Bringing Order to Outlier Diagnostics in Regression Models

D. R. Jensen and D. E. Ramirez

Virginia Polytechnic Institute and State University and University of Virginia
der@virginia.edu
http://www.math.virginia.edu/~ der/home.html

0.1 INTRODUCTION

Consider the model

$$
\left\{Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\cdots+\beta_{k} X_{i k}+\varepsilon_{i}(1 \leq i \leq n)\right\}
$$

relating a response Y_{i} to fixed regressors $\left\{X_{i 1}, X_{i 2}, \ldots, X_{i k}\right\}$ through $p=k+1$ unknown parameters $\boldsymbol{\beta}=\left[\beta_{0}, \beta_{1}, \ldots, \beta_{k}\right]^{\prime}$.

THE FULL MODEL $\mathbf{Y}=\mathbf{X}_{0} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$ is partitioned based on the proposed outliers $\left\{Y_{i}: i \in I\right\}$ of cardinality r.

$$
\left[\begin{array}{l}
\mathbf{Y}_{1} \\
\mathbf{Y}_{2}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{X} \\
\mathbf{Z}
\end{array}\right] \boldsymbol{\beta}+\left[\begin{array}{l}
\boldsymbol{\varepsilon}_{1} \\
\boldsymbol{\varepsilon}_{2}
\end{array}\right] \quad \begin{aligned}
& ((n-r) \times 1) \\
& (r \times 1)
\end{aligned}
$$

with least-squares estimator $\hat{\boldsymbol{\beta}}(p \times 1)$. All matrices are assume to be of full rank.

THE REDUCED MODEL $\mathbf{Y}_{1}=\mathbf{X} \boldsymbol{\beta}+\varepsilon_{1}$ with the proposed outliers deleted

$$
\mathbf{Y}_{1}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}_{1}
$$

with least-squares estimator $\hat{\boldsymbol{\beta}}_{I}$.

0.2 STANDARD OUTLIER DIAGNOSTICS

0.2.1 GROUP I DIAGNOSTICS (t-like statistics)

- STUDENTIZED DELETED RESIDUAL TEST (Gold Standard)
$\frac{y_{i}-\hat{y}_{(i) i}}{s_{(i)} \sqrt{1+\mathbf{x}_{i}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i}^{\prime}}}=\frac{y_{i}-\hat{y}_{(i) i}}{s_{(i)} \sqrt{1+h_{i i} /\left(1-h_{i i}\right)}} \sim t(n-p-1)$
- THE EXTERNALLY STUDENTIZED RESIDUALS (R-STUDENT statistic)

Easy to compute

$$
\begin{equation*}
t_{i}=\frac{y_{i}-\hat{y}_{i}}{s_{(i)} \sqrt{1-\mathbf{x}_{i}\left(\mathbf{X}_{0}^{\prime} \mathbf{X}_{0}\right)^{-1} \mathbf{x}_{i}^{\prime}}}=\frac{y_{i}-\hat{y}_{i}}{s_{(i)} \sqrt{1-h_{i i}}} \sim t(n-p-1) \tag{2}
\end{equation*}
$$

- DFFITS

$$
\begin{aligned}
\operatorname{DFFITS}_{i} & =\frac{\widehat{y}_{i}-\hat{y}_{(i) i}}{s_{(i)} \sqrt{h_{i i}}} \\
\text { DFFITS }_{i} & =t_{i} \sqrt{\frac{h_{i i}}{1-h_{i i}}} \\
\sqrt{\frac{h_{i i}}{1-h_{i i}}} & =\left\{\begin{array}{l}
0.5774 \text { with } h_{i i}=0.25 \\
1.0000 \text { with } h_{i i}=0.50 \\
4.3589 \text { with } h_{i i}=0.95
\end{array}\right.
\end{aligned}
$$

- DFBETAS

$$
\begin{gather*}
\operatorname{DFBETAS}_{(i) j}=\frac{\widehat{\beta}_{j}-\widehat{\beta}_{(i) j}}{s_{(i)} \sqrt{\left(\mathbf{X}_{0}^{\prime} \mathbf{X}_{0}\right)_{j j}^{-1}}} \tag{3}\\
\operatorname{DFBETA}_{(i) j}=t_{i}\left[\frac{\left[\left(\mathbf{X}_{0}^{\prime} \mathbf{X}_{0}\right)^{-1} \mathbf{X}^{\prime}\right]_{j i}}{\sqrt{\left(\mathbf{X}_{0}^{\prime} \mathbf{X}_{0}\right)_{j j}^{-1}\left(1-h_{i i}\right)}}\right]
\end{gather*}
$$

USEFUL RELATIONSHIPS

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}}-\widehat{\boldsymbol{\beta}}_{(i)} & =\frac{\left(\mathbf{X}_{0}^{\prime} \mathbf{X}_{0}\right)^{-1} \mathbf{x}_{i}\left(y_{i}-\widehat{y}_{i}\right)}{1-h_{i i}} \\
\frac{\left(y_{i}-\widehat{y}_{i}\right)^{2}}{1-h_{i i}} & =(n-p) s^{2}-(n-p-1) s_{(i)}^{2}
\end{aligned}
$$

STANDARD RECOMMENDATION (Myers (1990)): "As we indicated earlier, these two measures (DFFITS and DFBETAS) are t-like. Surely any analyst who is familiar with the concept of a standard error knows that if $D F B E T A S_{(i) j}$ exceeds 2.0 in magnitude, the influence of the data point in unquestioned."

Note: $\mathbf{Y}-\widehat{\mathbf{Y}}$ or $\widehat{\boldsymbol{\beta}}-\widehat{\boldsymbol{\beta}}_{(i)}$ are OUTLIER measures while $h_{i i}$ and $1 /\left(1-h_{i i}\right)$ are measures of INFLUENCE.

CONCLUSION: All Group I diagnostics yield the same p-values: Jensen and Ramirez (1996) \# 1 and 2, Jensen $(1998,2000) \# 2,3$ and 3 and LaMotte (1999) \# 1, 2, 3 and 3
0.2.2 GROUP II DIAGNOSTICS (heuristics based on s_{I}^{2} / s^{2})

The ratio s_{I}^{2} / s^{2} is the Neyman-Pearson likelihood ratio test statistics.

