ)

on R1+ such that c = a2/σ 2
1 and d = b2/σ 2

1 .
(iv) The unconditional density of t2

0 is the mixture

g(u; ν, λ, G1) = C−1
g

∫ b

a
kgt2(u; ν, λ(t)) dG1(t) (7)

with k = σ 2
Z /(σ 2

Z + nσ 2
0 ), ν = (n − 1), non-centrality λ(t) = n[(μZ − β0) − tμ0

Y ]2/(σ 2
Z +

nσ 2
0 ), and mixing distribution G1(t) = N1(β1, σ 2

1 ) on R1.

Proof Begin with L(Y | β̂T ) = Nn[β̂−1
T μ1n, β̂−2

T (σ 2
Z In + σ 2

0 1n1′
n)] to determine directly that

L(R | β̂T ) = Nn(0, β̂−2
T σ 2

Z Bn), since Bn is idempotent and Bn1n = 0 and that L(Ȳ | β̂T ) =
N1(β̂

−1
T μ, β̂−2

T τ 2(n)), where μ = (μZ − β0) and τ 2(n) = n−1(σ 2
Z + nσ 2

0 ). The unconditional den-
sity of Ȳ thus is f1(u; μ, τ 2(n), G1) on specializing Equation (5) from Rn to R1, to give conclusion
(i) with mixing distribution as asserted. Conclusion (ii) follows similarly on mixing L(R | β̂T )

over G1(t). Since (n − 1)S2
Y = R′R, we infer that L(R′Rβ̂2

1/σ 2
Z | β̂2

1 ) = χ2(ν, 0) with ν = n − 1,
so that L((n − 1)S2

Y/σ 2
Z | β̂2

1 ) is a central chi-squared variate scaled by β̂2
1 . On identifying (n −

1)S2
Yσ 2

1 /σ 2
Z with U and (β̂2

1/σ 2
1 ) with w in developments leading to Equation (2), we thus estab-

lish conclusion (iii) on specializing from gamma to chi-squared distributions under the restriction
β̂2

T ∈ [a2, b2] in R1+, so that (β̂2
1/σ 2

1 ) is now restricted to [a2/σ 2
1 , b2/σ 2

1 ]. To continue, observe that
L[(Z̄ − β̂0 − β̂Tμ0

Y ) | β̂T ] = N1[(μZ − β0 − β̂Tμ0
Y ), n−1(σ 2

Z + nσ 2
0 )]. Properly standardized, the

quantity t2 = n[(Z̄ − β̂0 − β̂Tμ0
Y )2/S2

Z ][σ 2
Z /(σ 2

Z + nσ 2
0 )] conditionally has Student’s distribution

L(t2 | β̂T ) = t2(ν, λ(β̂T )) with ν = (n − 1) and λ(β̂T ) = n[(μZ − β0) − β̂Tμ0
Y ]2/(σ 2

Z + nσ 2
0 ), so

that t2
0 = t2/k with k = σ 2

Z /(σ 2
Z + nσ 2

0 ). In particular, L(t2
0 | β̂T ) = L(t2/k | β̂T ). It follows on

scaling and mixing that the unconditional density is Equation (7), to complete our proof. �

4.2. Effective calibration

Enough evidence is now in hand to support a qualitative assessment of classical calibrations based
on X(Y) from the linear calibration Y(X). Anomalies are seen to depend mainly on the parameters
κ2 = μ−2(β̂T ), κ11 = Var (β̂−1

T ), and |μZ − β0|. Lemma A.1 gives expansions approximating the
negative moments {κ1 = μ−1(β̂T ), κ2 = μ−2(β̂T ), κ11 = Var (β̂−1

T )}, together with orders O(·) of
the approximations. The following consequences emerge from Section 4.1 and the aforementioned
expansions.

• The parameter κ2 = μ−2(β̂T ) � 1/β2
T + 3σ 2

T /β4
T is increasing in σ 2

T and decreasing in |βT |, up
to the order of approximation.

• The quantity |μZ − β0| pertains to centring of the calibrating values {U1, . . . , Um} relative to
subsequent readings {Z1, . . . , Zn}. Here, |μZ − β0| becomes smaller, the more effectively are
{U1, . . . , Um} centred near the mean μZ of {Z1, . . . , Zn}.

• Effective centring in turn diminishes the effects of extrapolating beyond the calibrating data.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
V

ir
gi

ni
a,

 C
ha

rl
ot

te
sv

ill
e]

, [
D

. E
. R

am
ir

ez
] 

at
 0

6:
37

 2
0 

M
ay

 2
01

5 



1816 D.R. Jensen and D.E. Ramirez

• The bias B = [κ2σ
2
0 + κ11(μZ − β0)

2] of S2
Y for estimating σ 2

Y , as in Theorem 2(ii), increases
(i) with increasing uncertainty (σ 2

0 , σ 2
T ) in estimating the line of calibration, (ii) with increasing

|μZ − β0|, and (iii) with increasing {κ2, κ11}.
• On the other hand, the expectation E(S2

Y ) = κ2σ
2
Z may be compared with Var (Yi) = σ 2

Z /β2
1 , as

the ideal variance to be attained under linear calibration with known (β0, β1).
• The conditional correlation ρ = σ 2

0 /(σ 2
Z + σ 2

0 ) increases with decreasing σ 2
Z /σ 2

0 .
• The unconditional correlation

ρ0 = [κ2σ
2
0 + κ11(μZ − β0)

2]
[κ2(σ

2
Z + σ 2

0 ) + κ11(μZ − β0)2]

increases (i) with increasing uncertainty in estimating β0, (ii) with increasing |μZ − β0|, and
(iii) with increasing {κ2, κ11}, with other parameters held fixed.

• The conditional non-centrality parameter λ(β̂T ) = nβ̂2
T [μY (β̂T ) − μ0

Y ]2/(σ 2
Z + nσ 2

0 ) is an
increasing function of | β̂T | and the discrepancy |μY (β̂T ) − μ0

Y |, and it decreases with
increasing σ 2

Z and σ 2
0 with other parameters fixed, where μY (β̂T ) = (μZ − β0)/β̂T .

• The expected value

E[λ(β̂T )] = n{β2
T [μY (βT ) − μ0

Y ]2 + σ 2
T (μ0

Y )2}
σ 2

Z + nσ 2
0

is an increasing function of | βT |, |μY (βT ) − μ0
Y |, and σ 2

T , and it decreases with increasing σ 2
Z

and σ 2
0 with other parameters fixed, where μY (βT ) = (μZ − β0)/βT .

