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0.1 INTRODUCTION

Consider the model

{Yi = β0 + β1Xi1 + · · ·+ βkXik + εi (1 ≤ i ≤ n)}
relating a response Yi to fixed regressors {Xi1,Xi2, . . . ,Xik} through
p = k + 1 unknown parameters β =[β0,β1, . . . ,βk]

0.
THE FULL MODEL Y = X0β + ε is partitioned based on the

proposed outliers {Yi : i ∈ I} of cardinality r. Y1

Y2

=
 X
Z

β+
 ε1
ε2

 ((n− r)× 1)
(r × 1)

with least-squares estimator β̂ (p× 1). All matrices are assume to
be of full rank.

THE REDUCED MODEL Y1= Xβ + ε1 with the proposed

outliers deleted

Y1= Xβ + ε1

with least-squares estimator β̂I.
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0.2 STANDARD OUTLIER DIAGNOSTICS

0.2.1 GROUP I DIAGNOSTICS (t-like statistics)

• STUDENTIZED DELETED RESIDUAL TEST (Gold Stan-
dard)

yi − ŷ(i)i
s(i)

r
1 + xi(X

0X)−1x0i
=

yi − ŷ(i)i
s(i)

r
1 + hii/(1− hii)

∼ t(n− p− 1)
(1)

• THE EXTERNALLY STUDENTIZEDRESIDUALS (R−STUDENT
statistic)

Easy to compute

ti =
yi − ŷi

s(i)
r
1− xi(X0

0X0)
−1x0i

=
yi − ŷi

s(i)
√
1− hii ∼ t(n− p− 1)(2)

• DFFITS

DFFITSi =
byi − ŷ(i)i
s(i)
√
hii

DFFITSi = ti

vuuut hii
1− hiivuuut hii

1− hii =

0.5774 with hii = 0.25

1.0000 with hii = 0.50

4.3589 with hii = 0.95
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• DFBETAS

DFBETAS(i)j =
cβj − cβ(i)j

s(i)

s
(X0

0X0)
−1
jj

(3)

DFBETAS(i)j = ti


[(X0

0X0)
−1X0]jis

(X0
0X0)

−1
jj (1− hii)


USEFUL RELATIONSHIPS

cβ−cβ(i) = (X0
0X0)

−1xi(yi − byi)
1− hii

(yi − byi)2
1− hii = (n− p)s2 − (n− p− 1)s2(i)

STANDARD RECOMMENDATION (Myers (1990)): “As we
indicated earlier, these two measures (DFFITS and DFBETAS)
are t-like. Surely any analyst who is familiar with the concept
of a standard error knows that if DFBETAS

(i)j
exceeds 2.0 in

magnitude, the influence of the data point in unquestioned.”
Note: Y−dY or cβ− cβ(i) are OUTLIER measures while hii and

1/(1− hii) are measures of INFLUENCE.
CONCLUSION: All Group I diagnostics yield the same p-values:

Jensen and Ramirez (1996) # 1 and 2, Jensen (1998, 2000) # 2, 3
and 3 and LaMotte (1999) # 1, 2, 3 and 3
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0.2.2 GROUP II DIAGNOSTICS (heuristics based on s2I/s
2)

The ratio s2I/s
2 is the Neyman-Pearson likelihood ratio test statis-

tics.

• R-FISHER parallels the R-Student statistic (Jensen (1999,

2001) (Gold Standard)

FI =
e0I(Ir − Z(X0

0X0)
−1Z0)−1eI

rs2I
=
e0I(Ir −HII)

−1eI
rs2I

(4)

=
((n− p)s2 − (n− p− r)s2I)/r

s2I
∼ Fr,n−p−r

where

X(X0X)X0= H =

 H00 H0I

HI0 HII



• MEAN SHIFT OUTLIER MODEL is based on Y1

Y2

=
 X
Z

β+
 0
Ir

 δ+
 ε1
ε2



Outliers can be checked jointly with model building.