- R-FISHER parallels the R-Student statistic (Jensen (1999, 2001) (Gold Standard)

$$
\begin{aligned}
F_{I} & =\frac{\mathbf{e}_{I}^{\prime}\left(\mathbf{I}_{r}-\mathbf{Z}\left(\mathbf{X}_{0}^{\prime} \mathbf{X}_{0}\right)^{-1} \mathbf{Z}^{\prime}\right)^{-1} \mathbf{e}_{I}}{r s_{I}^{2}}=\frac{\mathbf{e}_{I}^{\prime}\left(\mathbf{I}_{r}-\mathbf{H}_{I I}\right)^{-1} \mathbf{e}_{I}}{r s_{I}^{2}}(4) \\
& =\frac{\left((n-p) s^{2}-(n-p-r) s_{I}^{2}\right) / r}{s_{I}^{2}} \sim F_{r, n-p-r}
\end{aligned}
$$

where

$$
\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right) \mathbf{X}^{\prime}=\mathbf{H}=\left[\begin{array}{ll}
\mathbf{H}_{00} & \mathbf{H}_{0 I} \\
\mathbf{H}_{I 0} & \mathbf{H}_{I I}
\end{array}\right]
$$

- MEAN SHIFT OUTLIER MODEL is based on

$$
\left[\begin{array}{l}
\mathbf{Y}_{1} \\
\mathbf{Y}_{2}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{X} \\
\mathbf{Z}
\end{array}\right] \boldsymbol{\beta}+\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{I}_{r}
\end{array}\right] \boldsymbol{\delta}+\left[\begin{array}{l}
\boldsymbol{\varepsilon}_{1} \\
\boldsymbol{\varepsilon}_{2}
\end{array}\right]
$$

Outliers can be checked jointly with model building.
Outliers are tested based on the null hypothesis $H_{0}: \boldsymbol{\delta}=\mathbf{0}$ with

$$
\begin{align*}
F_{I} & =\frac{\left(R S S\left(H_{0}\right)-R S S\left(H_{a}\right)\right) / r}{R S S\left(H_{a}\right) /(n-p-r)} \tag{5}\\
& =\frac{\left((n-p) s^{2}-(n-p-r) s_{I}^{2}\right) / r}{s_{I}^{2}} \sim F_{r, n-p-r}
\end{align*}
$$

With

$$
F_{(i)}=t_{i}^{2}
$$

- OUT $_{I}(r \geq 1)$ Barnett and Lewis (1984)

$$
\begin{align*}
O U T_{I} & =1-\frac{s_{I}^{2}}{s^{2}} \tag{6}\\
-\frac{1}{n-p-r} & \leq O U T_{I}=\frac{r\left(F_{I}-1\right)}{r F_{I}+(n-p-r)} \leq 1
\end{align*}
$$

- COVRATIO $(r \geq 1)$

$$
\begin{align*}
C R_{(i)} & =\frac{\left|s_{(i)}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right|}{\left|s^{2}\left(\mathbf{X}_{0}^{\prime} \mathbf{X}^{\prime}\right)^{-1}\right|}=\frac{1}{1-h_{i i}}\left(\frac{s_{(i)}^{2}}{s^{2}}\right)^{p} \tag{7}\\
0 & \leq C R_{i}=\frac{\left(\frac{n-p}{t_{i}^{2}+(n-p-1)}\right)^{p}}{1-h_{i i}} \leq \frac{\left(\frac{n-p}{n-p-1}\right)^{p}}{1-h_{i i}} \\
\frac{1}{1-h_{i i}} & =\left\{\begin{array}{c}
1.3333 \text { with } h_{i i}=0.25 \\
2.0000 \text { with } h_{i i}=0.50 \\
20.0000 \text { with } h_{i i}=0.95
\end{array}\right. \tag{8}
\end{align*}
$$

- $A P_{i}$ of Andrews and Pregibon (1978) $(r \geq 1)$

$$
\begin{align*}
A P_{i} & =1-\frac{n-p-1}{n-p} \frac{s_{(i)}^{2}\left|\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right|}{s^{2}\left|\left(\mathbf{X}_{0}^{\prime} \mathbf{X}\right)^{-1}\right|} \tag{9}\\
h_{i i} & \leq A P_{i}=\frac{t_{i}^{2}+(n-p-1) h_{i i}}{t_{i}^{2}+(n-p-1)} \leq 1
\end{align*}
$$

- FVARATIO of Belsley, Kuh and Welsch (1980) ($r \geq 1$)

$$
\begin{gather*}
F V_{i}=\left[\frac{1}{1-h_{i i}}\right] \frac{s_{(i)}^{2}}{s^{2}} \tag{10}\\
0 \leq F V_{i}=\frac{(n-p) /\left(t_{i}^{2}+n-p-1\right)}{1-h_{i i}} \leq \frac{(n-p) /(n-p-1)}{1-h_{i i}} \\
\frac{1}{1-h_{i i}}=\left\{\begin{array}{c}
1.3333 \text { with } h_{i i}=0.25 \\
2.0000 \text { with } h_{i i}=0.50 \\
20.0000 \text { with } h_{i i}=0.95
\end{array}\right.
\end{gather*}
$$

USEFUL RELATIONSHIPS

$$
\begin{gathered}
\widehat{\boldsymbol{\beta}}-\widehat{\boldsymbol{\beta}}_{I}=\left(\mathbf{X}_{0}^{\prime} \mathbf{X}_{0}\right)^{-1} \mathbf{Z}^{\prime}\left(I-H_{I I}\right)^{-1}\left(Y_{I}-\widehat{Y}_{I}\right) \\
\left(Y_{I}-\widehat{Y}_{I}\right)^{\prime}\left(I-H_{I I}\right)^{-1}\left(Y_{I}-\widehat{Y}_{I}\right)=(n-p) s^{2}-(n-p-1) s_{I}^{2}
\end{gathered}
$$

