
ARTICLE IN PRESS
Contents lists available at ScienceDirect

Journal of Statistical Planning and Inference

Journal of Statistical Planning and Inference 140 (2010) 2069–2077
0378-37

doi:10.1

$ Res
� Cor

E-m
journal homepage: www.elsevier.com/locate/jspi
Surrogate models in ill-conditioned systems$
D.R. Jensen a , D.E. Ramirez b,�

a Department of Statistics, Virginia Tech, Blacksburg, VA 24061, USA
b Department of Mathematics, University of Virginia, Charlottesville, VA 22904-4137, USA
a r t i c l e i n f o

Article history:

Received 27 April 2009

Received in revised form

21 October 2009

Accepted 1 February 2010
Available online 6 February 2010

MSC:

62J07

62J20

Keywords:

Ill-conditioned models

Ridge regression: properties

Anomalies

Surrogate models

Marques of orthogonality

Asymptotics
58/$ - see front matter & 2010 Elsevier B.V. A

016/j.jspi.2010.02.001

earch supported in part by the Department o

responding author.

ail addresses: djensen@vt.edu (D.R. Jensen), d
a b s t r a c t

Ridge versions of an ill-conditioned system are alleged to ‘‘act more like an orthogonal

system’’ than the system itself. Alternatives, called surrogates and based on the

conditioning of linear systems, are shown to yield smaller expected mean squares than

OLS, and uniformly smaller residual sums of squares than ridge. Ridge and surrogate

solutions are compared on several marques of orthogonality to include conditioning of

dispersion arrays, variance inflation factors, isotropy of variances, and sphericity of

contours of the estimators. For these, ridge typically exhibits erratic divergence from

orthogonality as the ridge scalar evolves, often reverting back to OLS in the limit. In

contrast, surrogate solutions converge monotonically to those from orthogonal systems.

Invariance considerations constrain the computations to models in canonical form. Case

studies serve to illustrate the central issues.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

In a full-rank model fY ¼Xbþegwith uncorrelated, zero-mean, and homoscedastic errors, the p equations fX0Xb¼X0Yg

yield the Ordinary Least Squares ðOLSÞ solutions b̂L as unbiased, having dispersion matrix Vðb̂LÞ ¼ s2V with

V ¼ ½vij� ¼ ðX
0XÞ�1. Ill-conditioning, as near-dependency among columns of X, ‘‘causes crucial elements of X0X to be large

and unstable,’’ ‘‘creating inflated variances,’’ and elements of b̂L that are ‘‘very sensitive to small changes in X’’ Belsley
(1986, p. 119). Here the condition number c1ðX0XÞ is the ratio of largest to smallest eigenvalues; the Variance Inflation Factors

(VIF s) of b̂L ¼ ½b̂
1

L ; . . . ; b̂
p

L �
0 are fVIFðb̂

j

LÞ ¼ vjj=w�1
jj ;1r jrpg with W ¼X0X, i.e., ratios of actual to ‘‘ideal’’ variances had the

columns of X been orthogonal. Scaling columns of X to unit lengths and rearranging fVIFðb̂
j

LÞ ¼ vjj;1r jrpg in order as

fV1ZV2Z � � �ZVpg; V1 is identified in Marquardt and Snee (1975) as ‘‘the best single measure of the conditioning of the

data,’’ whereas V1rc1ðX0XÞrpðV1þ � � � þVpÞ is shown in Berk (1977);see also Beaton et al. (1976), Davies and Hutton

(1975), Marquardt (1970), and Stewart (1987). The singular decomposition X ¼ P1DxQ 0 yields a canonical form fY ¼Xbþeg

- fP1
0 Y ¼Dxhþgg; h¼Q 0b and g¼ P1

0 e; such that Dx ¼Diagðx1; . . . ; xpÞ is diagonal with fx1Z � � �Zxp40g; Q 2 OðpÞ, the
ll rights reserved.
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orthogonal group; and P1
0 P1 ¼ Ip, the identity matrix. This reduction, a staple in the literature, is central to much that

follows, supporting by invariance a number of properties otherwise obscured.
Remedies for ill-conditioning include the ridge system fðX0XþkIpÞb¼X0Y ; kZ0g of Hoerl and Kennard (1970), with

solutions b̂Rk. For a class of condition numbers including c1ð�Þ, Riley (1955) has shown that fX0X-ðX0XþkIpÞg improves
conditioning on the left of the ridge equations, and is cited in Marshall and Olkin (1979) as a rationale for ridge regression
over OLS. Nonetheless, X0Y remains ill-conditioned on the right. This prompts our concept of surrogate models

fY ¼Xkbþe; kZ0g, designed to improve conditioning on the left and right of the surrogate system fXk
0 Xkb¼Xk

0 Y ; kZ0g,
with solutions b̂Sk. Details are given subsequently, together with generalizations. In support of ridge regression, Hoerl and
Kennard (1970, p. 65) make the further claim: ‘‘At a certain value of k the system will stabilize and have the general
characteristics of an orthogonal system,’’ these not having been specified. Our purposes here are (i) to identify features
characteristic of orthogonal systems; (ii) to reexamine the foregoing conjecture despite unaddressed ill-conditioning on
the right of the ridge equations; and (iii) to investigate the corresponding conjecture for surrogate systems. An outline
follows; conventional notation is used throughout.