Outliers are tested based on the null hypothesis H0 : δ = 0 with

FI =
(RSS(H0)−RSS(Ha))/r
RSS(Ha)/(n− p− r) (5)

=
((n− p)s2 − (n− p− r)s2I)/r

s2I
∼ Fr,n−p−r

With

F(i) = t
2
i
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• OUTI (r ≥ 1) Barnett and Lewis (1984)

OUTI = 1− s
2
I

s2
(6)

− 1

n− p− r ≤ OUTI =
r(FI − 1)

rFI + (n− p− r) ≤ 1

• COVRATIO (r ≥ 1)

CR(i) =
|s2(i)(X0X)−1|
|s2(X0

0X0)−1| =
1

1− hii

s2(i)
s2


p

(7)

0 ≤ CRi =

Ã
n−p

t2i+(n−p−1)
!p

1− hii ≤
µ
n−p
n−p−1

¶p
1− hii

1

1− hii =

1.3333 with hii = 0.25

2.0000 with hii = 0.50

20.0000 with hii = 0.95

(8)

• APi of Andrews and Pregibon (1978) (r ≥ 1)

APi = 1− n− p− 1
n− p

s2(i)|(X0X)−1|
s2|(X0

0X)−1|
(9)

hii ≤ APi =
t2i + (n− p− 1)hii
t2i + (n− p− 1)

≤ 1
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• FV ARATIO of Belsley, Kuh and Welsch (1980) (r ≥ 1)

FVi =

 1

1− hii
 s2(i)
s2

(10)

0 ≤ FVi = (n− p)/(t
2
i + n− p− 1)
1− hii ≤ (n− p)/(n− p− 1)

1− hii
1

1− hii =

1.3333 with hii = 0.25

2.0000 with hii = 0.50

20.0000 with hii = 0.95

USEFUL RELATIONSHIPS

cβ−cβI = (X0
0X0)

−1Z0(I −HII)−1(YI − cYI)
(YI − cYI)0(I −HII)−1(YI − cYI) = (n− p)s2 − (n− p− 1)s2I
CONCLUSION: All Group II statistics yield the same p-values:
Jensen (1999, 2001) # 4, 6, 7, 9, 10, Jensen and Ramirez (1998)
# 5 and LaMotte (1999) # 7
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0.2.3 GROUP III DIAGNOSTICS (Distance measures)

• COOK’S DI STATISTICS (1977) take the form

DI(β̂,M, cσ̂
2) =

(β̂I−β̂)
0
M(β̂I−β̂)
cσ̂2

where M(p × p) is non-negative definite and σ̂2 is some esti-
mator for the variance σ2 and c is a user-defined constant.

Standard Choices

• Ci of Cook (1977): σ̂2 = s2, c = p, and M = X
0
0X0 =

σ2cov(β̂)−1

Ci =
(β̂(i)−β̂)X

0
0X0(β̂(i)−β̂)
ps2

=
|cY(i) − cY |2
ps2

(11)

Ci =

(n− p)hii
p(1− hii)

 t2i
t2i + (n− p− 1)

hii
1− hii =


0.3333 with hii = 0.25

1.0000 with hii = 0.50

19.0000 with hii = 0.95

• WKi ofWelsch and Kuh (1977): σ̂2 = s2I, c = p andM = X
0
0X0 =

σ2cov(β̂)−1

WKi =
(β̂(i)−β̂)X

0
0X0(β̂(i)−β̂)
ps2(i)

=
|cY(i) − cY |2
ps2(i)

(12)

WKi =

 hii
p(1− hii)

 t2i
hii

1− hii =

0.3333 with hii = 0.25

1.0000 with hii = 0.50

19.0000 with hii = 0.95
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Our recommendation

DI(β̂,X
0
0X0, rs

2
I) =

(β̂I−β̂)
0
X
0
0X0(β̂I−β̂)
rs2I

(13)

∼ Fr(t; γ
2
1 , · · · , γ2r ;n− p− r) (14)

{γ21 ≥ · · · ≥ γ2r > 0} are the ordered eigenvalues of Z(X
0
X)−1Z

0

STANDARD RECOMMENDATION: “Cook’sD ... is an F -like
statistic with degrees of freedom p and n− p.”
The critical value has been suggested by Cook to be Fp,n−p(0.50).