CONCLUSION: All Group II statistics yield the same p-values: Jensen (1999, 2001) \# 4, 6, 7, 9, 10, Jensen and Ramirez (1998) \# 5 and LaMotte (1999) \# 7

0.2.3 GROUP III DIAGNOSTICS (Distance measures)

- COOK'S D_{I} STATISTICS (1977) take the form

$$
D_{I}\left(\hat{\boldsymbol{\beta}}, \mathbf{M}, c \hat{\sigma}^{2}\right)=\frac{\left(\hat{\boldsymbol{\beta}}_{I}-\hat{\boldsymbol{\beta}}\right)^{\prime} \mathbf{M}\left(\hat{\boldsymbol{\beta}}_{I}-\hat{\boldsymbol{\beta}}\right)}{c \hat{\sigma}^{2}}
$$

where $\mathbf{M}(p \times p)$ is non-negative definite and $\hat{\sigma}^{2}$ is some estimator for the variance σ^{2} and c is a user-defined constant.

Standard Choices

- C_{i} of Cook (1977): $\hat{\sigma}^{2}=s^{2}, c=p$, and $\mathbf{M}=\mathbf{X}_{0}^{\prime} \mathbf{X}_{0}=$ $\sigma^{2} \operatorname{cov}(\hat{\boldsymbol{\beta}})^{-1}$

$$
\begin{align*}
C_{i} & =\frac{\left(\hat{\boldsymbol{\beta}}_{(i)}-\hat{\boldsymbol{\beta}}\right) \mathbf{X}_{0}^{\prime} \mathbf{X}_{0}\left(\hat{\boldsymbol{\beta}}_{(i)}-\hat{\boldsymbol{\beta}}\right)}{p s^{2}}=\frac{\left|\widehat{Y}_{(i)}-\widehat{Y}\right|^{2}}{p s^{2}} \tag{11}\\
C_{i} & =\left[\frac{(n-p) h_{i i}}{p\left(1-h_{i i}\right)}\right] \frac{t_{i}^{2}}{t_{i}^{2}+(n-p-1)} \\
\frac{h_{i i}}{1-h_{i i}} & =\left\{\begin{array}{c}
0.3333 \text { with } h_{i i}=0.25 \\
1.0000 \text { with } h_{i i}=0.50 \\
19.0000 \text { with } h_{i i}=0.95
\end{array}\right.
\end{align*}
$$

- $W K_{i}$ of Welsch and $\operatorname{Kuh}(1977): \hat{\sigma}^{2}=s_{I}^{2}, c=p$ and $\mathbf{M}=\mathbf{X}_{0}^{\prime} \mathbf{X}_{0}=$ $\sigma^{2} \operatorname{cov}(\hat{\boldsymbol{\beta}})^{-1}$

$$
\begin{aligned}
W K_{i} & =\frac{\left(\hat{\boldsymbol{\beta}}_{(i)}-\hat{\boldsymbol{\beta}}\right) \mathbf{X}_{0}^{\prime} \mathbf{X}_{0}\left(\hat{\boldsymbol{\beta}}_{(i)}-\hat{\boldsymbol{\beta}}\right)}{p s_{(i)}^{2}}=\frac{\left|\widehat{Y}_{(i)}-\widehat{Y}\right|^{2}}{p s_{(i)}^{2}}(12) \\
W K_{i} & =\left[\frac{h_{i i}}{p\left(1-h_{i i}\right)}\right] t_{i}^{2} \\
\frac{h_{i i}}{1-h_{i i}} & =\left\{\begin{array}{c}
0.3333 \text { with } h_{i i}=0.25 \\
1.0000 \text { with } h_{i i}=0.50 \\
19.0000 \text { with } h_{i i}=0.95
\end{array}\right.
\end{aligned}
$$

Our recommendation

$$
\begin{align*}
D_{I}\left(\hat{\beta}, \mathbf{X}_{0}^{\prime} \mathbf{X}_{0}, r s_{I}^{2}\right) & =\frac{\left(\hat{\boldsymbol{\beta}}_{I}-\hat{\boldsymbol{\beta}}\right)^{\prime} \mathbf{X}_{0}^{\prime} \mathbf{X}_{0}\left(\hat{\boldsymbol{\beta}}_{I}-\hat{\boldsymbol{\beta}}\right)}{r s_{I}^{2}} \tag{13}\\
& \sim F_{r}\left(t ; \gamma_{1}^{2}, \cdots, \gamma_{r}^{2} ; n-p-r\right) \tag{14}
\end{align*}
$$

$\left\{\gamma_{1}^{2} \geq \cdots \geq \gamma_{r}^{2}>0\right\}$ are the ordered eigenvalues of $\mathbf{Z}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{Z}^{\prime}$
STANDĀRD RECOMMENDATION: "Cook's D... is an F-like statistic with degrees of freedom p and $n-p$.'

The critical value has been suggested by Cook to be $F_{p, n-p}(0.50)$.

- W_{i} of Welsch (1982): $\hat{\sigma}^{2}=s_{I}^{2}, c=p$, and $\mathbf{M}=\mathbf{X}^{\prime} \mathbf{X}=$ $\sigma^{2} \operatorname{cov}\left(\hat{\boldsymbol{\beta}}_{I}\right)^{-1}$

$$
\begin{align*}
W_{i} & =\frac{\left(\hat{\boldsymbol{\beta}}_{(i)}-\hat{\boldsymbol{\beta}}\right) \mathbf{X}^{\prime} \mathbf{X}\left(\hat{\boldsymbol{\beta}}_{(i)}-\hat{\boldsymbol{\beta}}\right)}{p s_{(i)}^{2}} \tag{15}\\
W_{i} & =\left[\frac{h_{i i}}{p}\right] t_{i}^{2} \\
h_{i i} & =\left\{\begin{array}{l}
0.25 \text { with } h_{i i}=0.25 \\
0.50 \text { with } h_{i i}=0.50 \\
0.95 \text { with } h_{i i}=0.95
\end{array}\right.
\end{align*}
$$