Section 2 develops surrogate systems alternative to ridge through conditioning. These improve over OLS in mean square
under conditions of Theorem 1, having by Theorem 2 uniformly smaller residual sums of squares than ridge for each k40.
Section 3 identifies useful marques of orthogonality to include key condition numbers and ellipticity indices in Theorem 3,
and variance inflation factors in Theorem 4. Of these, ridge is seen to diverge erratically from orthogonality as k evolves,
often reverting back to OLS in the limit. In contrast, surrogate solutions increasingly resemble those from orthogonal
systems, monotonically as k evolves. Case studies in Section 4 illustrate the central issues; Section 5 concludes with a brief
summary; and essential proofs are deferred to an Appendix.

2. Ridge and surrogate models

2.1. Generalized and ordinary models

Make the transition fX0Xb¼X0Yg - fðX0XþCÞb¼X0Yg, taking C to be positive definite, commuting with X0X, and

orthogonally congruent to K ¼Diagðk1; . . . ; kpÞ. This is generalized ridge regression; see Bingham and Larntz (1977), Hoerl

and Kennard (1970), Hoerl et al. (1975), and Lowerre (1974), for example. But this amounts to modifying the singular

decomposition X ¼ P1DxQ 0-XK ¼ P1Dððx2
i þkiÞ

1=2
ÞQ 0 with Dððx2

i þkiÞ
1=2
Þ ¼Diagððx2

1þk1Þ
1=2; . . . ; ðx2

pþkpÞ
1=2
Þ, for then

X0X-XK
0 XK ¼Q ðD2

xþKÞQ 0 ¼ ðX0XþCÞ. Ordinary ridge regression specializes at K ¼ kIp, with Xk ¼ P1Dððx2
i þkÞ1=2

ÞQ 0 and

Xk
0 Xk ¼ ðX

0XþkIpÞ. To improve conditioning on both sides of fX0Xb¼X0Yg, we take the model fY ¼XKbþeg as a surrogate

for the ill-conditioned model fY ¼Xbþeg itself, as in the following.

Definition 1. Given an ill-conditioned model fY ¼Xbþeg, its generalized surrogate is fY ¼XKbþeg. The generalized
surrogate estimator b̂SK , solving fðXK

0 XK Þb̂SK ¼ XK
0 Yg, is OLS in the generalized surrogate model. Specifically, with K ¼ kIp,

the ordinary surrogate is fY ¼Xkbþeg, and the solution b̂Sk of fðX0XþkIpÞb̂Sk ¼ Xk
0 Yg is OLS for the ordinary surrogate

approximation.

By convention the condition number c1ðXÞ is the ratio of its largest to smallest singular values, namely, c1ðXÞ ¼ x1=xp.
Specifically, c1ðXÞ-c1ðXkÞ ¼ ðx1þkÞ=ðxpþkÞ reflects improved conditioning on the right of the ordinary surrogate
equations, and similarly for their generalized version. In summary, essentials of the generalized ridge and surrogate
models are

Ridge: Q ðD2
xþKÞQ 0b̂RK ¼QDxP1

0 Y ; ð1Þ

Surrogate: Q ðD2
xþK�ÞQ 0b̂SK� ¼QD ðx2

i þk�i Þ
1=2

� �
P1
0 Y : ð2Þ

Here K ¼Diagðk1; . . . ; kpÞ and K� ¼Diagðk�1; k
�
2; . . . ; k

�
pÞ are distinguished for reasons to follow, showing (i) equivalence, and

(ii) that each generalized model specializes to the ordinary version of the other.

Theorem 1. Given the generalized ridge and surrogate systems, consider the respective solutions b̂RK and b̂SK� and, for K ¼ kIp

and K� ¼ k�Ip, the ordinary solutions b̂Rk and b̂Sk� .

(i) The generalized systems (1) and (2) are equivalent; elements of K and K� relate one-to-one through

fk�i ¼ 2kiþk2
i =x

2
i ;1r irpg.

(ii) Ordinary surrogate, with solution b̂Sk� , is generalized ridge with parameters K ¼Diagðk1; . . . ; kpÞ on solving

fk� ¼ 2kiþk2
i =x

2
i ;1r irpg.

(iii) Ordinary ridge, with solution b̂Rk, is generalized surrogate with K� ¼Diagðk�1; . . . ; k
�
pÞ on solving

fk�i ¼ 2kþk2=x2
i ;1r irpg.

Proof. See Appendix A.
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2.2. Residual comparisons

That solutions are optimal can be claimed for neither fb̂Rk; k40g nor fb̂Sk; k40g, except that Q ðbÞ ¼ ðY�XkbÞ
0ðY�XkbÞ is

minimized at b̂Sk. Nonetheless, the residual sum of squares ðRSSÞ often is at issue in considering alternatives to OLS. The
following demonstration is germane.

Theorem 2. Consider the ordinary ridge fðX0XþkIpÞb̂Rk ¼X0Y ; kZ0g and surrogate fðX0XþkIpÞb̂Sk ¼ Xk
0 Y ; kZ0g systems. Then

their residual sums of squares are ordered, for each k40, as RSSðb̂SkÞoRSSðb̂RkÞ.

Proof. See Appendix A.

In short, residual sums of squares are smaller for surrogate than for ridge, point-wise for each k40.

