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ABSTRACT
Lower and upper spectral bounds are known for matricesX′X(k × k) under
Loewner [Uber monotone matrixfunktionen. Math Z. 1934;38:177–216]
order, as are corresponding bounds for the factor X(n × k) under an
induced order. Least upper bounds for the latter give designs with dom-
inating Fisher Information, with consequent gains in linear inference; see
Jensen DR, Ramirez DE [Enhanced design efficiency through least upper
bounds. J Stat Comput Simul. 2016;86:1798–1817]. The present study
examines properties on ordering the singular values of a design matrix
usingmajorization as inMarshall andOlkin [Inequalities: theory ofmajoriza-
tion and its applications. New York: Academic Press; 1979]. The principal
focus includes conditioning through condition numbers, variance inflation
factors, and lengths and efficiencies of OLS solutions. Functions mono-
tone under the induced order are identified; equivalence classes of designs
are displayed preserving a dispersion matrix or its eigenvalues; a minimal
element Xm(n × k) is characterized; as are equivalence classes of (A,D, E)-
optimal designs showing the latter not to be unique. Algorithms to achieve
enhanced designs are given on modifying a single design, or on amalga-
mating two designs, with essential consequences in linear inference. A col-
lateral procedure, based onmixtures of Fisher information matrices, serves
effectively to ameliorate the ill effects of near collinearity. Case studies illus-
trate gains to be made in practice, to include a substantial improvement in
the analysis of classically ill-conditioned data from the literature.

ARTICLE HISTORY
Received 12 July 2016
Accepted 27 January 2017

KEYWORDS
Conditioning; ordering by
majorization; monotone
functions; efficiency indices;
design alterations;
non-uniquely optimal
designs

AMS SUBJECT
CLASSIFICATION
06A06; 15A45; 62J05

1. Introduction

Extremal problems pervade much of applied probability and statistics, to include maximal, minimal,
and optimal solutions as the common currency. Such solutions often shed new light on the structure
of the system at hand. Specifically, given positive-definite (k × k) matrices X′X under Loewner [1]
order, lower and upper spectral bounds are known, as are lower and upper singular bounds for the
(n × k) factor matrix X under an induced order. Details are found in [2,3], and are combined in [4]
to the following effects. Given first-order designs (X,Z), their upper singular bound XM serves to
enhance both X and Z, its Fisher information matrix dominating both, thus ordering essentials in
Gauss–Markov inference. Such gains proceed on isolating elements from Z complementary to those
of X, and combining these into XM .

The present study induces yet another invariant order on the space Fn×k of design matrices, but
instead ordering their singular values through majorization as in [5]. This ordering serves in turn to
gauge the degree of regularity or smoothness of a model. Consequences are drawn in regard to the
conditioning of linear systems, as well as effects on essentials of Gauss–Markov inferences. Majoriza-
tion has been invoked in earlier studies seeking designs optimal under various criteria or having other
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stated characteristics. Selected examples include works of Chan and Li [6], Bhaumik [7], Zhang et al.
[8], and Pericleous and Kounias [9], and numerous references cited in those studies. These typically
entail majorization of eigenvalues of the Fisher information matrix or the dispersion matrix of OLS
solutions. An exception is Zhang et al. [8] in using the majorization of pairwise coincidence vectors.
The present study appears to be the first to undertake the majorization of the singular values of a
design matrix. In consequence, instead of a single design optimal under a given criterion, as often
sought in the literature, our methods enable the identification of equivalence classes of designs, each
optimal under (A,D,E)-criteria. An outline follows as organized into three essential parts.

Part I seeks an order on the space (Fτn×k,�S) on ordering singular values bymajorization, together
with informative equivalence classes. These are of independent interest as contributions to the struc-
tures of linear spaces. Part II draws on Part I as it applies to experimental design, to Gauss–Markov
inferences, and to the conditioning of linear regression systems. Procedures for amalgamating designs
X and Z give their singular minorant as the greatest lower bound, namelyXm = X ∧ Z, or a variant as
a mixture of their Fisher information matrices, both giving enhanced designs. Part III illustrates the
findings through selected case studies, to include reducing by orders of magnitude the conditioning
diagnostics in notoriously ill-conditioned data from the literature. Supporting topics are deferred to
Appendices in order to expedite the presentation.

2. Preliminaries

Conventions for notation follow. Denote by R
k the Euclidean k-space ; by R

k+ its positive orthant; by
Fn×k the real (n × k)matrices of rank k ≤ n; by Sk the real symmetric (k × k)matrices, with S