4.3. One-way experiments

Here, we model observations {Z1, . . . , Zn} as from a one-way experiment in k samples of sizes
{n1, . . . , nk}, with n1 + · · · + nk = n. Accordingly, partition Z′ = [Z′

1, . . . , Z′
k], such that {Z′

i =
[Zi1, . . . , Zini ]; 1 ≤ i ≤ k}, and similarly Y ′ = [Y ′

1, . . . , Y ′
k], with {Y ′

i = [Yi1, . . . , Yini ]; 1 ≤ i ≤ k}.
We suppose that {E(Zij) = μi; 1 ≤ j ≤ ni}, so that μZ = [μ11′

n1
, . . . , μk1′

nk
]′. It is known that the

normal-theory test for H0 : μ1 = · · · = μk is exact under V(Z) = ω2�0(γ) as in Section 2.3.
From its block-partitioned form, we extract {V(Zi) = ω2�(γ i, γ̄ ) = ω2(Ini + 1niγ

′
i + γ i1

′
ni

−
γ̄ 1ni 1

′
ni
); 1 ≤ i ≤ k}, where γ ′ = [γ ′

1, . . . , γ ′
k] has been partitioned conformably such that {γ i =

[γi1, . . . , γini ]′ ∈ Rni ; 1 ≤ i ≤ k}. Note that the test remains exact despite heterogeneity of the vari-
ances {Var (Zij) = ω2(2γij − γ̄ ); 1 ≤ j ≤ ni, 1 ≤ i ≤ k} within and among samples, attributable
to the structural parameters of �0(γ). We next proceed to examine the consequences of superim-
posing calibrative errors onto those structures in the analysis of one-way experiments, to include
conventional analysis of variance and comparisons among the sample means and variances.

Accordingly, take V(Z) = ω2�0(γ) to model the ambient background experimental noise,
subject to external scale changes for each of the k designated samples. To model such changes,
pre- and post-multiply �0(γ) by DωI = Diag (ω1In1 , . . . , ωkInk ) to get �n(ω, γ) = DωI�0(γ)DωI ,
which in partitioned form is

�n(ω, γ) =

⎡
⎢⎢⎣

ω2
1�(γ1, γ̄ ) ω1ω2A12 . . . ω1ωkA1k

ω2ω1A21 ω2
2�(γ2, γ̄ ) . . . ω2ωkA2k

. . . . . . . . . . . .

ωkω1Ak1 ωkω2Ak2 . . . ωk
1�(γk , γ̄ )

⎤
⎥⎥⎦ (8)
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with {�(γ i, γ̄ ); 1 ≤ i ≤ k} as before and with {Aij = 1niγ
′
j + γ i1

′
nj

− γ̄ 1ni 1
′
nj
}. Specializing from

Equations (3) and (4) gives the conditional moments

E(Y | β̂T ) = μY (β̂T ) = β̂−1
T (μZ − β01n)

= β̂−1
T [(μ1 − β0)1′

n1
, . . . , (μk − β0)1′

nk
]′, (9)

V(Y | β̂T ) = �(β̂T ) = β̂−2
T [�n(ω, γ) + σ 2

0 1n1′
n], (10)

together with L(Y | β̂T ) = Nn(μY (β̂T ), �(β̂T )) under Gaussian errors. Unconditional moments
are E(Y) = κ1[(μ1 − β0)1′

n1
, . . . , (μk − β0)1′

nk
]′ and V(Y) = κ2[�n(ω, γ) + σ 2

0 1n1′
n] + κ11M,

where M = [Mij] = (μZ − β01n)(μZ − β01n)
′ with Mij = (μi − β0)(μj − β0)1ni 1

′
nj

.
To examine the effects of calibration on sample quantities of note, consider transformations

such that T1(Y) = Ȳ = [Ȳ1, . . . , Ȳk]′ comprise the k sample means; T2(Y) = R = [R′
1, . . . , R′

k]′
consists of the ordinary within-sample residuals, with {Ri = Bni Y i; 1 ≤ i ≤ k} and Bni = (Ini −
n−1

i 1ni 1
′
ni
); and T3(Y) = [ν1S2

1 , . . . , νkS2
k ]′ are the residual sums of squares {νiS2

i = R′
iRi =

Y ′
iBni Y i; 1 ≤ i ≤ k}, with {νi = ni − 1; 1 ≤ i ≤ k}. We require θ = [γ̄1, . . . , γ̄k]′ as the means

of the partitioned elements of γ ′ = [γ ′
1, . . . , γ ′

k] as in Section 2.3. Essential properties follow.

Theorem 4 Consider calibrated measurements Y ′ = [Y ′
1, . . . , Y ′

k] from Z′ = [Z′
1, . . . , Z′

k]
such that E(Z) = μZ = [μ11′

n1
, . . . , μk1′

nk
]′ and V(Z) = �n(ω, γ) as in Equation (8); let

μ = [μ1, . . . , μk]′; and let T1(Y) = [Ȳ1, . . . , Ȳk]′, T2(Y) = R = [R′
1, . . . , R′

k]′, and T3(Y) =
[ν1S2

1 , . . . , νkS2
k ]′, with {νi = ni − 1; 1 ≤ i ≤ k}. Moreover, a Gaussian model asserts that L(Z) =

Nn(μZ , �n(ω, γ)) independently of (β̂0, β̂T ) under Gaussian calibration.

(i) Conditional and unconditional means of T1(Y) = Ȳ are given by E(Ȳ | β̂T ) = τ(β̂T ) =
β̂−1

T (μ − β01k) and E(Ȳ) = τ = κ1(μ − β01k).
(ii) Conditional dispersion parameters of Ȳ are V(Ȳ | β̂T ) = �1(β̂T ) = β̂−2

T [�k(ω, θ, n) +
σ 2

0 1k1′
k], where �k(ω, θ, n) = Dω[D−1

n + Ak(θ, γ̄ )]Dω, with Dω = Diag (ω1, . . . , ωk), Dn =
Diag (n1, . . . , nk), and Ak(θ, γ̄ ) = 1kθ

′ + θ1′
k − γ̄ 1k1′

k , where θ = [γ̄1, . . . , γ̄k]′ are the
means of the partitioned elements of γ ′ = [γ ′

1, . . . , γ ′
k]. Unconditional dispersion parameters

are V(Ȳ) = �1 = κ2[�k(ω, θ, n) + σ 2
0 1k1′

k] + κ11(μ − β01k)(μ − β01k)
′.

(iii) Under Gaussian assumptions, the unconditional density of L(Ȳ) is the translation–scale
mixture

fk(u; τ, �1, G1) = C−1
g

∫ b

a
gk(u; τ(t), �1(t)) dG1(t) (11)

with mixing distribution G1(t) = N1(β1, σ 2
1 ) on R1 as in Equation (5), where τ(t) = t−1(μ −

β01k) and �1(t) = t−2[�k(ω, θ, n) + σ 2
0 1k1′

k] as in conclusion (ii).
(iv) Conditional and unconditional means of the residuals are E(R | β̂T ) = 0 = E(R). Dis-

persion parameters are V(R | β̂T ) = �2(β̂T ) = β̂−2
T Diag (ω2

1Bn1 , . . . , ωk
1Bnk ), and V(R) =

�2 = κ2Diag (ω2
1Bn1 , . . . , ωk

1Bnk ).
(v) Under Gaussian errors, the joint density of residuals R = [R′

1, . . . , R′
k]′ is given by

fn(r; 0, �2, G1) as in Equation (5), with mixing distribution G1(t) = N1(β1, σ 2
1 ) on R1, where

�2(t) = t−2Diag (ω2
1Bn1 , . . . , ωk

1Bnk ).
(vi) Under Gaussian errors, the joint density of elements of [ν1S2

1σ
2
1 /ω2

1, . . . , νkS2
k σ

2
1 /ωk

1]′ is
given by

f (u; ν1, . . . , νk , G2) =
∫ d

c

k∏
i=1

g0

(
ui;

νi

2
,

2

w

)
dG2(w) (12)
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1818 D.R. Jensen and D.E. Ramirez

with {νi = ni − 1; 1 ≤ i ≤ k}and g0(ui; αi, β/w) = (w/β)αi uαi−1
i e−wui/β/
(αi), having mix-

ing distribution G2(β̂
2
1 ; δ) as 
(1, δ) on R1+ such that [c, d] = [a2/σ 2

1 , b2/σ 2
1 ], with δ =

β2
1/σ 2

1 .