Our recommendation $\hat{\sigma}^{2}=s_{I}^{2}, c=r$ and $\mathbf{M}=\mathbf{X}^{\prime} \mathbf{X}=\sigma^{2} \operatorname{cov}\left(\hat{\boldsymbol{\beta}}_{I}\right)^{-1}$

$$
\begin{aligned}
D_{I}\left(\hat{\beta}, \mathbf{X}^{\prime} \mathbf{X}, r s_{I}^{2}\right) & =\frac{\left(\hat{\boldsymbol{\beta}}_{I}-\hat{\boldsymbol{\beta}}\right)^{\prime} \mathbf{X}^{\prime} \mathbf{X}\left(\hat{\boldsymbol{\beta}}_{I}-\hat{\boldsymbol{\beta}}\right)}{r s_{I}^{2}} \\
& \sim F_{r}\left(t ; \lambda_{1}, \cdots, \lambda_{r} ; n-p-r\right)
\end{aligned}
$$

$\left\{\lambda_{1} \geq \cdots \geq \lambda_{r}>0\right\}$ are the ordered eigenvalues of $\mathbf{Z}\left(\mathbf{X}_{0}^{\prime} \mathbf{X}_{0}\right)^{-1} \mathbf{Z}^{\prime}$, the canonical subset leverages.

- D_{I} of Jensen and Ramirez (1998) (Gold Standard) Normalized Cook Statistic

$$
\begin{aligned}
\hat{\sigma}^{2}=s_{I}^{2}, c & =r, \text { and } \mathbf{M}=\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}-\left(\mathbf{X}_{0}^{\prime} \mathbf{X}_{0}\right)^{-1}\right)^{+}=\sigma^{2} \operatorname{cov}\left(\hat{\boldsymbol{\beta}}_{I}-\hat{\boldsymbol{\beta}}\right)^{+} \\
D_{I} & =\frac{\left(\hat{\boldsymbol{\beta}}_{I}-\hat{\boldsymbol{\beta}}\right)\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}-\left(\mathbf{X}_{0}^{\prime} \mathbf{X}_{0}\right)^{-1}\right)^{+}\left(\hat{\boldsymbol{\beta}}_{I}-\hat{\boldsymbol{\beta}}\right)}{r s_{I}^{2}} \\
D_{I} & =F_{I} \sim F_{r, n-p-r} \\
D_{i} & =t_{i}^{2}
\end{aligned}
$$

CONCLUSION:: All Group III statistics yield the same p-values when $r=1$: Jensen (1999, 2001) \# 11, 12, and 15, Jensen and Ramirez (1996) \# 11 and LaMotte (1999) \# 11.

For $r>1$, the p-values are different. Their distribution is now known.

Notation:
$\left\{\gamma_{1}^{2} \geq \cdots \geq \gamma_{r}^{2}\right\}$ are the ordered eigenvalues of $\mathbf{Z}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{Z}^{\prime}$
$\left\{\lambda_{1} \geq \cdots \geq \lambda_{r}\right\}$ are the ordered eigenvalues of $\mathbf{Z}\left(\mathbf{X}_{0}^{\prime} \mathbf{X}_{0}\right)^{-1} \mathbf{Z}^{\prime}$

$$
\begin{aligned}
0 & <\lambda_{i}=\gamma_{i}^{2} /\left(1+\gamma_{i}^{2}\right)=h_{i i}<1,1 \leq i \leq r \\
\gamma_{i}^{2} & =\left\{\begin{array}{l}
0.3333 \text { with } h_{i i}=0.25 \\
1.0000 \text { with } h_{i i}=0.50 \\
19.0000 \text { with } h_{i i}=0.95
\end{array}\right.
\end{aligned}
$$

SINGLE OUTLIER THEOREM (Jensen and Ramirez 1996): When $r=1$, the following tests are all equivalent.

$$
\begin{aligned}
\frac{\mathbf{y}_{i}-\hat{\mathbf{y}}_{(i)}}{s_{(i)} \sqrt{1+\mathbf{x}_{i}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i}^{\prime}}} & \sim t(n-p-1) \\
\frac{\mathbf{y}_{i}-\hat{\mathbf{y}}_{i}}{s_{(i)} \sqrt{1-\mathbf{x}_{i}\left(\mathbf{X}_{0}^{\prime} \mathbf{X}_{0}\right)^{-1} \mathbf{x}_{i}^{\prime}}} & \sim t(n-p-1) \\
F_{i} & \sim F(1, n-p-1) \\
D_{i}\left(\hat{\boldsymbol{\beta}}, \mathbf{X}_{0}^{\prime} \mathbf{X}_{0}, s_{(i)}^{2}\right) & \sim \gamma_{1}^{2} F(1, n-p-1) \\
D_{i}\left(\hat{\boldsymbol{\beta}}, \mathbf{X}^{\prime} \mathbf{X}, s_{(i)}^{2}\right) & \sim \lambda_{1} F(1, n-p-1) \\
D_{i}\left(\hat{\boldsymbol{\beta}}, \sigma^{2} \operatorname{cov}\left(\hat{\boldsymbol{\beta}}_{i}-\hat{\boldsymbol{\beta}}\right)^{+}, s_{(i)}^{2}\right) & \sim F(1, n-p-1)
\end{aligned}
$$

GENERALIZED F DISTRIBUTION (Jensen and Ramirez, 1998)

 Suppose that elements of $\mathbf{U}=\left[U_{1}, \cdots, U_{r}\right]^{\prime}$ are independent $\left\{N_{1}\left(\omega_{i}, 1\right)\right.$; $1 \leq i \leq r\}$ random variables; let $\left\{\alpha_{1}, \cdots, \alpha_{r}\right\}$ be non-increasing positive weights; and identify$$
T=\alpha_{1} U_{1}^{2}+\cdots \alpha_{r} U_{r}^{2}
$$

If $L(V)=\chi^{2}(\nu)$ independently of U, then the cdf of

$$
W=\frac{T / r}{V / \nu}
$$

is denoted by

$$
F_{r}\left(t ; \alpha_{1}, \cdots, \alpha_{r} ; \boldsymbol{\omega} ; \nu\right)
$$

THEOREM (Ramirez and Jensen (1991)) For $\boldsymbol{\omega}=\mathbf{0}$, the pdf of the central generalized F distribution $(T / r) /(V / \nu)=W$ has the representation in terms of central F distributions as

$$
\begin{equation*}
\sum_{i=0}^{\infty} \frac{c_{i}}{\delta} \frac{r}{r+2 i} f_{F}\left(\frac{r}{r+2 i} \frac{w}{\delta} ; r+2 i, \nu\right) \tag{16}
\end{equation*}
$$

with f_{F} as the pdf of $F\left(\nu_{1}, \nu_{2}\right)$, and whose coefficients $\left\{c_{i}\right\}$ are defined recursively with $0<\delta<\alpha_{r}$.