2.3. Admissible values

In estimating b using ~b with bias Bð ~bÞ ¼ Eð ~b�bÞ ¼ ðb0�bÞ, its mean square error is MSEð
~bÞ ¼ Eð ~b�bÞ0ð ~b�bÞ ¼ tr Vð ~bÞ +

ðb0�bÞ0ðb0�bÞ, effecting the variance-bias trade-off under squared error loss. Equivalently, taking h¼Q 0b in canonical form

with Q orthogonal, thus ~h ¼Q 0 ~b, it suffices that MSEð
~bÞ ¼MSEð

~hÞ ¼ Eð ~h�hÞ0ð ~h�hÞ. Values k0 sufficient for

MSE½b̂Rðk0Þ�oMSEðb̂LÞ are given in Hoerl and Kennard (1970), i.e., ridge solutions MSE-efficient relative to OLS, to be
designated here as MSE-admissible and thus germane to the study. A two-fold void in ridge regression, as widely

understood, is that (i) k0 from Hoerl and Kennard (1970) is unnecessarily conservative and (ii) there is an upper limit for k

beyond which OLS is MSE-efficient relative to b̂Rk, the latter to be supplanted by b̂L thereafter. Details follow.

Lemma 1. Consider the OLS solutions ĥL ¼ ½ŷ
1

L ; . . . ; ŷ
p

L �
0 and ridge estimators ĥRk ¼ ½ŷ

1

Rk; ŷ
2

Rk; . . . ; ŷ
p

Rk�
0.

(i) The typical element MSEðŷ
i

RkÞ ¼ ðs2x2
i þk2y2

i Þ=ðx
2
i þkÞ2 achieves its minimal value s2y2

i =ðs2þx2
i y

2
i Þ at ki ¼ s2=y2

i .

(ii) The cross-over value from below, achieving equality in MSEðŷ
i

RkÞrMSEðŷ
i

LÞ, occurs at ki
c ¼ 2s2x2

i =ðx
2
i y

2
i �s2Þ, provided that

x2
i y

2
i 4s2.

(iii) If kmrminfk1
c ; k

2
c ; . . . ; k

p
c g, then b̂RðkmÞ is MSE-admissible with respect to b̂L.

(iv) If kM Zmaxfk1
c ; k

2
c ; . . . ; k

p
c g, then b̂L is MSE-admissible with respect to b̂RðkMÞ, and OLS continues thereafter.

(v) If crossings all coincide at kc , then for MSEðb̂RkÞoMSEðb̂LÞ, it is necessary and sufficient that kokc . Similarly,

MSEðb̂RkÞ4MSEðb̂LÞ if and only if k4kc .

Proof. See Jensen and Ramirez (2010). &

Parallel results for b̂Sk, if available, are equally germane. To these ends write MSEiðkÞ for either MSEðŷ
i

RkÞ or MSEðŷ
i

SkÞ in

context; observe that MSEðŷ
i

RkÞ and, from what follows MSEðŷ
i

SkÞ, both originate at MSEðŷ
i

LÞ ¼ s2=x2
i ; then decrease to a

minimum, increasing thereafter to y2
i which explains the condition of x2

i y
2
i 4s2, and crossing the constant OLS line s2=x2

i

from below. The initial rates of change ½d MSEiðkÞ=dk�jk ¼ 0 are �2s2=x4
i and �s2=x4

i for the ridge and surrogate estimators,

respectively, but then MSEðŷ
i

RkÞ rises faster than MSEðŷ
i

SkÞ, with a smaller cross-over value. Developments corresponding to

Lemma 1 apply also in the case of b̂Sk; essential results follow.

Theorem 3. Consider the OLS estimators ĥL ¼ ½ŷ
1

L ; . . . ; ŷ
p

L �
0 and the surrogate solutions ĥSk ¼ ½ŷ

1

Sk; . . . ; ŷ
p

Sk�
0.

(i) The typical element MSEðŷ
i

SkÞ ¼ ðy
2
i kþ2y2

i x
2
i �2y2

i xi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þk
q

þs2Þ=ðx2
i þkÞ achieves its minimal value s2y2

i =ðs2þx2
i y

2
i Þ at

k�i ¼ ki½s2=x2
i y

2
i þ2�42 ki with ki as in Lemma 1.

(ii) The cross-over value from below, attaining equality in MSEðŷ
i

SkÞrMSEðŷ
i

LÞ, occurs at ki�
c ¼ 2ki

cðx
2
i y

2
i =ðx

2
i y

2
i �s2ÞÞ42ki

c .

(iii) If k�mrminfk1�

c ; k
2�

c ; . . . ; k
p�
c g, then b̂Sðk

�
mÞ is MSE-admissible with respect to b̂L.

(iv) If k�M Zmaxfk1�

c ; k
2�

c ; . . . ; k
p�
c g, then b̂L is MSE-admissible with respect to b̂Sðk

�
MÞ thereafter.

(v) If crossings all coincide at k�c , then for MSEðb̂SkÞoMSEðb̂LÞ, it is necessary and sufficient that kok�c . Similarly,

MSEðb̂SkÞ4MSEðb̂LÞ if and only if k4k�c .

Proof. See Appendix A.

Hoerl and Kennard (1970) gave k0ominfk1; . . . ; kpg from Lemma 1 as sufficient for MSEðb̂RkÞoMSEðb̂LÞ. An analog

sufficient for MSEðb̂SkÞoMSEðb̂LÞ from Theorem 3(i) is k�0ominfk�1; . . . ; k
�
pg. Unfortunately, both choices are conservative in

excess, lying to the left of all the minima for the MSEðŷ
i

RkÞ and MSEðŷ
i

SkÞ curves, whereas Lemma 1(iii) and Theorem 3(iii)

adjoin the rising branches on these curves up to their crossing with the constant OLS line. The user is assured of
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improvement in MSE of ridge estimators for krminfki
Rc;1r irpg,and of improvement in MSE for surrogate estimators for

k�rminfki�
c ;1r irpg. For a value krminfki

c;1r irpg from Lemma 1, the value 2k will suffice in order that

MSEðb̂SkÞoMSEðb̂LÞ from Theorem 3(ii). Accordingly, the surrogate model offers a wider range of admissible values than
ridge.