Proof Arguments follow step by step as in the proofs given in Section 4.1. While details
differ, proceed beginning with E(Y | β̂T ) from Equation (9) and V(Y | β̂T ) from Equation
(10). Observe that Ȳ = L′

nY with L′
n = Diag (n−1

1 1′
n1

, . . . , n−1
k 1′

nk
) and that R = BY with B =

Diag (Bn1 , . . . , Bnk ). Starting with �n(ω, γ) = DωI�0(γ)DωI from Equation (8), where �0(γ) =
In + An(γ , γ̄ ) = (In + 1nγ

′ + γ1′
n − γ̄ 1n1′

n), we record the identities L′
nDωI = DωL′

n, L′
nInLn =

D−1
n = Diag (n−1

1 , . . . , n−1
k ), with Dω = Diag (ω1, . . . , ωk), and L′

nAn(γ , γ̄ )Ln = Ak(θ, γ̄ ) as in
Lemma 2(iii), with θ = [γ̄1, . . . , γ̄k]′ as the means of the partitioned elements of γ ′ = [γ ′

1, . . . , γ ′
k].

It follows directly that E(Ȳ | β̂T ) = β̂−1
T L′

n[(μ11′
n1

, . . . , μk1′
nk

)′ + β01n] = β̂−1
T (μ − β01k) with

μ = [μ1, . . . , μk]′ and that E(Ȳ) = κ1(μ − β01k) as stated in conclusion (i). Moreover, V(Ȳ |
β̂T ) = �1(β̂T ) = β̂−2

T [�k(ω, θ, n) + σ 2
0 1k1′

k], where �k(ω, θ, n) = L′
n�n(ω, γ)Ln = Dω[D−1

n +
Ak(θ, γ̄ )]Dω, with Dn = Diag (n1, . . . , nk), and Ak(θ, γ̄ ) = 1kθ

′ + θ1′
k − γ̄ 1k1′

k . Unconditional
dispersion parameters are V(Ȳ) = �1 = κ2[�k(ω, θ, n) + σ 2

0 1k1′
k] + κ11(μ − β01k)(μ − β01k)

′,
to give conclusion (ii). Conclusion (iii) follows directly as before and conclusion (iv) on
using V(R | β̂T ) = β̂−2

T BV(Y)B = β̂−2
T Diag (ω2

1In1 , . . . , ωk
1Ink ) since Bni�(γ i, γ̄ )Bni = Bni and

Bni AijBnj = 0 from the idempotency of {Bn1 , . . . , Bnk } and the annihilations {Bni 1ni = 0; 1 ≤ i ≤
k}. Conclusion (v) follows directly from conclusion (iv). Conclusion (iv) asserts under Gaussian
errors that {R1, . . . , Rk}, and thus {S2

1 , . . . , S2
k }, are conditionally independent given β̂T . As in the

proof for Theorem 3(iv), the marginal density of L(νiS2
i σ

2
1 /ω2

i | β̂1) is the scaled chi-squared den-
sity g0(ui; νi/2, 2w) as defined in (2), with w = (β̂2

1/σ 2
1 ). Their unconditional joint density now

follows on mixing as in Section 2.2, as asserted in conclusion (vi), to complete our proof. �

We turn next to comparisons among {S2
1 , . . . , S2

k }. Recall from Equation (10) that
{Var (Yij | β̂T ) = β̂−2

T ω2
i (2γij − γ̄ + σ 2

0 ); 1 ≤ j ≤ ni} and {Var (Yij) = κ2ω
2
i (2γij − γ̄ + σ 2

0 ) +
κ11(μi − β0)

2; 1 ≤ j ≤ ni}, for each {i = 1, 2, . . . , k}. These are heterogeneous within and among
samples by virtue of the structural parameters �0(γ), even when the external scalings {ω1, . . . , ωk}
are equal. However, Theorem 4(iv) establishes not only that L(S2

1 , . . . , S2
k ) is independent of �0(γ),

but that their scale parameters {ω2
1/σ

2
1 , . . . , ωk

1/σ
2
1 } are equal if and only if {ω2

1, . . . , ωk
1} are homo-

geneous. To continue, let T4(S2
1 , . . . , S2

k ) be any scale-invariant statistic, that is, T4(cS2
1 , . . . , cS2

k ) =
T4(S2

1 , . . . , S2
k ) for c �= 0. This is the substance of the following.

Theorem 5 Let {S2
1 , . . . , S2

k } be the within-sample variances from the calibrated measurements
{Yij; 1 ≤ j ≤ ni, 1 ≤ i ≤ k} in a one-way experiment; let T4(S2

1 , . . . , S2
k ) be any scale-invariant

statistic; and consider a Gaussian model with L(Z) = Nn(μZ , �n(ω, γ)) independently of (β̂0, β̂1)

under Gaussian calibration. Then, the distribution of T4(S2
1 , . . . , S2

k ) is identical to its conventional
normal-theory form, as if {(Yij − μi)/σi; 1 ≤ j ≤ ni, 1 ≤ i ≤ k} were iid N1(0, 1), independently
of (β̂0, β̂T ) and �0(γ).

Proof Gaussian errors and Theorem 4(iv) assert that L(β̂T R1/ω1, . . . , β̂T Rk/ωk | β̂T ) =
Nn(0, B) with B = Diag (Bn1 , . . . , Bnk ), so that {(n1 − 1)S2

1 β̂
2
T/ω2

1, . . . , (nk − 1)S2
k β̂

2
T/ωk

1} are
conditionally independent chi-squared variables, given β̂T . However, we have that

T4

(
S2

1 β̂
2
T

ω2
1

, . . . ,
S2

k β̂
2
T

ωk
1

)
= T4

(
S2

1

ω2
1

, . . . ,
S2

k

ωk
1

)
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by its scale invariance, so that L[T4(S2
1 , . . . , S2

k ) | β̂T ] = L[T4(S2
1 , . . . , S2

k )] unconditionally, inde-
pendently of (β̂0, β̂T ), and depending on �n(ω, γ) only through ω = [ω1, . . . , ωk]′, to complete
our proof. �

Conventional comparisons among variances are necessarily scale invariant. Moreover, it
is seen that procedures based on {S2

1 , . . . , S2
k } support tests for conditional hypotheses H ′

0 :
β̂−2

T ω2
1 = · · · = β̂−2

T ωk
1 or, equivalently, H0 : ω2

1 = ω2
2 = · · · = ωk

1 against appropriate alterna-
tives. Theorem 5 applies for both null and non-null distributions of invariant test statistics. Tests
in common usage include the following:

• Modifications of Bartlett’s [26] likelihood ratio test.
• Cochran’s [27] test based on S2

max/(S
2
1 + · · · + S2

k ).• Hartley’s [28] F-max test based on the maximal ratio max{S2
i /S2

j }.• Gnanadesikan’s [29] simultaneous comparisons of treatment variances with a control.