Ramirez (2000) gave the Fortran code for computing p-values for $F_{r}\left(t ; \alpha_{1}, \cdots, \alpha_{r} ; \nu\right)$.

Dunkl and Ramirez (2001) have developed a fast algorithm for computing the p-values for W without having to integrate the density function in terms of Lauricella $F_{D}^{(r)}$ functions.

STOCHASTIC BOUNDS (Jensen and Ramirez (1991)) for F_{r} are

$$
F_{r}\left(t ; \alpha_{1} ; \nu\right) \leq F_{r}\left(t ; \alpha_{1}, \cdots, \alpha_{r} ; \nu\right) \leq F_{r}\left(t ; \alpha^{*} ; \nu\right)
$$

with α^{*} the geometric mean of $\left\{\alpha_{1}, \cdots, \alpha_{r}\right\}$.

THEOREM (Jensen and Ramirez (200x)) For $\boldsymbol{\omega} \neq \mathbf{0}$, the pdf of the non-central generalized F distribution $(T / r) /(V / \nu)=W$ has the representation in terms of central F distributions as

$$
\sum_{i=0}^{\infty} \frac{c_{i}}{\delta} \frac{r}{r+2 i} f_{F}\left(\frac{r}{r+2 i} \frac{w}{\delta} ; r+2 i, \nu\right)
$$

with f_{F} as the pdf of $F\left(\nu_{1}, \nu_{2}\right)$, and whose coefficients $\left\{c_{i}\right\}$ are defined recursively with $0<\delta<\alpha_{r}$ and where $\left\{c_{i}\right\}$ are functions of $\boldsymbol{\omega}$.

NORMAL THEORY RESULTS (Jensen and Ramirez (1998)): If $L(\mathbf{Y})=N_{N}\left(\mathbf{X}_{0} \boldsymbol{\beta}, \sigma^{2} I_{n}\right)$, then with $\nu=n-p-r$

$$
D_{I}\left(\hat{\boldsymbol{\beta}}, \mathbf{X}_{0}^{\prime} \mathbf{X}_{0}, r s_{I}^{2}\right) \sim F_{r}\left(t ; \gamma_{1}^{2}, \cdots, \gamma_{r}^{2} ; n-p-r\right)
$$

where $\left\{\gamma_{1}^{2} \geq \cdots \geq \gamma_{r}^{2}\right\}$ are the ordered eigenvalues of $\mathbf{Z}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{Z}^{\prime}$;

$$
D_{I}\left(\hat{\boldsymbol{\beta}}, \mathbf{X}^{\prime} \mathbf{X}, r s_{I}^{2}\right) \sim F_{r}\left(t ; \lambda_{1}, \cdots, \lambda_{r} ; n-p-r\right)
$$

where $\left\{\lambda_{1} \geq \cdots \geq \lambda_{r}\right\}$ are the ordered eigenvalues of $\mathbf{Z}\left(\mathbf{X}_{0}^{\prime} \mathbf{X}_{0}\right)^{-1} \mathbf{Z}^{\prime}$ and $\lambda_{i}=\gamma_{i}^{2} /\left(1+\gamma_{i}^{2}\right)=h_{i i}, 1 \leq i \leq r$; and

$$
D_{I}\left(\hat{\boldsymbol{\beta}}, \sigma^{2} \operatorname{cov}\left(\hat{\boldsymbol{\beta}}_{I}-\hat{\boldsymbol{\beta}}\right)^{+}, r s_{I}^{2}\right) \sim F_{r}(t ; 1, \cdots, 1 ; n-k)
$$

JOINT OUTLIER RESULTS: When $r>1$, outliers can be tested with

$$
\begin{aligned}
F_{I} & \sim F_{r}(t ; 1, \cdots, 1 ; n-p-r) \\
D_{I}\left(\hat{\boldsymbol{\beta}}, \sigma^{2} \operatorname{cov}\left(\hat{\boldsymbol{\beta}}_{I}-\hat{\boldsymbol{\beta}}\right)^{+}, r s_{I}^{2}\right) & =D_{I} \sim F_{r}(t ; 1, \cdots, 1 ; n-p-r) \\
D_{I}\left(\hat{\boldsymbol{\beta}}, \mathbf{X}_{0}^{\prime} \mathbf{X}_{0}, r s_{I}^{2}\right) & \sim F_{r}\left(t ; \gamma_{1}^{2}, \cdots, \gamma_{r}^{2} ; n-p-r\right)(17) \\
D_{I}\left(\hat{\boldsymbol{\beta}}, \mathbf{X}^{\prime} \mathbf{X}, r s_{I}^{2}\right) & \sim F_{r}\left(t ; \lambda_{1}, \cdots, \lambda_{r} ; n-p-r\right)(18)
\end{aligned}
$$

The mean shift statistic F_{I} and the normalized Cook statistic D_{I} yield the same p-values. For the Cook-like statistics, we prefer (18) over (17) for computationally reasons, since the number of terms required in the series expansion for the cdf of $(T / r) /(V / \nu)$ is smaller. This number increases with the condition numbers, which satisfy $\gamma_{1}^{2} / \gamma_{r}^{2} \geq \lambda_{1} / \lambda_{r}$.