• Wi of Welsch (1982): σ̂
2 = s2I, c = p, and M = X

0
X =

σ2cov(β̂I)
−1

Wi =
(β̂(i)−β̂)X

0
X(β̂(i)−β̂)

ps2(i)
(15)

Wi =

hii
p

 t2i

hii =


0.25 with hii = 0.25

0.50 with hii = 0.50

0.95 with hii = 0.95

Our recommendation σ̂2 = s2I, c = r andM = X
0
X = σ2cov(β̂I)

−1

DI(β̂,X
0
X, rs2I) =

(β̂I−β̂)
0
X
0
X(β̂I−β̂)

rs2I
∼ Fr(t;λ1, · · · ,λr;n− p− r)

{λ1 ≥ · · · ≥ λr > 0} are the ordered eigenvalues ofZ(X
0
0X0)

−1Z
0
,

the canonical subset leverages.
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• DI of Jensen and Ramirez (1998) (Gold Standard) Normalized
Cook Statistic

σ̂2 = s2I, c = r, andM = ((X
0
X)−1−(X0

0X0)
−1)+ = σ2cov(β̂I−β̂)+

DI =
(β̂

I
− β̂)((X0

X)−1−(X0
0X0)

−1)+(β̂
I
−β̂)

rs2
I

DI = FI ∼ Fr,n−p−r
Di = t2i

CONCLUSION:: All Group III statistics yield the same p-values
when r = 1 : Jensen (1999, 2001) # 11, 12, and 15, Jensen and
Ramirez (1996) # 11 and LaMotte (1999) # 11.
For r > 1, the p-values are different. Their distribution is now

known.
Notation:
{γ21 ≥ · · · ≥ γ2r} are the ordered eigenvalues of Z(X

0
X)−1Z

0

{λ1 ≥ · · · ≥ λr} are the ordered eigenvalues of Z(X
0
0X0)

−1Z
0

0 < λi = γ
2
i /(1 + γ

2
i ) = hii < 1, 1 ≤ i ≤ r

γ2i =


0.3333 with hii = 0.25

1.0000 with hii = 0.50

19.0000 with hii = 0.95
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SINGLE OUTLIER THEOREM (Jensen and Ramirez 1996):

When r = 1, the following tests are all equivalent.

yi−ŷ(i)
s(i)

r
1 + xi(X

0X)−1x0i
∼ t(n− p− 1)

yi−ŷi
s(i)

r
1− xi(X0

0X0)
−1x0i

∼ t(n− p− 1)

Fi ∼ F (1, n− p− 1)
Di(β̂,X

0
0X0, s

2
(i)) ∼ γ21F (1, n− p− 1)

Di(β̂,X
0
X, s2(i)) ∼ λ1F (1, n− p− 1)

Di(β̂,σ
2cov(β̂i−β̂)+, s2(i)) ∼ F (1, n− p− 1)
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GENERALIZED F DISTRIBUTION (Jensen and Ramirez, 1998)

Suppose that elements ofU = [U1, · · · , Ur]0 are independent {N1(ωi, 1);
1 ≤ i ≤ r} random variables; let {α1, · · · ,αr} be non-increasing
positive weights; and identify

T = α1U
2
1 + · · ·αrU 2r

If L(V ) = χ2(ν) independently of U , then the cdf of

W =
T/r

V/ν

is denoted by

Fr(t;α1, · · · ,αr;ω; ν)

THEOREM (Ramirez and Jensen (1991)) For ω = 0, the pdf of

the central generalized F distribution (T/r)/(V/ν) = W has the

representation in terms of central F distributions as

∞X
i=0

ci
δ

r

r + 2i
fF (

r

r + 2i

w

δ
; r + 2i, ν) (16)

with fF as the pdf of F (ν1, ν2), and whose coefficients {ci} are
defined recursively with 0 < δ < αr.
Ramirez (2000) gave the Fortran code for computing p-values

for Fr(t;α1, · · · ,αr; ν).
Dunkl and Ramirez (2001) have developed a fast algorithm for

computing the p-values forW without having to integrate the den-

sity function in terms of Lauricella F
(r)
D functions.