In summary, in view of {Var (Yij | β̂T ) = β̂−2
T ω2

i (2γij − γ̄ + σ 2
0 ); 1 ≤ j ≤ ni}, it is seen that

conventional tests based on {S2
1 , . . . , S2

k } cannot discern heterogeneity among variances owing to
the structural parameters �0(γ), but only the external scalings {ω1, . . . , ωk} within the k samples.
Fortunately, it is seen next that the homogeneity of {ω2

1, . . . , ωk
1} is enough to validate the one-way

analysis of variance, irrespective of the structural parameters �0(γ) and additional complications
arising through classical calibration.

To examine the effects of calibration on the one-way analysis of variance, we suppose
that V(Z) = ω2�0(γ), so that V(Y | β̂T ) = β̂−2

T ω2[�0(γ) + σ 2
0 1n1′

n] = β̂−2
T ω2�(γ , φ) as in

Section 2.3, with φ = γ̄ − σ 2
0 /ω2. Call this V(Y | β̂T ) = �(β̂T ). We proceed to validate the anal-

ysis conditionally, given β̂T , where E(Y | β̂T ) = β̂−1
T (μZ − β01n) with μZ = [μ11′

n1
, . . . , μk1′

nk
]′.

Recall that In = A0 + A1 + A2 partitions Y ′InY = Y ′A0Y + Y ′A1Y + Y ′A2Y such that Y ′A0Y =
nȲ 2, with Ȳ as the grand mean and A0 = n−11n1′

n; Y ′A1Y = ∑k
i=1 ni(Ȳi − Ȳ)2; and Y ′A2Y =∑k

i=1

∑ni
j=1(Yij − Ȳi)

2. Here, {A0, A1, A2} are idempotent matrices of ranks {1, k − 1, n − k} such
that {AiAj = 0; i �= j} and thus {Ai1n = 0; i = 1, 2} since A0 = n−11n1′

n. In particular, we parti-
tion Y ′(In − A0)Y as Y ′BnY = Y ′A1Y + Y ′A2Y . The validation of the Fisher–Cochran theorem
conditionally requires that {Ai�(β̂T )Aj = 0; i �= j} with {i, j ∈ {1, 2}}. Moreover, scale parame-
ters to be associated with the quadratic forms are found as {ξ 2

i G = G�(β̂T )G; G ∈ {A1, A2, Bn}};
their degrees of freedom are determined by ranks; and non-centrality parameters derive from the
expected mean squares. This programme of study is carried out next in support of the following.

Theorem 6 Let {Yij = β̂−1
T (Zij − β̂0); 1 ≤ j ≤ ni, 1 ≤ i ≤ k} be the calibrated measurements in

a one-way experiment such that L(Z) = Nn(μZ , ω2�0(γ)) independently of Gaussian errors
of calibration, where μZ = [μ11′

n1
, . . . , μk1′

nk
]′, so that μY (β̂T ) = E(Y | β̂T ) = β̂−1

T (μZ − β01n)

and V(Y | β̂T ) = �(β̂T ) = β̂−2
T ω2�(γ , φ) with φ = γ̄ − σ 2

0 /ω2.

(i) To test the equality of elements κ1[μ1, . . . , μk]′ of μY = κ1[μ11′
n1

, . . . , μk1′
nk

]′, pertaining to
the group means of calibrated measurements, the analysis of variance test is identical in level
and power to its conventional normal-theory form where L(Y) = Nn(μY , σ 2

Y In).
(ii) Supporting tests, based on linear contrasts among the group means, are identical in level and

power to their normal-theory forms, as if L(Y) = Nn(μY , σ 2
Y In).

Proof Given the partition Y ′BnY = Y ′A1Y + Y ′A2Y , we proceed conditionally, given β̂T , to
examine (i) consistency of their scale parameters, (ii) the conditional independence of Y ′A1Y and
Y ′A2Y , and (iii) conditional expectations of {Y ′A1Y , Y ′A2Y , Y ′BnY}. Accordingly, scale param-
eters are found as {ξ 2

i G = G�(β̂T )G; G ∈ {A1, A2, Bn}}, where G�(β̂T )G = β̂−2
T ω2G(In +
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1820 D.R. Jensen and D.E. Ramirez

1nγ
′ + γ1′

n − φ1n1′
n)G = β̂−2

T ω2G since G is idempotent and G1n = 0 for G ∈ {A1, A2, Bn},
thus confirming that their scale parameters are equal, namely β̂−2

T ω2. The conditional indepen-
dence of {Y ′A1Y , Y ′A2Y} follows since A1�(β̂T )A2 = β̂−2

T ω2A1(In + 1nγ
′ + γ1′

n − φ1n1′
n)A2 =

β̂−2
T ω2A1A2 = 0 and A11n = 0 = A21n. Conditional expectations of {Y ′A1Y , Y ′A2Y , Y ′BnY} are

found as

{E(Y ′GY | β̂T ) = tr G�(β̂T ) + [μY (β̂T )]′G[μY (β̂T )]; G ∈ {A1, A2, Bn}},
where tr G�(β̂T )G + [μY (β̂T )]′G[μY (β̂T )] = β̂−2

T ω2tr G(In + 1nγ
′ + γ1′

n − φ1n1′
n) + β̂−2

T (μZ −
β01n)

′G(μZ − β01n) = β̂−2
T ω2tr G + β̂−2

T μ′
ZGμZ since G1n = 0 and tr Gγ1′

n = 1′
nGγ ′ = 0 for

G ∈ {A1, A2, Bn}. Moreover, the quadratic forms are those for the one-way analysis of {Zij; 1 ≤ j ≤
ni, 1 ≤ i ≤ k}, namelyμ′

ZA1μZ = ∑k
i=1 ni(μi − μ̄)2, with μ̄ = n−1 ∑k

i=1 niμi;μ′
ZA2μZ = 0; and

μ′
ZBnμZ = ∑k

i=1 ni(μi − μ̄)2. Now, combine these facts into the conditional test statistic

F(β̂T ) = Y ′A1Yβ̂T/(k − 1)ω2

Y ′A2Yβ̂T/(n − k)ω2
(13)

such thatL[F(β̂T ) | β̂T ] = F(k − 1, n − k, λ(β̂T ), withλ(β̂T ) = β̂−2
T

∑k
i=1 ni(μi − μ̄)2/β̂−2

T ω2 =∑k
i=1 ni(μi − μ̄)2/ω2. It follows that L[F(β̂T ) | β̂T ] = F(k − 1, n − k, λ(β̂T )) unconditionally,

with λ = ∑k
i=1 ni(μi − μ̄)2/ω2, to establish conclusion (i). To continue, let C′Ȳ be a collec-

tion of linear contrasts among the within-sample calibrated means, and let S2
Y = Y ′A2Y/(n − k)

be the pooled within-sample variances. The test for conditional independence of (C′Ȳ , S2
Y ) is

that C′L′
n�(β̂T )A2 = 0, with L′

n = Diag (n−1
1 1n1 , . . . , n−1

k 1′
nk

). We directly evaluate C′L′
n(In +

1nγ
′ + γ1′

n − φ1n1′
n)A2 = C′L′

nA2 + C′1kγ
′A2 = 0 since L′

nA2 = 0, 1′
nA2 = 0, L′

n1n = 1k , and
C′1k = 0 as linear contrasts, so that (C′Ȳ , S2

Y ) are conditionally independent given β̂T . It follows
that the standardized variables C′Ȳ/SY satisfy β̂−1