0.3 EXAMPLE

We use the Drill Data Set from Cook and Weisberg (1982, p. 149) with $n=31$ and $k=10$. With $r=1$, we find the influential rows (with $p<.025$) to be rows 9,28 , and row 31. The p-values are (necessarily) the same using $D_{i}\left(\hat{\boldsymbol{\beta}}, \mathbf{X}_{0}^{\prime} \mathbf{X}_{0}, s_{i}^{2}\right), D_{i}=D_{i}\left(\hat{\boldsymbol{\beta}}, \mathbf{X}^{\prime} \mathbf{X}, s_{(i)}^{2}\right)$, $D_{i}\left(\hat{\boldsymbol{\beta}}, \sigma^{2} \operatorname{cov}\left(\hat{\boldsymbol{\beta}}_{I}-\hat{\boldsymbol{\beta}}\right)^{+}, s_{(i)}^{2}\right)$, or $t_{i}($ RSTUDENT).

Row	$s_{(i)}^{2}$	D_{i}	λ_{i}	p-value	D_{i} / λ_{i}
9	.0182	7.485	.663	.0031	11.28
28	.0205	$\mathbf{2 . 9 5 3}$.376	.0110	$\mathbf{7 . 8 5}$
31	.0215	$\mathbf{3 . 5 8 2}$.550	.0190	$\mathbf{6 . 5 1}$
5	.0228	2.186	.439	.0366	5.02
26	.0237	1.763	.436	.0580	4.04
30	.0259	0.828	.404	.1677	2.05

With $r=2$, we find 39 influential pairs (with $p<.01$ and using the average of the p-bounds) using $D_{I}\left(\hat{\boldsymbol{\beta}}, \mathbf{X}_{0} \mathbf{X}_{0}, 2 s_{I}^{2}\right), 35$ pairs using $D_{I}\left(\hat{\boldsymbol{\beta}}, \mathbf{X}^{\prime} \mathbf{X}, 2 s_{I}^{2}\right)$, and 16 pairs (directly) using $D_{I}(\hat{\boldsymbol{\beta}}$, $\left.\sigma^{2} \operatorname{cov}\left(\hat{\boldsymbol{\beta}}_{I}-\hat{\boldsymbol{\beta}}\right)^{+}, 2 s_{I}^{2}\right)$. All contain rows from $\{9,28,31\}$ except for the pair $(5,26)$. For this pair using $D_{I}\left(\hat{\boldsymbol{\beta}}, \mathbf{X}^{\prime} \mathbf{X}, 2 s_{I}^{2}\right)$, we have

Rows	s_{I}^{2}	D_{I}	λ_{1}	λ_{2}	LB	p	UB
5,26	.0119	14.75	.654	.217	.000005	.000115	.000161

The p-values for this pair, using $D_{I}\left(\hat{\beta}, X_{0}^{\prime} X_{0}, 2 s_{I}^{2}\right), D_{I}\left(\hat{\beta}, X^{\prime} X\right.$,
$\left.2 s_{I}^{2}\right)$, and $D_{I}\left(\hat{\beta}, \sigma^{2} \operatorname{cov}\left(\hat{\beta}_{I}-\hat{\beta}\right)^{+}, 2 s_{I}^{2}\right)$:

Test	p-value	N
$D_{I}\left(\hat{\beta}, X_{0}^{\prime} X_{0}, 2 s_{I}^{2}\right)$.000129	50
$D_{I}\left(\hat{\beta}, X^{\prime} X, 2 s_{I}^{2}\right)$.000115	20
$D_{I}\left(\hat{\beta}, \sigma^{2} \operatorname{cov}\left(\hat{\beta}_{I}-\hat{\beta}\right)^{+}, 2 s_{I}^{2}\right)$.000161	1

0.3.1 Other Heuristics

We now consider joint outliers for the Intercountry Life-Cycle Savings Data from Belsley et al. (1980, p. 41). We will only consider pairs of observations with $I=\left\{i_{1}, i_{2}\right\}$. The extension to larger subsets is immediate. Belsley et al. (1980) used a number of different empirical procedures to identify 15 pairs of observations that may be influential. These procedures include MDFFIT (MD), COVRATIO (CR), RESRATIO (RR), MEWDFFIT (ME), Wilks' Λ statistic (WL), and the Andrews and Pregibon statistic (AP). Table I shows those pairs of observations are of note based on these criteria. The last column records the p-values from $D_{I}\left(\hat{\beta}, X_{0}^{\prime} X_{0}, 2 s_{I}^{2}\right)$. These empirical procedures do not agree with each other, nor do they detect the joints outliers which we are able to determine using D_{I} as an omnibus test of model fit under the mean shift and variance shift outlier model. Outliers are often influential, however not all influential subsets are outliers (see Barnett and Lewis (1994, p. 317)).

Table I: Multiple-Row Influence Using Empirical Procedures

Rows	MD	CR	RR	ME	WL	AP	p-value
34,46		$*$	$*$.001
33,46		$*$	$*$.001
23,46	$*$		$*$	$*$		$*$.007
19,23	$*$.030
47,49				$*$	$*$	$*$.081
7,46		$*$	$*$.143
24,49				$*$.146
33,49				$*$.161
37,49							.242
23,49					$*$.329
6,49							.339
46,49						$*$.381
44,49					$*$	$*$.420
21,49					$*$	$*$.438
6,44					$*$.699

$\operatorname{MDFFIT}(\mathrm{MD})$ (numerator of $D_{I}\left(\hat{\boldsymbol{\beta}}, \mathbf{X}^{\prime} \mathbf{X}, 2 s_{I}^{2}\right)$)

$$
\left(\hat{\boldsymbol{\beta}}_{I}-\hat{\boldsymbol{\beta}}\right)^{\prime} \mathbf{X}^{\prime} \mathbf{X}\left(\hat{\boldsymbol{\beta}}_{I}-\hat{\boldsymbol{\beta}}\right)
$$

COVRATIO (CR)

$$
C R_{(i)}=\frac{\left|s_{(i)}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right|}{\left|s^{2}\left(\mathbf{X}_{0}^{\prime} \mathbf{X}^{\prime}\right)^{-1}\right|}
$$