We turn next to concepts allied with the notion of orthogonality of linear systems and its consequences.
3. Orthogonal systems

3.1. Overview

The assertion, ‘‘At a certain value of k the system will stabilize and have the general characteristics of an orthogonal
system’’ Hoerl and Kennard (1970, p. 65), remains vague in its failure to stipulate the ‘‘orthogonal characteristics’’
intended. We take this mandate to mean properties of solutions; specifically, point estimators, since hypothesis tests and
confidence sets are argued in Obenchain (1977) to revert back to OLS when k is deterministic.

For reference, the system fZ0Zb¼ Z0Yg, with solution b̂ and dispersion Vðb̂Þ ¼R, is fully orthogonal if and only if the
following properties are met:
P1:
 The singular values of Z are equal and Z0Z is a scalar matrix.

P2:
 The condition number c1ðZ0ZÞ ¼ c1ðRÞ = 1.0.

P3:
 The VIFs are fVIFðb̂ iÞ ¼ 1:0; 1r irpg.

P4.
 Variances are isotropic, i.e., fVarðc0b̂Þ ¼ s2c0c; c 2 Rp

g; specifically, the fractions fVarðb̂ iÞ=tr Vðb̂Þ ¼ 1=p ;1r irpg are
uniform.
P5:
 The probability contours of the distribution Lðb̂Þ, if Gaussian, are spherical.
Ridge, and now surrogate regression, are intended to ameliorate cited flaws of OLS if ill-conditioned. Their merits
necessarily rest on progress towards those ends. Since neither system can be construed to be orthogonal under
ill-conditioning, users may expect, to some degree, discrepancies from the aforementioned benchmarks of orthogonal
systems. These matters are considered in detail throughout the remainder of this study.
3.2. Conditioning and ellipticity

Let ĉ 2 Rp be centered at c0 2 R
p having VðĉÞ ¼X with eigenvalues fo2

1;o2
2; . . . ;o2

pg. Choose c such that

RðcÞ ¼ fc 2 Rp : ðĉ�cÞ0X-1
ðĉ�cÞrc2g ð3Þ

has unit volume. Then RðcÞ is an ellipsoid of concentration of Cramér (1947, p. 300ff.) having uniform measure, a
distribution-free concept based on first and second moments, useful for gauging concentration efficiencies of vector

estimators. If, in addition, LðĉÞ is Gaussian, then X determines its elliptical density contours in Rp. Rotating to standard

position gives fo1;o2; . . . ;opg as lengths of the semiprincipal axes. An ellipticity index, WðXÞ ¼ ½trðXÞ�p=ppjXj as in

Mauchly (1940), serves to gauge the nonsphericity of contours of RðcÞ, and of LðĉÞ if Gaussian, where WðXÞ ¼ 1:0 at X¼ Ip,

and larger values quantify increasing divergence from sphericity. As these quantities figure prominently as marques of

orthogonality, they are examined next with regard to surrogate and ridge systems. To these ends designate c1ðb̂Þ ¼ ½c1ðVðb̂Þ�

and c�1ðb̂Þ ¼ ½c1ðb̂Þ�
1=2;Wðb̂Þ ¼ ½WðVðb̂ÞÞ� and Elðb̂Þ ¼ ½Wðb̂Þ�1=2 as properties of b̂; and recall that fVðb̂SkÞ ¼RS

k; kZ0g.

Theorem 4. Consider surrogate estimators fb̂Sk; kZ0g, together with root condition numbers c�1ðb̂SkÞ and ellipticity indices

Elðb̂SkÞ, and similarly for ridge estimators fb̂Rk; kZ0g. Then
(i)
 Condition numbers fc�1ðb̂SkÞ; kZ0g are monotone decreasing with increasing k and satisfy limk-1c�1ðb̂SkÞ ¼ 1.
(ii)
 Ellipticity indices fElðb̂SkÞ; kZ0g are monotone decreasing with increasing k and satisfy limk-1Elðb̂SkÞ ¼ 1.

(iii)
 Condition numbers fc�1ðb̂RkÞ; kZ0g satisfy limk-1c�1ðb̂RkÞ ¼ c�1ðb̂LÞ.
(iv)
 Ellipticity indices fElðb̂RkÞ; kZ0g satisfy limk-1Elðb̂RkÞ ¼ ½WðV
�1
Þ�1=2 ¼ ½WðX0XÞ�1=2.
Proof. See Appendix A.

With regard to condition numbers for dispersion, and to concentration and density contours, surrogate estimators
increasingly resemble those from an orthogonal system as k evolves. These salutary properties fail for ridge; further
evidence accrues through the case studies of Section 4, as listed subsequently in Table 4.
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3.3. Variance inflation

Since neither system, ridge nor surrogate, is orthogonal if ill-conditioned, their VIFs necessarily exceed unity.
Nonetheless, it is instructive to ask whether, as k evolves, VIFs proceed towards those from an orthogonal system. An
affirmative answer follows in part, where VIFs for surrogate, but not ridge, are seen to decrease monotonically towards 1.0

with increasing k. That VIFs for b̂Rk are not monotone is demonstrated in the section following. For reference, VIFs for

fðb̂
i

S; b̂
i

RÞ;1r irpg are computed as

VIFðb̂
i

SÞ ¼

Pp
j ¼ 1 q2

ij=ðx
2
j þkÞ

1=
Pp

j ¼ 1ðx
2
j þkÞq2

ij

; ð4Þ

and

VIFðb̂
i

RÞ ¼
Xp

j ¼ 1

x2
j

ðx2
j þkÞ2

q2
ij

Xp

j ¼ 1

ðx2
j þkÞ2

x2
j

q2
ij; ð5Þ

where fx1Z � � �Zxp40g are not all equal, and Q ¼ ½qij� is from the singular decomposition X ¼ P1DxQ 0. The principal

findings follow.