T C′(Z̄ − β̂01k)/β̂
−1
T SZ = C′Z̄/SZ , with their

conditional and unconditional distributions being identical to their normal-theory forms when
L(Y) = Nn(μY , σ 2

Y In), to establish conclusion (ii) and thus complete our proof. �

5. Diagnostics

At issue is the capacity of available diagnostics to uncover the types of model violations induced
through calibration based on X(Y). If effective, then the routine use of these diagnostics in the past
would have alerted users to such anomalies. We now face these concerns with regard to induced
correlations and non-normality of calibrated data. This assessment is carried out in the context of
a single sample as in Section 4.1, where correlations may be attributed exclusively to calibration.

5.1. Detecting correlation

Correlations induced through calibration clearly may be excessive. Conventional tests for correla-
tion invoke matrices V(Y) = τ 2�(ω) = τ 2(In + ωA), with A fixed and ω such that �(ω) ∈ S+

n .
Specializing gives τ 2�(ω) as �(ρ) under equicorrelation. Tests due to Durbin and Watson [30–
32], Anderson and Anderson [33], Theil [34], and others, utilize versions of von Neumann’s
[35] ratio U = R′BR/R′R, with R as the observed residuals and with B(n × n) fixed; see [36],
for example. Here, the unconditional distributions L(U) are all identical to their normal-theory
forms, as if R = BnZ with L(Z) = Nn(μZ1n, σ 2

Z In), so that L(R) = Nn(0, σ 2
Z Bn). This is seen

from the proof for Theorem 3, where L(R | β̂T ) = Nn(0, β̂−2
T σ 2

Z Bn), together with the scale
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invariance of U = R′BR/R′R, assuring that L(R′BR/R′R | β̂T ) = L(R′BR/R′R) uncondition-
ally. Accordingly, all such diagnostics for correlative dependencies are blind to the induced
correlation structures given in Section 4.1. In short, correlative dependencies induced through
classical calibration, however excessive, cannot be discerned through the use of conventional
diagnostics.

5.2. Detecting non-normality

Conventional diagnostics for normality include graphics and hypothesis tests. Graphics utilize
plots of ordered residuals against their normal-theory expectations, to include the scaled resid-
uals {Ri/SY ; 1 ≤ i ≤ n}, or the Studentized residuals {WiRi/SY ; i = 1, 2, . . . , n}, standardized so
that Var (WiRi) = σ 2

Y . See Sections 2.12 and 5.7 in [37], for example. However, in calibrated
data, these residual plots are indistinguishable from those for the conventional Gaussian model
Nn(μ1n, σ 2In), whatever be the joint mixture density of type (1) for the calibrated measure-
ments {Yi = (Zi − β̂0)/β̂T ; 1 ≤ i ≤ n}. This follows from the fact that L(R/(R′R)1/2 | β̂T ) =
L(R/(R′R)1/2) from scale invariance, having a scaled multivariate Student’s t-distribution with
ν = n − 1 degrees of freedom, depending on neither β̂T nor σ 2

Y .
The regression tests of Shapiro and Wilk [38] utilize the statistic W = (

∑n
i=1 wiY[i])2/

(n − 1)S2
Y , where {Y[1] ≤ Y[2] ≤ · · · ≤ Y[n]} are the ordered values of {Y1, . . . , Yn} and {w1, . . . , wn}

are the fixed weights. These tests are powerful against a wide range of alternatives, especially
against skewed distributions or those having short or very long tails, even in small samples; see
[39], for example. Accordingly, these would appear to be promising for detecting non-standard
mixture distributions of type (2.1) for classically calibrated measurements. For the latter, we have

W = (
∑n

i=1 wiY[i])2

(n − 1)S2
Y

= [(∑n
i=1 wiZ[i] − β̂0

∑n
i=1 wi)]2

(n − 1)S2
Y β̂2

T

. (14)

However, since
∑n

i=1 wi = 0 for the regression tests of [38], and since S2
Y β̂2

T = S2
Z , we infer that

W = [(∑n
i=1 wiZ[i]]2/(n − 1)S2

Z , so that L(W | β̂T ) = L(W) holds unconditionally from cancel-
lation. Accordingly, these regression tests fail to distinguish between Gaussian distributions and
Gaussian mixtures of type (1) from classically calibrated data. On the other hand, these tests
do offer a clear check on normality of L(Z1, . . . , Zn), on which the mixtures (1) are predicated.
Variations on these regression tests were surveyed in [40], with none being able to distinguish
between Gaussian data and the mixtures (1) induced through calibration.

Hypothesis tests based on the central moment ratios {b1 = m2
3/m3

2, b2 = m4/m2
2}, where

mr = ∑n
i=1(Yi − Ȳ)r , are especially useful for distinguishing between Gaussian and skewed

distributions or against distributions having excessive or short tails [40]. These ratios, when
based on classically calibrated measurements {Y1, . . . , Yn}, are precisely those obtainable from
{Z1, . . . , Zn}, so that their null distributions are identical to those under conventional assump-
tions where L(Y) = Nn(μ1n, σ 2In), whatever be the actual joint mixture distribution of type (1)
stemming from calibration.

In short, conventional diagnostics for normality, as listed, cannot distinguish between Gaussian
errors and Gaussian mixtures of type (1). Thus, radical departures from conventional Gaussian
models, as induced through the use of calibrated instruments, cannot be discerned through routine
screening using any of the listed diagnostic tools.

In Section 5, we have reexamined the capacity for conventional diagnostics to detect the correla-
tions and non-normality induced through calibration. Even radical departures from conventional
assumptions cannot be discerned through routine screening using any of the listed diagnostic
tools.
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1822 D.R. Jensen and D.E. Ramirez

6. Numerical studies

Here, we examine the effects of calibration in two case studies. Case 1 couples octane number (U)
with percent purity (X) in gasoline. Since octane numbers are evaluated routinely in production, it
is expedient to use these quantities as surrogates to access percent purity through calibration. Case 2
typifies the universal calibration of laboratory and field instruments, specifically, the calibration
of a colorimeter in the determination of phosphorus. Here, the milligrams (X) of phosphorus were
measured directly on an analytical balance; an added reagent then developed a yellow solution;
and the transmittance (U) from the photocell of the colorimeter was observed for each specimen.
Linearity of the calibration is known from Beer’s law, stating that the intensity of the transmitted
light relates inversely to phosphorus concentration.