RESRATIO (RR) (same as the mean-shift statistic)

$$
F_{I}=\frac{\left((n-p) s^{2}-(n-p-r) s_{I}^{2}\right) / r}{s_{I}^{2}}
$$

MEWDFFIT (ME)

$$
M E=\sum_{i, j \in I} h_{i j} \frac{e_{i} e_{j}}{\left(1-h_{i}\right)\left(1-h_{j}\right)}
$$

Wilks' Λ statistic (WL)

$$
W L=1-\frac{n}{r(n-r)} \mathbf{1}^{\prime} \mathbf{Z}\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{1}
$$

Andrews and Pregibon (AP)

$$
A P_{I}=1-\frac{n-p-r}{n-p} \frac{s_{I}^{2}\left|\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right|}{s^{2}\left|\left(\mathbf{X}_{0}^{\prime} \mathbf{X}\right)^{-1}\right|}
$$

$0.4 \quad R$-Fisher distribution

Assumptions A.

A1. $E(\boldsymbol{\varepsilon})=0 \in \Re^{n-r}$ and $E\left(\boldsymbol{\varepsilon}_{I}\right)=\boldsymbol{\delta} \in \Re^{r}$;
A2. $V\left(\varepsilon_{0}\right)=\operatorname{Diag}\left(\sigma^{2}, \sigma_{1}^{2}\right)$; and
A3. $\mathcal{L}\left(\varepsilon, \varepsilon_{I}-\boldsymbol{\delta}\right)=N_{n}\left(\mathbf{0}, \operatorname{Diag}\left(\sigma^{2}, \sigma_{1}^{2}\right)\right)$.
This model allows for shifts in both location and scale at design points in \mathbf{Z}.

$$
\left[\begin{array}{l}
\mathbf{Y}_{1} \\
\mathbf{Y}_{2}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{X} \\
\mathbf{Z}
\end{array}\right] \boldsymbol{\beta}+\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{I}_{r}
\end{array}\right] \boldsymbol{\delta}+\left[\begin{array}{l}
\boldsymbol{\varepsilon} \\
\boldsymbol{\varepsilon}_{I}-\delta
\end{array}\right]
$$

With $\delta=0$ and $\kappa=\sigma_{1}^{2} / \sigma^{2}=1(\operatorname{Jensen}(1999,2001))$

$$
\begin{aligned}
F_{I} & =\frac{\mathbf{e}_{I}^{\prime}\left(\mathbf{I}_{r}-\mathbf{Z}\left(\mathbf{X}_{0}^{\prime} \mathbf{X}_{0}\right)^{-1} \mathbf{Z}^{\prime}\right)^{-1} \mathbf{e}_{I}}{r s_{I}^{2}}=\frac{\mathbf{e}_{I}^{\prime}\left(\mathbf{I}_{r}-\mathbf{H}_{I I}\right)^{-1} \mathbf{e}_{I}}{r s_{I}^{2}} \\
& =\frac{\left((n-p) s^{2}-(n-p-r) s_{I}^{2}\right) / r}{s_{I}^{2}} \sim F_{r, n-p-r}
\end{aligned}
$$

For the general model with $\delta \neq 0$ and $\kappa=\sigma_{1}^{2} / \sigma^{2}>1$, we have THEOREM (Jensen (1999) for $\kappa=1$ and Jensen and Ramirez (200x) for $\kappa \neq 1$) Consider the R-Fisher diagnostic F_{I} under Assumptions A; let $\left\{\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{r}>0\right\}$ comprise the canonical subset leverages (the eigenvalues of $\mathbf{H}_{I I}$); set $\kappa=\sigma_{1}^{2} / \sigma^{2} \geq 1$; let $\boldsymbol{\theta}=\mathbf{Q}^{\prime} \boldsymbol{\delta}$, such that $\mathbf{Q}^{\prime} \mathbf{H}_{I I} \mathbf{Q}=\operatorname{Diag}\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{r}\right)$; and identify $\nu=n-p-r$.
i) The $c d f$ of F_{I} is given by $F_{s}\left(w ; \alpha^{\prime} ; \omega^{\prime} ; \nu\right)$, with weights $\left\{\alpha_{i}=\right.$ $\left.\kappa-(\kappa-1) \lambda_{i} ; 1 \leq i \leq r\right\}$ satisfying $\left\{\alpha_{r} \geq \ldots \geq \alpha_{1} \geq 1\right\}$, and with location parameters $\left\{\omega_{i}=\theta_{i} / \sigma\left[\kappa+\lambda_{i} /\left(1-\lambda_{i}\right)\right]^{1 / 2} ; 1 \leq i \leq r\right\}$.
ii) Bounds for the $c d f \mathrm{~s}$ in terms of Fisher's distribution are given by

$$
\begin{equation*}
F\left(w / \alpha_{r} ; r, \nu, \lambda\right) \leq F_{s}\left(w ; \boldsymbol{\alpha}^{\prime} ; \boldsymbol{\omega}^{\prime} ; \nu\right) \leq F\left(w / \alpha^{*} ; r, \nu, \lambda\right) \tag{19}
\end{equation*}
$$

where $\lambda=\sum_{i=1}^{r} \theta_{i}^{2} / \sigma^{2}\left[\kappa+\lambda_{i} /\left(1-\lambda_{i}\right)\right]$ and $\alpha^{*}=\left(\alpha_{1} \cdots \alpha_{r}\right)^{1 / r}$ is the geometric mean.

0.4.1 Case Study

Data (Myers (1990)) regarding the administration of Bachelor Officers Quarters $(B O Q)$ were reported for sites at $n=25$ naval installations. Monthly man-hours (Y) were related linearly to average daily occupancy $\left(X_{1}\right)$, monthly number of check-ins $\left(X_{2}\right)$, weekly service desk operation in hours $\left(X_{3}\right)$, size of common use area $\left(X_{4}\right)$, number of building wings $\left(X_{5}\right)$, operational berthing capacity $\left(X_{6}\right)$, and number of rooms $\left(X_{7}\right)$. The data are reported in Myers (1990), p. 218 ff, together with detailed analyses using single-case deletion diagnostics. Subset deletion diagnostics are not reported there.