Theorem 5. Consider surrogate estimators b̂Sk with elements fb̂
i

SðkÞ;1r irpg, together with ridge estimators b̂Rk with elements

fb̂
i

RðkÞ;1r irpg.
(i)
Tabl

Valu

k

RSS

RSS
The functions fVIFðb̂
i

SðkÞÞ;1r irpg decrease monotonically with increasing k and satisfy limk-1VIFðb̂
i

SðkÞÞ ¼ 1.
i i
(ii)
 VIFs for b̂Rk satisfy flimk-1VIFðb̂RðkÞÞ ¼ VIFðb̂LÞ; 1r irpg.
Proof. See Appendix A.
4. Case studies

4.1. The setting

Records at n=17 U. S. Naval Hospitals comprise the Hospital Manpower Data as reported in Table 3.8 of Myers (1990,
pp. 132–133), to include: monthly man-hours (Y); average daily patient load (X1); monthly X-ray exposures (X2); monthly
occupied bed days (X3); eligible population in the area C 1000 (X4); and average length of patients’ stay in days (X5). The
basic model is

fYi ¼ b0þb1X1þb2X2þb3X3þb4X4þb5X5þei;1r irng: ð6Þ

Following Hoerl and Kennard (1970), Marquardt (1970), Marquardt and Snee (1975), Myers (1990), and others, fY ¼ Zbþeg
is centered and scaled, with Z0Z in correlation form and b¼ ½b1;b2;b3;b4;b5�

0. Computations as reported utilize both PROC
IML of SAS and the symbolic program Maple. Ill-conditioning is reflected in: (i) Dx ¼Diagð2:048687, 0.816997, 0.307625,
0.201771, 0.007347); (ii) c1ðZ0ZÞ ¼ 77;754:86; (iii) the maximal VIF as V1 ¼ VIFðb̂1Þ ¼ 9;595:68; and (iv) other VIFs are listed
at k=0 in Table 2. We next explore the ridge and surrogate solutions for these data as outlined previously.
4.2. Residuals

Citing residuals in studies of estimation, Theorem 2 registers for each k40 the critical inequality RSSðb̂SkÞoRSSðb̂RkÞ.
Numerical values are given in Table 1 as k ranges over ½0;1Þ, where they differ up to a factor of about 2 for k 2 ½0;1�.
Convergence to the same limit follows since RSSðb̂kÞ-U 0U ¼ Y 0Y for both, as the estimators shrink towards zero.
e 1

es of RSSðb̂SkÞ � 10�7 and RSSðb̂RkÞ � 10�7 in the hospital manpower data as k evolves.

0.00 0.10 0.20 0.30 0.40 0.50 0.75 1.00 1

ðb̂SkÞ
0.454 0.600 0.704 0.793 0.878 0.963 1.190 1.440 49.500

ðb̂RkÞ
0.454 0.802 1.010 1.210 1.420 1.650 2.300 3.040 49.500



ARTICLE IN PRESS

D.R. Jensen , D.E. Ramirez / Journal of Statistical Planning and Inference 140 (2010) 2069–20772074
4.3. Variance inflation

Section 3.1 identifies fVIFðb̂iÞ ¼ 1:0;1r ir5g as characteristic of orthogonality. At issue is whether the ridge or
surrogate system might stabilize towards unity of VIFs as k evolves. Table 2 tracks these quantities for k 2 ½0; 1Þ. These
factors clearly evolve erratically for ridge, but monotonically towards unity for surrogate systems, as certified in Theorem
5. It appears pathological that VIFs for ridge should turn back towards those of OLS as k becomes large, nor is there evidence
otherwise that ridge solutions tend to stabilize in VIFs towards orthogonality.
4.4. Uniformity

Let fFi ¼Varðb̂ iÞ=tr Vðb̂Þ;1r ir5g; Section 3.1 identifies their uniformity as characteristic of orthogonality. Fractions are

displayed in Table 3 for the ridge and surrogate solutions, together with the uniformity index UIðb̂kÞ ¼
P5

i ¼ 1ðFi�1=5Þ2=ð45Þ

with range ½0;1�. The value 4
5 is the maximum value of the numerator at {1, 0, 0, 0, 0}. It is seen that UIðb̂RkÞ evolves

erratically; its minimum for k 2 ½0;1� is 0.037090 at k = 0.0019286. On the other hand, a graph in Maple software shows

that UIðb̂SkÞ decreases monotonically for k 2 ½0;1�; the curves cross at k = 0.083651 with common value

UIðb̂SkÞ ¼UIðb̂RkÞ ¼ 0:049181; and UIðb̂SkÞoUIðb̂RkÞ for k 2 ð0:083651;1�.
4.5. Conditioning and contours

Further characteristics in Section 3.1 are the condition number of Vðb̂Þ; and spherical concentration ellipsoids of Lðb̂Þ
under second moments, or spherical probability contours if Gaussian. Designate c�1ðb̂Þ ¼ ½c1ðVðb̂ÞÞ�

1=2 and

Elðb̂Þ ¼ ½WðVðb̂ÞÞ�1=2 as before. These are listed in Table 4 as k ranges over ½0;1Þ. The index Elðb̂LÞ ¼ 641;006 at k=0
Table 2

Variance inflation factors fVIFR1; . . . ;VIFR5g for elements of b̂Rk ¼ ½b̂R1; . . . ; b̂R5�
0 , and fVIFS1; . . . ;VIFS5g for b̂Sk ¼ ½b̂S1; . . . ; b̂S5�

0 , as k ranges over ½0; 1Þ.

k VIFR1 VIFR2 VIFR3 VIFR4 VIFR5 VIFS1 VIFS2 VIFS3 VIFS4 VIFS5

0.00 9596 7.941 8931 23.289 4.279 9596 7.941 8931 23.289 4.279

0.10 55.97 2.383 58.70 2.443 1.402 7.621 4.144 7.518 4.971 1.898

0.20 90.90 1.502 93.17 1.699 1.256 4.375 3.021 4.343 3.373 1.600

0.40 159.22 1.119 157.97 1.628 1.263 2.658 2.153 2.648 2.286 1.377

0.60 242.62 1.086 235.97 1.856 1.346 2.070 1.788 2.065 1.862 1.277

0.80 341.11 1.136 327.76 2.152 1.443 1.774 1.589 1.772 1.637 1.218

1.00 451.58 1.218 430.60 2.474 1.539 1.598 1.463 1.596 1.498 1.178

4.00 2367 2.724 2211 7.199 2.438 1.096 1.079 1.096 1.083 1.036

1 9596 7.941 8931 23.289 4.279 1.000 1.000 1.000 1.000 1.000

Table 3

Fractions fFi ¼ Varðb̂ iÞ=trVðb̂Þ; 1r ir5g of total variance and their uniformity index UIðb̂Þ for ridge b̂Rk ¼ ½b̂R1; . . . ; b̂R5�
0 and surrogate b̂Sk ¼ ½b̂S1 ; . . . ; b̂S5�

0

solutions as k ranges over [0, 1].

k F1 F2 F3 F4 F5 UIðb̂kÞ

Ridge solutions

0.00 0.5169 0.0004 0.4812 0.0013 0.0002 0.3734

0.10 0.0973 0.3146 0.1095 0.2880 0.1906 0.0496

0.20 0.0814 0.3017 0.0896 0.2514 0.2758 0.0562

0.40 0.0750 0.2638 0.0799 0.2133 0.3679 0.0781

0.60 0.0786 0.2402 0.0821 0.1963 0.4028 0.0892

0.80 0.0849 0.2262 0.0876 0.1880 0.4133 0.0903

1.00 0.0919 0.2175 0.0941 0.1838 0.4128 0.0859

Surrogate solutions

0.00 0.5169 0.0004 0.4812 0.0013 0.0002 0.3734

0.10 0.2914 0.1585 0.2875 0.1902 0.0726 0.0426

0.20 0.2618 0.1808 0.2599 0.2018 0.0957 0.0233

0.40 0.2390 0.1935 0.2381 0.2056 0.1238 0.0111

0.60 0.2284 0.1973 0.2279 0.2055 0.1409 0.0064

0.80 0.2221 0.1989 0.2217 0.2049 0.1524 0.0041

1.00 0.2179 0.1996 0.2176 0.2043 0.1607 0.0027
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Table 4

Root condition numbers c�1ðb̂Þ ¼ ½c1ðVðb̂ÞÞ�
1=2 and elliptical index Elðb̂Þ ¼ ½WðVðb̂ÞÞ�1=2 for ridge and surrogate solutions as k ranges over ½0; 1Þ.

k c�1ðb̂RkÞ c�1ðb̂SkÞ Elðb̂RkÞ Elðb̂SkÞ

0.00 278.846 278.846 641,006 641,006

0.10 21.5242 6.5535 18.0611 4.6869

0.20 28.4299 4.6882 18.1365 3.0124

0.40 41.6741 3.3899 22.4827 2.0820

0.60 52.6449 2.8275 28.7035 1.7406

0.80 60.6254 2.4992 35.7648 1.5598

1.00 66.6915 2.2797 43.4168 1.4469

4.00 136.079 1.4315 193.5504 1.0859

1 278.8456 1.0000 1301.24 1.0000
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reflects that elliptical contours in R5 for OLS are highly elongated and nearly degenerate, its semi-principal axes given by

Dx ¼Diagð2:048687, 0.816997, 0.307625, 0.201771, 0.007347).

It again appears pathological that c�1ðb̂RkÞ for ridge should turn back towards those of OLS as k becomes large, nor is there

evidence otherwise that ridge solutions stabilize towards orthogonality. Further computations show that

minfc�1ðb̂RkÞg ¼ 7:4463 at k = 0.015. On the other hand, c�1ðb̂SkÞ decreases monotonically for k 2 ½0;1Þ as in Theorem 3;

the curves cross at k = 0.03045 with common value c�1ðb̂SkÞ ¼ c�1ðb̂RkÞ ¼ 11:772; and c�1ðb̂SkÞoc�1ðb̂RkÞ for k 2 ð0:03045;1Þ.