For a calibration {Ui = β0 + β1Xi + εi; 1 ≤ i ≤ m}, we denote as before the OLS estima-
tors {β̂0, β̂1} and their values {b0, b1} as computed from the data. Collateral values given in
Section 3.1 include Suu = ∑m

i=1(Ui − Ū)2, Sxu = ∑m
i=1 Xi(Ui − Ū), and Sxx = ∑m

i=1(Xi − X̄)2,
with X̄ = 0 as in Section 3.1. Moreover, S2

U is the residual mean square and R2
(X ,U) the squared

correlation between X and U. The data are reported in Table 1, and the summary statistics
{m, b0, b1, S2

U , Sxx, Suu, SU/
√

Sxx, R2
(X ,U)} are listed out in Table 2 from the linear calibration.

Much less scatter appears in the phosphorus data of Case 2 than in the octane data of Case 1,
as is borne out in the scatter plots not shown and by the squared correlations given in the last
column of Table 2. By comparison, the estimated slope is considerably greater in the gasoline
data of Case 1, with estimated standard error of the slope as given by Sβ̂1

= SU/
√

Sxx = 0.1848;
in contrast, Sβ̂1

= 0.003335 for Case 2. Both features influence the magnitudes of irregularities
in calibrated data, which we next examine numerically for the two case studies.

To continue, consider cut-off values [c, ∞). Invoking the rule of thumb of Remark 1 with
{Sxx, Suu, β̂1} as given, for Case 1, the rule 5% ≤ R2

(X ,U) restricts β̂1 ∈ [0.3481, ∞). For Case 2,

the restriction is β̂1 ∈ [0.01166, ∞). These correspond to the interval [a, b] given in Section 3.1
that defines the exclusion rule for L(β̂T ) = L(β̂1 | β̂1 ∈ [a, b]) for the restricted estimator β̂T .

The estimates for the inverse moments {μ−1(β̂T ), μ−2(β̂T )}, Var (β̂−1
T )} for the two case studies

are reported in Table 3. These are approximated using inverse moment estimators in expres-
sions from Lemma A.1, assuming Gaussian errors during calibration with μ3(β̂1) = 0 and
μ4(β̂1) = 3[μ2(β̂1)]2, equivalently, with skewness γ1(β̂1) = 0 and kurtosis γ2(β̂1) = 3. These
assumptions are shown to be justified for β̂T by computing the skewness and kurtosis for the
truncated distribution of β̂T . Table 3 reports these values, which were computed with Maple, to
be {0, 3.0000} for both Case 1 and Case 2.

Table 1. Percent purity (X) and octane number (U) of gasoline for Case 1 and milligrams phosphorus (X) and
transmittance (U) in calibrating a laboratory colorimeter for Case 2.

Case 1 X 99.8 99.7 99.6 99.5 99.4 99.3 99.2 99.1 99.0 98.9 98.8
U 87.6 87.4 87.2 87.4 87.2 86.8 86.5 86.3 86.4 86.6 86.1

Case 2 X 0.00 2.28 4.56 6.84 9.12 11.40 13.68 15.96 18.24 22.80 27.36
U 0.00 0.56 1.02 1.74 2.01 2.68 3.28 3.87 4.32 5.23 6.38

Table 2. Summary statistics for Case 1 and Case 2.

Case m b0 b1 S2
U Sxx Suu SU/

√
Sxx R2

(X ,U) (%)

1 11 86.8636 1.4545 0.037580 1.10 2.6655 0.184800 87.3
2 11 2.8264 0.2330 0.008219 739.12 40.1875 0.003335 99.8
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Table 3. Estimates for inverse moments of β̂T from Lemma A.1 when μ3(β̂T ) = 0 and
μ4(β̂T ) = 3[μ2(β̂T )]2 and values for {γ1(β̂T ), γ2(β̂T )}.

Case μ−1(β̂T ) μ−2(β̂T ) Var (β̂−1
T ) γ1(β̂T ) γ2(β̂T )

1 0.6992 0.4974 0.008606 0 3.0000
2 4.2935 18.4376 0.003782 0 3.0000

Remark 3 This in part exemplifies Remark 2. For both Case 1 and Case 2, the coverage exceeds
0.9999. Using extended precision in Maple, the estimates β̂1 and β̂T differ in the ninth decimal
place for Case 1, as do their estimated standard deviations.

The estimates for μ−1(β̂T ) and μ−2(β̂T ) are considerably greater for the phosphorus data than
for the octane data, reflecting the smaller slope of the former. Conversely, Var (β̂−1

T ) is smaller in
the phosphorus data, no doubt reflecting the substantially smaller value for SU/

√
Sxx.

Further computations take σ 2
Z = σ 2

U , as estimated by S2
U during calibration. Note, however,

that this equality might be contraindicated in the calibration of some biomedical instruments,
where {σ 2

U � σ 2
Z } is often obtained [7]. The initial calibration is assumed to have been centred

with X̄ = 0, so that β̂0 = Ū and Var (β̂0) = σ 2
0 = σ 2

U/m, as estimated by S2
U/m. The variance of

{Yi; 1 ≤ i ≤ n}, under σ 2
Z = σ 2

U and the additional assumption that {U1, . . . , Um} and {Z1, . . . , Zn}
have been centred such that E(Ui) = E(Zi), is estimated by κ2S2

U(1 + 1/m) from Theorem 1 and
is given under σ 2

Y (θ0) in Table 5.
To demonstrate the accuracy of the estimates for the inverse moments of β̂T from LemmaA.1, we

used Maple software to compute the inverse moments {κ1, κ2, Var (β̂−1
T )} of β̂T , having restricted

β̂T to [c, ∞) = [0.3481, ∞) for Case 1 and to [0.01166, ∞) for Case 2, as noted. These ranges have
coverage over 0.9999; that is, for Case 2, Pr[β̂1 ∈ [c, ∞)] > 0.9999, with (β̂1 − b1)/(SU/

√
Sxx) =

(β̂1 − 0.2330)/(0.003335) as an approximate standard normal distribution. Table 4 reports
the inverse moments for β̂T ∈ [c, ∞), as computed from L(β̂T ) = N∞

c (μT , σ 2
T ), as N1(μ, σ 2)

restricted to [c, ∞]. The inverse moment estimators given in Table 3 are in agreement (to the
accuracy of the data) with the inverse moments, using Maple, for the truncated distribution L(β̂T ),
as shown in Table 4.

To study the unconditional moments for {Yi = (Zi − β̂0)/β̂T ; 1 ≤ i ≤ n} as in Theorem 1, it is
germane to examine the parameters common to {Y1, . . . , Yn} as the bias θ = |μZ − β0| is allowed
to vary. We treat four cases, namely θ ∈ [θ0, θ1, θ2, θ3] = [0, σ 2

Z /2, σ 2
Z , 3σ 2

Z /2], so as to adjust for
scale, with corresponding estimates as fractions of S2

U . The estimates for the unconditional means
μY (θ) = κ1θ and unconditional variancesσ 2

Y (θ) = κ2(σ
2
Z + σ 2

0 ) + κ11θ
2 common to {Y1, . . . , Yn},

derived using the inverse moment estimates {κ1, κ2, κ11} of β̂T given in Table 3, are reported in
Table 5 for each of the two case studies.