STOCHASTIC BOUNDS (Jensen and Ramirez (1991)) for Fr
are

Fr(t;α1; ν) ≤ Fr(t;α1, · · · ,αr; ν) ≤ Fr(t;α∗; ν)
with α∗ the geometric mean of {α1, · · · ,αr}.
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THEOREM (Jensen and Ramirez (200x)) For ω 6= 0, the pdf of
the non-central generalized F distribution (T/r)/(V/ν) = W has

the representation in terms of central F distributions as

∞X
i=0

ci
δ

r

r + 2i
fF (

r

r + 2i

w

δ
; r + 2i, ν)

with fF as the pdf of F (ν1, ν2), and whose coefficients {ci} are
defined recursively with 0 < δ < αr and where {ci} are functions
of ω.

NORMAL THEORY RESULTS (Jensen and Ramirez (1998)):

If L(Y) = NN(X0β,σ
2In), then with ν = n− p− r

DI(β̂,X
0
0X0, rs

2
I) ∼ Fr(t; γ21 , · · · , γ2r ;n− p− r)

where {γ21 ≥ · · · ≥ γ2r} are the ordered eigenvalues ofZ(X
0
X)−1Z

0
;

DI(β̂,X
0
X, rs2I) ∼ Fr(t;λ1, · · · ,λr;n− p− r)

where {λ1 ≥ · · · ≥ λr} are the ordered eigenvalues ofZ(X
0
0X0)

−1Z
0

and λi = γ
2
i /(1 + γ

2
i ) = hii, 1 ≤ i ≤ r; and

DI(β̂,σ
2cov(β̂I−β̂)+, rs2I) ∼ Fr(t; 1, · · · , 1;n− k)
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JOINT OUTLIER RESULTS: When r > 1, outliers can be

tested with

FI ∼ Fr(t; 1, · · · , 1;n− p− r)
DI(β̂,σ

2cov(β̂I−β̂)+, rs2I) = DI ∼ Fr(t; 1, · · · , 1;n− p− r)
DI(β̂,X

0
0X0, rs

2
I) ∼ Fr(t; γ

2
1 , · · · , γ2r ;n− p− r) (17)

DI(β̂,X
0
X, rs2I) ∼ Fr(t;λ1, · · · ,λr;n− p− r) (18)

The mean shift statistic FI and the normalized Cook statistic
DI yield the same p-values. For the Cook-like statistics, we prefer
(18) over (17) for computationally reasons, since the number of
terms required in the series expansion for the cdf of (T/r)/(V/ν)
is smaller. This number increases with the condition numbers,
which satisfy γ21/γ

2
r ≥ λ1/λr.
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0.3 EXAMPLE

We use the Drill Data Set from Cook and Weisberg (1982, p. 149)

with n = 31 and k = 10. With r = 1, we find the influential rows

(with p < .025) to be rows 9, 28, and row 31. The p-values are (nec-

essarily) the same using Di(β̂,X
0
0X0, s

2
i ), Di = Di(β̂,X

0
X, s2(i)),

Di(β̂,σ
2cov(β̂I−β̂)+, s2(i)), or ti (RSTUDENT).

Row s2(i) Di λi p-value Di/λi
9 .0182 7.485 .663 .0031 11.28

28 .0205 2.953 .376 .0110 7.85

31 .0215 3.582 .550 .0190 6.51

5 .0228 2.186 .439 .0366 5.02

26 .0237 1.763 .436 .0580 4.04

30 .0259 0.828 .404 .1677 2.05

With r = 2, we find 39 influential pairs (with p < .01 and

using the average of the p-bounds) using DI(β̂,X
0
0X0, 2s

2
I), 35

pairs using DI(β̂,X
0
X, 2s2I), and 16 pairs (directly) using DI(β̂,

σ2cov(β̂I−β̂)+, 2s2I). All contain rows from {9,28,31} except for
the pair (5,26). For this pair using DI(β̂,X