Similarly, minfElðb̂RkÞg ¼ 7:9791 occurs at k = 0.00268; Elðb̂SkÞ decreases for k 2 ½0;1Þ by Theorem 3; whereas the curves

cross at k = 0.02135 with value Elðb̂SkÞ ¼ Elðb̂RkÞ ¼ 17:317, and Elðb̂SkÞoElðb̂RkÞ for k 2 ð0:02135;1Þ. It should be noted that

the limit Elðb̂R1Þ ¼ 1301:24¼ ½WððVðb̂LÞÞ
�1
Þ�1=2 as in Appendix A.

5. Conclusions

The ridge system fðX0XþkIpÞb̂Rk ¼X0Yg is reexamined on the claim: ‘‘At a certain value of k the system will stabilize and
have the general characteristics of an orthogonal system’’ Hoerl and Kennard (1970, p. 65), despite vagueness on the
intended characteristics. Properties of solutions of orthogonal systems are identified here to include (i) unit condition
numbers for dispersion matrices; (ii) unit values for Variance Inflation Factors; (iii) isotropic variances; and (iv) spherical
contours for ellipsoids of concentration, or their densities if Gaussian. Conditioning arguments, set to account for
ill-conditioning of X on both sides of the OLS equations, prompt the generalized surrogate system fðXK

0 XK Þb̂SK ¼XK
0 Yg, and

its study at K ¼ kIp as alternative to ridge. Since neither the ridge nor surrogate system is orthogonal when X is
ill-conditioned, this study examines whether their solutions do stabilize and tend towards orthogonality as k evolves.

Duality of generalized ridge and surrogate systems is demonstrated in Theorem 1. Theorem 2 asserts smaller residual

sums of squares for b̂Sk than b̂Rk for each k40. Theorem 3 identifies not only k40 such that MSEðb̂SkÞoMSEðb̂LÞ, but also

values reverting back eventually to OLS where MSEðb̂LÞoMSEðb̂SkÞ for k sufficiently large. Moreover, if b̂RðkÞ is MSE-admissible

at k¼ k0, then b̂Sðk0Þ is MSE-admissible. Critical properties of fb̂Sk; kZ0g decrease monotonically as k increases, to include
conditioning of dispersion and ellipticity indices in Theorem 4, and Variance Inflation Factors in Theorem 5. Of these, none is

monotone in the case of fb̂Rk; kZ0g, tending instead to diverge erratically with k, often reverting back towards values for
OLS. In short, ridge solutions ultimately appear to exhibit the precise pathologies of OLS that they are intended to remedy.
Section 4 illustrates these findings for the highly ill-conditioned Hospital Manpower Data.

Ridge regression continues apace. A burgeoning field of application is calibration in chemical engineering and analytical
chemistry. Recent review articles include Geladi (2002), Kalivas (2005), and Sundberg (1999), to cite three sources.

Appendix A

A.1. Canonical form

Take P ¼ ½P1;P2� 2 OðnÞ; partition U ¼ P0Y as U ¼ ½U1
0 ;U2

0 �0, with U1 ¼ P1
0 Y 2 Rp and U2 ¼ P2

0 Y 2 Rn-p; and let h¼Q 0b
and P0e¼ g¼ ½g1

0 ;g2
0 �0. Then fY ¼Xbþeg transfers one-to-one into

U1

U2

" #
¼

Dxh

0

� �
þ

g1

g2

" #
; ð7Þ

and its errors into EðgÞ ¼ 0 and VðgÞ ¼ s2In, preserving essential structure. Moreover, at b̂ ¼Q ĥ, the residual sum of squares
RSSðb̂Þ becomes

RSSðb̂Þ ¼ ðY�Xb̂Þ0ðY�Xb̂Þ ¼ ðU1�DxĥÞ
0ðU1�DxĥÞþU2

0 U2: ð8Þ
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Here ðU1�DxĥLÞ vanishes identically at ĥL ¼D�1
x U1, so that RSSðb̂LÞ ¼U2

0 U2, the minimum, and S2 ¼U2
0 U2=ðn�pÞ is the OLS

residual mean square.

A.2. Proofs: the principal results
Proof (Theorem 1). To connect generalized ridge and surrogate models, reexpress (1) and (2) in canonical form as

fðDxþD�1
x KÞĥRK ¼U1; ð1

0Þg and fDððx2
i þk�i Þ

1=2
ÞĥSK ¼U1; ð2

0Þg, respectively; equate matrices on the left and solve

fk�i ¼ 2kiþk2
i =x

2
i ;1r irpg. Clearly ðki; k

�
i Þ correspond one-to-one since fki; k

�
i ; x

2
i g are positive, to give conclusion (i), so

that ki also may be solved in terms of k�i . Setting fk�1 ¼ k�2 ¼ � � � ¼ k�p ¼ k�g identifies the ordinary surrogate model

specializing generalized ridge, with parameters as in conclusion (ii). Conversely, ordinary ridge follows on setting

fk1 ¼ k2 ¼ � � � ¼ kp ¼ kg, to give conclusion (iii). &

Proof (Theorem 2). From expression (8) it suffices to compare the quadratic forms Q1ðĥSkÞ ¼ ðU1�DxĥSkÞ
0ðU1�DxĥSkÞ and