We focus on sites $\{15,20,21,23,24\}$, having individual leverages $\{0.5576,0.3663,0.0704,0.9885,0.8762\}$, their individual R-Student values exceeding the widely used ± 2 rule. Pairs of sites selected are $S_{1}=\{20,21\}, S_{2}=\{15,20\}$, and $S_{3}=\{23,24\}$, reflecting smaller, intermediate, and larger individual leverages.

Table II of Low, Medium, and High Leverages

		S_{1}			S_{2}			S_{3}	
		κ			κ			κ	
$\frac{1}{\sigma}$	1	2	3	1	2	3	1	2	3
1	.1573	.2703	.3592	.1240	.2045	.2759	.0551	.0634	.0716
1	.1573	$.2715(6)$	$.3606(6)$.1240	$.2061(6)$	$.2779(6)$.0551	$.0640(4)$	$.0734(5)$
1	.1573	.2987	.3999	.1240	.2237	.3072	.0551	.0723	.0907
2	.5088	.5501	.5836	.3776	.4293	.4707	.0707	.0789	.0869
2	.5088	$.5518(10)$	$.5848(9)$.3776	$.4327(9)$	$.4743(9)$.0707	$.0805(5)$	$.0904(6)$
2	.5088	.5828	.6231	.3776	.4551	.5058	.0707	.0893	.1085
3	.8631	.8262	.8099	.7199	.7063	.7041	.0981	.1057	.1133
3	.8631	$.8273(15)$	$.8105(13)$.7199	$.7100(13)$	$.7080(12)$.0981	$.1089(6)$	$.1195(7)$
3	.8631	.8472	.8364	.7199	.7290	.7339	.0981	.1185	.1389
4	.9852	.9620	.9424	.9319	.9007	.8801	.1388	.1451	.1514
4	.9852	$.9623(21)$	$.9426(18)$.9319	$.9028(18)$	$.8826(16)$.1388	$.1504(7)$	$.1613(8)$
4	.9852	.9688	.9534	.9319	.9123	.8971	.1388	.1609	.1823

0.4.2 Conclusions

The single-case deletion diagnostics of Groups I, II, and III are all equivalent. Moreover, the Group II subset deletion diagnostics and the Group III diagnostic D_{I} are all equivalent to the R-Fisher diagnostic F_{I}. These subset deletion diagnostics have been studied under outliers arising from shifts in both location and scale. In these circumstances the distribution of F_{I} has been shown to be a noncentral generalized F distribution. We have given series expansions for these distributions, as well as global error bounds for their partial sums. Bounds for the $c d f s$ of noncentral generalized F distributions also have been given in terms of the noncentral Fisher distributions.

The noncentral generalized F distributions have been used to compute the power for the diagnostic F_{I}, and thus for all equivalent diagnostics, under shifts in location and scale at selected subsets of the $B O Q$ data. These case studies demonstrate that subsets with large canonical leverages tend to associate with tests having low power, so that shifts in both location and scale may be masked at points of high leverages.

References

${ }^{[1]}$ Andrews, D. F. and Pregibon, D. (1978), Finding outliers that matter, J. Royal Statist. Soc. B 40, 85-93.
[2] Barnett, V. and Lewis, T. (1994). Outliers in Statistical Data. John Wiley and Sons, New York.
[3] Belsley, D. A., Kuh, E. and Welsch, R. E. (1980). Regression, Diagnostics: Identifying Influential Data and Sources of Collinearity. John Wiley and Sons, New York.
${ }^{[4]}$ Cook, R. D. and Weisberg, S. (1982). Residuals and Influence in Regression. Chapman and Hall.
[5] Dunkl, C. F. and Ramirez, D. E. (2001), Computation of the generalized F distribution, Australian and New Zealand Journal of Statistics, 43, 21-31.
[6] Jensen, D. R. and Ramirez, D. E. (1996), Computing the cdf of Cook's D_I statistic, In Proceedings of the 12th Symposium in Computational Statistics, Barcelona, Spain, 1996, Prat, A. and Ripoll.
${ }^{[7]}$ LaMotte, L. R. (1999), Collapsibility hypotheses and diagnostic bounds in regression analysis, Metrika 50, 109-119.
[8] Jensen, D. R. (1998), The use of standardized diagnostics in regression, Research Report R079, Department of Statistics, Virginia Polytechnic Institute and State University, October 1998.
[9] Jensen, D. R. (1999), Properties of selected subset diagnostics in regression, Research Report R080, Department of Statistics, Virginia Polytechnic Institute and State University, March 1999.
[10] Jensen, D. R. (2000), The use of Standardized diagnostics in regression, Metrika, 52, 213-223.
${ }_{[11]}$ Jensen, D. R. (2001), Properties of selected subset diagnostics in regression, Statist. Probab. Letters, 51, 377-388.
[12] Jensen, D. R. and Ramirez, D. E. (1991), Misspecified T^2 tests, I. Location and scale, Comm. Stat. Theory Meth. A 20, No. 1, 249-259
[13] Jensen, D. R. and Ramirez, D. E. (1998), Some exact properties of Cook's D_I, Handbook of Statistics, Vol. 16, Balakrishnan, N. and Rao, C. R., eds., pp. 387-402 Elsevier Science Publishers B. V.
[14] Jensen, D. R. and Ramirez, D. E. (200x), Detecting mean-shift outliers via distances, Journal of Statistical Computation and Simulation.
[15] Jensen, D. R. and Ramirez, D. E. (200x), Detecting shifts in location and scale in regression, South African Statistical Journal.
[16] Myers, R. H. (1990). Classical and Modern Regression with Applications, Second ed. PWS-Kent Publishing Company, Boston, MA.
[17] Ramirez, D E. (2000), The generalized F distribution, Journal of Statistical Software 5(1), 1-13.
[18] Ramirez, D. E. and Jensen, D. R. (1991). Misspecified T^{2} tests. II. Series expansions. Commun. Statist. Simula. 20: 97-108.