0
X, 2s2I), we have

Rows s2I DI λ1 λ2 LB p UB

5,26 .0119 14.75 .654 .217 .000005 .000115 .000161

The p-values for this pair, using DI(β̂,X
0
0X0, 2s

2
I), DI(β̂,X

0
X,
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2s2I), and DI(β̂,σ
2cov(β̂I − β̂)+, 2s2I):

Test p-value N

DI(β̂,X
0
0X0, 2s

2
I) .000129 50

DI(β̂,X
0
X, 2s2I) .000115 20

DI(β̂,σ
2cov(β̂I − β̂)+, 2s2I) .000161 1

0.3.1 Other Heuristics

We now consider joint outliers for the Intercountry Life-Cycle Sav-
ings Data from Belsley et al. (1980, p. 41). We will only consider
pairs of observations with I = {i1, i2}. The extension to larger sub-
sets is immediate. Belsley et al. (1980) used a number of different
empirical procedures to identify 15 pairs of observations that may
be influential. These procedures include MDFFIT (MD), COVRA-
TIO (CR), RESRATIO (RR), MEWDFFIT (ME), Wilks’ Λ statis-
tic (WL), and the Andrews and Pregibon statistic (AP). Table I
shows those pairs of observations are of note based on these crite-
ria. The last column records the p-values from DI(β̂,X

0
0X0, 2s

2
I).

These empirical procedures do not agree with each other, nor do
they detect the joints outliers which we are able to determine using
DI as an omnibus test of model fit under the mean shift and vari-
ance shift outlier model. Outliers are often influential, however not
all influential subsets are outliers (see Barnett and Lewis (1994, p.
317)).
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Table I: Multiple-Row Influence Using Empirical
Procedures

Rows MD CR RR ME WL AP p-value

34,46 * * .001

33,46 * * .001

23,46 * * * * .007

19,23 * .030

47,49 * * * .081

7,46 * * .143

24,49 * .146

33,49 * .161

37,49 .242

23,49 * .329

6,49 .339

46,49 * .381

44,49 * * .420

21,49 * * .438

6,44 * .699

MDFFIT (MD) (numerator of DI(β̂,X
0
X, 2s2I))

(β̂I−β̂)
0
X
0
X(β̂I−β̂)

COVRATIO (CR)

CR(i) =
|s2(i)(X0X)−1|
|s2(X0

0X0)−1|
RESRATIO (RR) (same as the mean-shift statistic)

FI =
((n− p)s2 − (n− p− r)s2I)/r

s2I
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MEWDFFIT (ME)

ME =
X
i,j∈I

hij
eiej

(1− hi)(1− hj)

Wilks’ Λ statistic (WL)

WL = 1− n

r(n− r)1
0Z(Z0Z)−1Z01

Andrews and Pregibon (AP)

API = 1− n− p− r
n− p

s2I|(X0X)−1|
s2|(X0

0X)−1|
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0.4 R-Fisher distribution

Assumptions A.
A1. E(ε) = 0 ∈ <n−r and E(εI) = δ ∈ <r;
A2. V (ε0) = Diag(σ

2,σ21); and
A3. L(ε, εI−δ) = Nn(0,Diag(σ2,σ21)).
This model allows for shifts in both location and scale at design

points in Z.  Y1

Y2

=
 X
Z

β+
 0
Ir

 δ+
 ε
εI − δ


With δ = 0 and κ = σ21/σ

2 = 1 (Jensen (1999, 2001))

FI =
e0I(Ir − Z(X0

0X0)
−1Z0)−1eI

rs2I
=
e0I(Ir −HII)

−1eI
rs2I

=
((n− p)s2 − (n− p− r)s2I)/r

s2I
∼ Fr,n−p−r
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For the general model with δ 6= 0 and κ = σ21/σ2 > 1, we have
THEOREM (Jensen (1999) for κ = 1 and Jensen and Ramirez

(200x) for κ 6= 1) Consider the R-Fisher diagnostic FI under As-
sumptions A; let {λ1 ≥ λ2 ≥ . . . ≥ λr > 0} comprise the canoni-
cal subset leverages (the eigenvalues ofHII); set κ= σ

2
1/σ

2 ≥ 1; let
θ =Q0δ, such thatQ0HIIQ = Diag(λ1,λ2, · · · ,λr); and identify
ν = n− p− r.
i) The cdf of FI is given by Fs(w;α