The unconditional mixture distribution for {Yi = (Zi − β̂0)/β̂T ; 1 ≤ i ≤ n} from Equation (5)
can be computed using Maple. The unconditional mixture distribution for Y uses as parameters
{μZ � β̂0, σ 2

Z = σ 2
U � S2

U , σ 2
0 � S2

U/m, σ 2
1 � S2

U/Sxx}.] From the unconditional mixture distri-
bution, the estimates for the mean and variance of L(Y |θ), with bias θ = |μZ − β0|, are

Table 4. Inverse moments of β̂T for the distribution L(β̂T ) = N∞
c (βT , σ 2

T ) restricted to
β̂1 ∈ [c, ∞).

Case μ−1(β̂T ) μ−2(β̂T ) Var (β̂−1
T )

1 0.6992 0.4976 0.008606
2 4.2935 18.4376 0.003782
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Table 5. Estimates {μY (θi} for the unconditional moments of L(Y) using the inverse moments
taken from Table 3 and estimates {E(Y |θi)} from Theorem 1, where θ = |μZ − β0| takes values
θ ∈ [θ0, θ1, θ2, θ3] = [0, σ 2

Z /2, σ 2
Z , 3σ 2

Z /2] and SU is used for σZ .

Case μY (θ0) E(Y |θ0) μY (θ1) E(Y |θ1) μY (θ2) E(Y |θ2) μY (θ3) E(Y |θ3)

1 0 0 0.06776 0.06777 0.13550 0.13550 0.20330 0.20330
2 0 0 0.19460 0.19460 0.38920 0.38920 0.58390 0.58390

Table 6. Estimates {σ 2
Y (θi)} for the unconditional moments of L(Y) using the inverse moments taken

from Table 3 and estimates {VY (θi) = Var (Y |θi} from Theorem 1, where θ = |μZ − β0| takes values in
[θ0, θ1, θ2, θ3] = [0, σ 2/2, σ 2

Z , 3σ 2
Z /2] and SU replaces σZ .

Case σ 2
Y (θ0) VY (θ0) σ 2

Y (θ1) VY (θ1) σ 2
Y (θ2) VY (θ2) σ 2

Y (θ3) VY (θ3)

1 0.02039 0.02040 0.02254 0.02048 0.02900 0.02073 0.03975 0.02033
2 0.16530 0.16530 0.16630 0.16530 0.16910 0.16540 0.17380 0.16540

Table 7. Estimates for the skewness {γ1(θi) ≡ γ1(Y |θi)} and kurtosis {γ2(θi) ≡ γ2(Y |θi)} parameters
for the unconditional mixture distribution L(Y | θi) using Maple where θ = |μZ − β0| takes values
θ ∈ [θ0, θ1, θ2, θ3] = [0, σ 2

Z /2, σ 2
Z , 3σ 2

Z /2].

Case γ1(θ0) γ2(θ0) γ1(θ1) γ2(θ1) γ1(θ2) γ2(θ2) γ1(θ3) γ2(θ3)

1 0.0000 3.2360 0.0531 3.2413 0.1056 3.2568 0.1571 3.2821
2 0.0000 3.0025 0.0006 3.0025 0.0012 3.0025 0.0018 3.0025

denoted as {E(Y |θ), VY (θ) = Var (Y |θ)} and are given in Tables 5 and 6 for θ ∈ [θ0, θ1, θ2, θ3] =
[0, σ 2

Z /2, σ 2
Z , 3σ 2

Z /2].
The estimates {μY (θi); i = 0, . . . , 3} using the inverse moment estimates given in Table 3 are in

agreement (to the accuracy of the data) with the corresponding estimators {E(Y |θi); i = 0, . . . , 3},
computed using Maple and the unconditional mixture distribution for Y from Equation (5),
while the corresponding variance estimator σ 2

Y (θ), using the inverse moment estimators given in
Table 3, show an overestimation compared with Var (Y |θ) from the unconditional mixture distribu-
tion. The skewness {γ1(Y | θi)} and kurtosis γ2(Y | θi) for the unconditional mixture distribution
L(Y | θi) for Case 1 and Case 2 were computed using Maple for values θ ∈ [θ0, θ1, θ2, θ3] =
[0, σ 2

Z /2, σ 2
Z , 3σ 2

Z /2] and are given in Table 7. These show an increase in both skewness and
kurtosis as the bias is increased.

Table 7 reports the skewness γ1(Y |θi) and kurtosis γ2(Y |θi) for the unconditional mixture
distribution L(Y | θi) from Theorem 1 using Maple, with bias θ = |μZ − β0| taking values in
[θ0, θ1, θ2, θ3] = [0, σ 2

Z /2, σ 2
Z , 3σ 2

Z /2].
We next examine the underestimation of Var (Yi) by S2

Y as shown in Theorem 2. To these ends,
we estimate E(S2

Y ) = σ 2
Z μ−2(β̂T ) using S2

U in lieu of σ 2
Z and μ−2(β̂T ) as estimated in Table 3.

These values are listed out in the second column of Table 8. Observe from Theorem 2 that the bias
may be written as B(θ) = σ 2

0 μ−2(β̂T ) + θ2Var (β̂T ), with θ = |μZ − β0| as before. The values for
the bias for θ ∈ [θ0, θ1, θ2, θ3] = [0, σ 2/2, σ 2

Z , 3σ 2
Z /2] are estimated as fractions of S2

U , as reported
in the succeeding columns of Table 8. In the parentheses, the fractional errors B(θ)/σ 2

Y (θ) are
given, with denominators taken from Table 5. The values within the brackets in Table 8 are the
fractional errors B(θ)/Var (Y |θ) using the estimates for the denominator taken from Table 5 for
the unconditional mixture distribution L(Y |θ) from Theorem 1 computed with Maple. When the
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Table 8. Estimates for E(S2
Y ) and its bias B(θ) for estimating Var (Y |θ) with θ = |μZ − β0| taking values in

[θ0, θ1, θ2, θ3] = [0, σ 2/2, σ 2
Z , 3σ 2

Z /2] as estimated using S2
U for σ 2

Z .

Study σ 2
Z μ−2(β̂T ) B(θ0) B(θ1) B(θ2) B(θ3)

Case 1 0.01870 0.001699 0.002020 0.002983 0.004588
(0.08333) (0.08962) (0.10290) (0.11540)
[0.08333] [0.09867] [0.14390] [0.21700]

Case 2 0.15150 0.01378 0.01378 0.01378 0.01378
(0.08333) (0.08286) (0.08147) (0.07926)
[0.08333] [0.08333] [0.08332] [0.08330]

Note: The fractional errors within the parentheses are B(θ)/σ 2
Y (θ) and those in the brackets are B(θ)/Var (Y |θ) taken from Table 5.

bias θ is zero, the fractional error is

B(0)

σ 2
Y (0)

= κ2σ
2
0

κ2(σ 2 + σ 2
0 )

= σ 2/m

σ 2 + σ 2/m
= 1

m + 1
= 0.08333

and similarly B(0)/Var (β̂T |θ = 0) = 1/(m + 1). The third column of Table 8 reports these values
for the fractional errors. This concludes our numerical studies.

7. Conclusions

Our findings bear variously on contemporary statistical practice. In statistical process control,
for example, evidence for a tightened process resides in the sample variance S2

Y , often monitored
using an S2-chart. For calibrated data, underestimation of the actual variance by S2

Y would tend
to present an overly optimistic view that the target variance had been achieved when, in fact, it
had not. In consequence, the average run lengths of such charts typically would be longer than
intended, even when the process is in control.