Q2ðĥRkÞ ¼ ðU1�DxĥRkÞ
0ðU1�DxĥRkÞ, since U2

0 U2 is fixed. But ðU1�DxĥSkÞ ¼ ðU1�Dðxi=ðx
2
i þkÞ1=2

ÞU1, whereas

ðU1�DxĥRkÞ ¼ ðU1�Dðx2
i =ðx

2
i þkÞÞU1. Components of Q1ðĥSkÞ and Q2ðĥRkÞ are ½1�xi=ðx

2
i þkÞ1=2

�U2
i and ½1�x2

i =ðx
2
i þkÞ�U2

i ,

respectively. But since 0ox2
i =ðx

2
i þkÞoxi=ðx

2
i þkÞ1=2o1 for k40, it follows that Q1ðĥSkÞoQ2ðĥRkÞ, to complete our

proof. &

Proof (Theorem 3). MSEðŷ
i

SkÞ as given follows directly; setting dMSEðŷ
i

SkÞ=dk to zero and solving gives k�, minimizing

since d2MSEðŷ
i

SkÞ=dk240; its minimal value is by substitution, to give conclusion (i). Equating MSEðŷ
i

SkÞ to MSEðŷ
i

LÞ ¼ s2=x2
i

and solving, gives ki�
c as in conclusion (ii). Since components of MSEðĥSkÞ�MSEðĥLÞ ¼

Pp
i ¼ 1½MSEðŷ

i

SkÞ�MSEðŷ
i

LÞ� are all

negative for k�mrminfk1�

c ; k
2�

c ; . . . ; k
p�
c g from (ii), conclusion (iii) follows directly. Similarly, that all components are

positive for k�M Zmaxfk1�

c ; k
2�

c ; . . . ; k
p�
c g, gives conclusion (iv). Conclusion (v) follows directly, to complete our

proof. &

Proof (Theorem 4). Recall our conventions c1ðb̂Þ ¼ c1ðVðb̂ÞÞ and Wðb̂Þ ¼WðVðb̂ÞÞ as properties of b̂ and, by equivalence, that

c1ðb̂Þ ¼ c1ðĥÞ and Wðb̂Þ ¼WðĥÞ in the corresponding canonical forms. Conclusion (i) follows from c1ðb̂SkÞ ¼ ðx
2
1þkÞ=ðx2

pþkÞ;

and (iii) from

c1ðb̂RkÞ ¼

max
x2

i

ðx2
i þkÞ2

;1r irp

( )

min
x2

i

ðx2
i þkÞ2

;1r irp

( ) ¼
max

k2x2
i

ðx2
i þkÞ2

;1r irp

( )

min
k2x2

i

ðx2
i þkÞ2

;1r irp

( )-
x2

1

x2
p

:

The limit in (ii) follows from

Wðb̂SkÞ ¼

Pp
i ¼ 1

1

x2
i þk

 !p

pp
Qp

i ¼ 1

1

x2
i þk

¼

Pp
i ¼ 1

k

x2
i þk

 !p

pp
Qp

i ¼ 1

k

x2
i þk

-1:0 as k-1;

and the limit in (iv) from

Wðb̂RkÞ ¼

Pp
i ¼ 1

x2
i

ðx2
i þkÞ2

 !p

pp
Qp

i ¼ 1

x2
i

ðx2
i þkÞ2

¼

Pp
i ¼ 1

k2x2
i

ðx2
i þkÞ2

 !p

pp
Qp

i ¼ 1

k2x2
i

ðx2
i þkÞ2

-
ð
Pp

i ¼ 1 x
2
i Þ

p

pp
Qp

i ¼ 1 x
2
i

¼WðV�1
Þ:

Monotonocity in (ii) rests on showing that dWðb̂SkÞ=dko0. Accordingly, let fci ¼ 1=ðx2
i þkÞ;1r irpg, and write

d

dk
log½Wðb̂SkÞ� ¼

�1

ðc1þ � � � þcpÞ
p ½pðc

2
1þ � � � þc2

p Þ�ðc1þ � � � þcpÞ
2
�;

which is negative, as the term in the brackets is positive by the Cauchy–Schwarz inequality. &
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Proof (Theorem 5). VIFðb̂
i

SÞ ¼ vii=w�1
ii with V ¼ ðX0XþkIpÞ

�1, and W ¼ ðX0XþkIpÞ ¼QDððx2
i þkÞÞQ 0, where fx1Z � � �Zxp40g

are not all equal. Expression (4) follows directly. Rewriting (4) as VIFðb̂
i

SÞ ¼
Pp

j;m ¼ 1ðq
2
ij=ðx

2
j þkÞÞððx2

mþkÞq2
imÞ, we compute

d

dk
½VIFðb̂

i

SÞ� ¼
Xp

jom

q2
ijq

2
im

ðx2
j �x

2
mÞ

ðx2
j þkÞ2

þ
ðx2

m�x
2
j Þ

ðx2
mþkÞ2

 !
¼
Xp

jom

q2
ijq

2
imðx

2
j �x

2
mÞ

1

ðx2
j þkÞ2

�
1

ðx2
mþkÞ2

 !
o0;

each VIFðb̂
i

SðkÞÞ thus is monotone decreasing with increasing k. Limit properties follow on writing (4) as

VIFðb̂
i

SÞ ¼ ð
Pp

i ¼ 1 kq2
ij=ðx

2
j þkÞÞð

Pp
i ¼ 1ðx

2
j þkÞq2

ij=kÞ-1:0 as k-1 since Q is an orthogonal matrix, to establish conclusion

(i). Conclusion (ii) follows on expressing (5) as

VIFðb̂
i

RÞ ¼
Xp

i ¼ 1

k2x2
j q2

ij

ðx2
j þkÞ2

Xp

j ¼ 1

ðx2
j þkÞ2q2

ij

k2x2
j

-
Xp

j ¼ 1

x2
j q2

ij

Xp

j ¼ 1

q2
ij

x2
j

¼ VIFðb̂
i

LÞ

as k-1, to complete our proof. &
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