0;ω0; ν), with weights {αi =
κ−(κ−1)λi; 1 ≤ i ≤ r} satisfying {αr ≥ . . . ≥ α1 ≥ 1}, and with
location parameters {ωi = θi/σ[κ+ λi/(1− λi)]1/2; 1 ≤ i ≤ r}.
ii) Bounds for the cdf’s in terms of Fisher’s distribution are given

by

F (w/αr; r, ν,λ) ≤ Fs(w;α
0;ω0; ν) ≤ F (w/α∗; r, ν,λ)

(19)

where λ =
Pr
i=1 θ

2
i /σ

2[κ + λi/(1 − λi)] and α∗ = (α1 · · ·αr)1/r is
the geometric mean.
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0.4.1 Case Study

Data (Myers (1990)) regarding the administration of Bachelor Of-
ficers Quarters (BOQ) were reported for sites at n = 25 naval
installations. Monthly man-hours (Y ) were related linearly to av-
erage daily occupancy (X1), monthly number of check-ins (X2),
weekly service desk operation in hours (X3), size of common use
area (X4), number of building wings (X5), operational berthing
capacity (X6), and number of rooms (X7). The data are reported
in Myers (1990), p. 218 ff, together with detailed analyses using
single-case deletion diagnostics. Subset deletion diagnostics are not
reported there.
We focus on sites {15, 20, 21, 23, 24}, having individual leverages

{0.5576, 0.3663, 0.0704, 0.9885, 0.8762}, their individualR-Student
values exceeding the widely used ±2 rule. Pairs of sites selected
are S1 = {20, 21}, S2 = {15, 20}, and S3 = {23, 24}, reflecting
smaller, intermediate, and larger individual leverages.
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Table II of Low, Medium, and High Leverages
S1 S2 S3
κ κ κ

1
σ 1 2 3 1 2 3 1 2 3

1 .1573 .2703 .3592 .1240 .2045 .2759 .0551 .0634 .0716

1 .1573 .2715(6) .3606(6) .1240 .2061(6) .2779(6) .0551 .0640(4) .0734(5)

1 .1573 .2987 .3999 .1240 .2237 .3072 .0551 .0723 .0907

2 .5088 .5501 .5836 .3776 .4293 .4707 .0707 .0789 .0869

2 .5088 .5518(10) .5848(9) .3776 .4327(9) .4743(9) .0707 .0805(5) .0904(6)

2 .5088 .5828 .6231 .3776 .4551 .5058 .0707 .0893 .1085

3 .8631 .8262 .8099 .7199 .7063 .7041 .0981 .1057 .1133

3 .8631 .8273(15) .8105(13) .7199 .7100(13) .7080(12) .0981 .1089(6) .1195(7)

3 .8631 .8472 .8364 .7199 .7290 .7339 .0981 .1185 .1389

4 .9852 .9620 .9424 .9319 .9007 .8801 .1388 .1451 .1514

4 .9852 .9623(21) .9426(18) .9319 .9028(18) .8826(16) .1388 .1504(7) .1613(8)

4 .9852 .9688 .9534 .9319 .9123 .8971 .1388 .1609 .1823
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0.4.2 Conclusions

The single-case deletion diagnostics of Groups I, II, and III are all
equivalent. Moreover, the Group II subset deletion diagnostics and
the Group III diagnostic DI are all equivalent to the R-Fisher di-
agnostic FI. These subset deletion diagnostics have been studied
under outliers arising from shifts in both location and scale. In
these circumstances the distribution of FI has been shown to be
a noncentral generalized F distribution. We have given series ex-
pansions for these distributions, as well as global error bounds for
their partial sums. Bounds for the cdfs of noncentral generalized F
distributions also have been given in terms of the noncentral Fisher
distributions.
The noncentral generalized F distributions have been used to

compute the power for the diagnostic FI, and thus for all equivalent
diagnostics, under shifts in location and scale at selected subsets of
the BOQ data. These case studies demonstrate that subsets with
large canonical leverages tend to associate with tests having low
power, so that shifts in both location and scale may be masked at
points of high leverages.
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