To continue, the means of the measured product characteristics are routinely monitored using
X̄-charts, which are tantamount to monitoring a succession of Student’s t-statistics. But our studies
on Theorem 3 show that these statistics are inflated in magnitude, so that the lower and upper
control limits for such charts will be exceeded more frequently than intended. In consequence,
the average run lengths would be smaller, perhaps much smaller, than intended even when the
process is in control. This fact alone could wreak havoc in the use of three-sigma or six-sigma
control limits.

In summary, the widespread and necessary use of calibration may have devastating effects,
even on elementary data-analytical procedures pertaining to location and scale parameters. It
is unfortunate that these difficulties cannot be flagged by the ever-expanding use of available
diagnostic tools. It is thus incumbent on knowledgeable users of statistical methodology, and the
statistical consultants advising them, to assess the extent of these difficulties as they might impact
the analysis and interpretation of a particular set of calibrated data.
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Appendix 1

We require various momentsμr(·), to include negative moments. In particular, {μr(Z) = E(Zr); r ∈ [−2, −1, 1]}designate
moments about zero, whereas {μr(Z) = E(Z − μ1)

r ; r ∈ [2, 3, 4]} identify central moments. Approximations to selected
negative moments are undertaken in the following. We apply the delta method for the fourth-order (q = 4) Taylor series
approximation on the transformation g(t) = 1/t.

Lemma A.1 For a random sample of size n, let Zn ∈ R
1 be a statistic with range [c, ∞) ⊂ (0, ∞) for some c > 0

and with finite moments up to order 2(q + 1) = 10 such that E(|Zn − μ1|10) = O(n−5). Then, the fourth-order (q = 4)

approximations to μ−1(Zn), μ−2(Zn), and Var (Z−1
n ) are given by

μ−1(Zn) = 1

μ1
+ μ2

μ3
1

− μ3

μ4
1

+ μ4

μ5
1

+ O(n−5/2),

μ−2(Zn) = 1

μ2
1

+ 3μ2

μ4
1

− 4μ3

μ5
1

+ 5μ4

μ6
1

+ O(n−5/2),

Var (Z−1
n ) = μ2

μ4
1

− 2μ3

μ5
1

+ 3μ4 − μ2
2

μ6
1

+ 2μ2μ3

μ7
1

− 2μ2μ4 + μ2
3

μ8
1

+ 2μ3μ4

μ9
1

− μ2
4

μ10
1

+ O(n−3).

Proof As the distribution Zn has a range [c, ∞) ⊂ (0, ∞), the delta method for bounded functions with bounded deriva-
tives can be applied with the transformation g(t) = 1/t; for example, see [41,42]. We compute the fourth-degree (q = 4)

Taylor series expansion for {Z−1
n , Z−2

n } with error bound, as shown in Equation (1) in [41] and in Equation (3) in [42],
to be

E(Z−1
n ) = 1

μ1
+ μ2

μ3
1

− μ3

μ4
1

+ μ4

μ5
1

+ O(n−(4+1)/2),

E(Z−2
n ) = 1

μ2
1

+ 3μ2

μ4
1

− 4μ3

μ5
1

+ 5μ4

μ6
1

+ O(n−(4+1)/2).

Expanding Var (Z−1
n ) = μ−2(Zn) − [μ−1(Zn)]2 yields the Taylor series estimate for Var (Z−1

n ),

Var (Z−1
n ) = μ2

μ4
1

− 2μ3

μ5
1

+ 3μ4 − μ2
2

μ6
1

+ 2μ2μ3

μ7
1

− 2μ2μ4 + μ2
3

μ8
1

+ 2μ3μ4

μ9
1

− μ2
4

μ10
1

+ O(n−(4+2)/2),

where the bound O(n−(4+2)/2) is given in Equation (2) in [41]. �

Remark A.1 For developments leading to the case studies described in Section 6, identify n of Lemma A.1 with the
sample size m in determining the calibration line, and let β̂1(m) ≡ β̂1,n be its slope and σ1,n its standard deviation, with
σ 2

1,n = σ 2/Sxx(n) depending on n. Then, the truncated distribution is that of Zn = β̂T ,n with L(β̂T ,n) = L(β̂1,n|β̂1,n ∈
[c, ∞)) and with the untruncated distribution L(β̂1,n) = N1(β1, σ 2

1,n) having finite moments for p ≥ 1 as given by

E(|β̂1,n − β1|p) = σ
p
1,n

2p/2
((p + 1)/2)√
π

= O((σ 2
1,n)

p/2).

To apply Lemma A.1 for Zn = β̂T ,n, the requirement that E(|Zn − μ1|10) = O(n−5) is verified as follows.

Lemma A.2 Let Zn = β̂T ,n such that L(β̂T ,n) = L(β̂1,n|β̂1,n ∈ [c, ∞)), with L(β̂1,n) = N1(β1, σ 2
1,n). Then, E(|β̂T ,n −

E(β̂T ,n)|10) = O(n−5).

Proof To continue, we assume that the data {X1, . . . , Xn} have comparable variation such that Sxx(n)/n
n→ Qxx with

{A1, A2} such that for all n, 0 < A1 ≤ Sxx(n)/n ≤ A2, equivalently, that 0 < σ 2/(nA2) ≤ σ 2
β̂1,n

= σ 2/Sxx(n) ≤ σ 2/(nA1),

and in particular,

E(|β̂1,n − β1|p) = O(n−p/2).

The OLS estimator for the slope is a consistent estimator with
√

n(β̂1,n − β1)
d→ N(0, σ 2/Qxx). We have assumed that

c < β1, so the coverages Pr[c < β̂1,n] = Pr[√n(c − β1)/
√

σ 2/Qxx <
√

n(β̂1,n − β1)/
√

σ 2/Qxx] n→ 1. In particular, the
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coverages {Cg(n)} are bounded away from zero with 0 < B < Pr[β̂1,n ∈ [c, ∞)]. For the truncated distribution, we have

E(|β̂T ,n − β1|p) = 1

Cg(n)

∫ ∞

c
|t − β1|pf

β̂1,n
(t) dt

≤ 1

B

∫ ∞

−∞
|t − β1|pf

β̂1,n
(t) dt

= 1

B
E(|β̂1,n − β1|p) = O(n−p/2).

By Hölder’s inequality

|E(β̂T ,n) − β1| = |E(β̂T ,n − β1)| ≤ (E(|β̂T ,n − β1|p))1/p,

so

|E(β̂T ,n) − β1|p ≤ E(|β̂T ,n − β1|p) = O(n−p/2).

To apply Lemma A.1 to the truncated statistic β̂T ,n, the requirement that E(|Zn − μ1|10) = O(n−5) is verified through
the binomial expansion by

E(|β̂T ,n − E(β̂T ,n)|p) = E(|β̂T ,n − β1 + β1 − E(β̂T ,n)|p)

≤
p∑

r=0

(
p

r

)
(E(|β̂T ,n − β1|r))(|E(β̂T ,n) − β1|p−r)

=
p∑

r=0

O(n−r/2)O(n−p/2+r2) = O(n−p/2),

to complete our proof. �
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