0
k, S

+
k ,

and Dk as their positive semidefinite, positive definite, and diagonal varieties. The transpose, trace,
and determinant of A are A′, tr(A), and |A| where defined; and special arrays include the unit vector
1k = [1, . . . , 1]′ ∈ R

k, the unit matrix Ik, and a typical diagonalmatrixDα = Diag(α1, . . . ,αk) ∈ Dk.
Transformation groups acting on R

k include the general linear group Gk and the real orthogonal
groupOk; and elementsH ofHn×k are semi-orthogonal in Fn×k such thatHH′ is idempotent of rank
k andH′H = Ik. The spectral decomposition A = ∑k

i=1 αiqiq
′
i ∈ S

+
k yields its symmetric root A1/2 =∑k

i=1 α
1/2
i qiq

′
i. The singular value decomposition (SVD) ofX ∈ Fn×k isX = ∑k

i=1 κipiq
′
i = PDκQ′ in

which P = [p1, . . . , pk] ∈ Hn×k contains the left singular vectors,Q = [q1, . . . , qk] ∈ Ok contains the
right singular vectors, and elements of Dκ = Diag(κ1, . . . , κk) comprise the ordered singular values
{κ1≥· · ·≥κk > 0} of X. Denote by tr†(X) = tr(Dκ ) = ∑k

i=1 κi. Moreover, σ(X) = κ takes X into
its ordered singular values; and F

τ
n×k = {X ∈ Fn×k : tr†(X) = τ } serves as reference in much that

follows.
Standard usage refers to independent, identically distributed (iid) variates, their cumulative dis-

tribution function (cdf) and L(Y) as the distribution of Y , with Nk(μ,�) as the Gaussian law on R
k

having the mean E(Y) = μ and dispersion matrix V(Y) = �.

3. Part I. Fundamentals

This section establishes essentials of invariant orderings for matrix arrays through majorizing their
singular values. It expands substantially on the material in Section 3.3 of Jensen [2]. Developments
in this section are of interest independently of applications to be offered subsequently.

3.1. Ordered spaces

Invoke the order axioms: (i) complete, (ii) antisymmetric, (iii) reflexive, and (iv) transitive; then the
objectA in (A,�0) is said to be linearly ordered if the binary relation �0 satisfies (i)–(iv); is partially
ordered if (ii)–(iv); and is preordered if (iii)–(iv). A partially ordered set is a lower semi-lattice if for
elements (x, y) in A, there is a greatest lower bound (glb = x ∧ y) in A; an upper semi-lattice if there



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 1829

is a least upper bound (lub = x ∨ y) in A; and a lattice if both a lower and upper semi-lattice. Such
spaces are central to this study.

(i)Majorization. In particular, take the simplex Ck = {x ∈ R
k+ | x1≥· · ·≥xk} and, for (x, y) ∈ Ck,

suppose that

{x1 + x2 + · · · + xt ≥ y1 + y2 + · · · + yt ; 1 ≤ t ≤ k − 1}
{x1 + x2 + · · · + xk = y1 + y2 + · · · + yk}.

Then x is said to majorize y, to be denoted as x � y, and related as xP = y through a doubly
stochasticmatrixP. Alternatively, ymaybe recovered from x through a finite number ofT-transforms;
see [5]. We have the following.

Definition 3.1: (i) Let C
τ
k = {x ∈ Ck | ∑k

i=1 xi = τ } together with the ordering (Cτk ,�). The func-
tions monotone increasing under � are called Schur convex (S-convex ), or S-concave if decreasing.

(ii) That (Cτk ,�) is a lattice is shown by construction in [3], in Equation (2.1) for κ ∧ ω and
Equation (2.2) for κ ∨ ω in (Cτk ,�).

(ii) Invariant orderings .The basic tenets follow. Consider a spaceX togetherwith a groupG of one-
to-one transformations acting onX . To induce an invariant ordering onX , such ordering necessarily
holds for a maximal invariant M(X) under G, taking X ∈ X → M(X) ∈ M. Accordingly, if the latter
is partially ordered as (M,�M ), the ordering (X ,�χ ) to be induced on X is defined together with
essentials as follows.

Proposition 3.1: Given X ∈ X ; a group G acting one-to-one on X ; and a maximal invariant M(X)
taking X into the ordered set (M,�M ). Then an ordering (X ,�χ ) is induced by (M,�M ) on stipulating
that X1 �χ X2 in (X ,�χ ) if and only if M(X1) �M M(X2) in (M,�M ).

(i) If (M,�M ) is partially ordered, then (X ,�χ ) is preordered and is antisymmetric up to equivalence
under G.

(ii) A real function f is monotone on (X ,�χ ) if and only if f is a composition of the type f (X) =
ψ(M(X)) = [ψ ◦ M](X). with ψ a function in the class� of all functions monotone on (M,�M ).

Proof: See [2]. �

(iii) The ordered set (Fτn×k,�S). In particular, an ordering on (Fτn×k, ·) is to be invariant under left
and right unitary operators {X→UXV ′}. From the singular decompositionX = PDκQ′, the singular
values κ = [κ1, . . . , κk] comprise a maximal invariant as shown in [10]. Take σ(X) = [κ1, . . . , κk]
and σ(Z) = [ω1, . . . ,ωk] to be their singular-value mappings. Accordingly, (Fτn×k,�S) is ordered by
majorization of singular values (hence�S) as in the following, where the unitarily invariant condition
numbers cφ are identified in Appendix A.2.

Theorem 3.1: Take X�SZ in (Fτn×k,�S) to hold if and only if σ(X) � σ(Z) in (Cτk ,�).

(i) Since (Cτk ,�) is partially ordered, then (Fτn×k,�S) is preordered and is antisymmetric up to
equivalence under {X → UXV ′}.

(ii) The functions monotone on (Fτn×k,�S) correspond one-to-one with the Schur functions monotone
on (Cτk ,�), on viewing f (·) on (Fτn×k,�S) as the composition f (X) = ψ(σ(X)) = [ψ ◦ σ ](X)
with σ(X) ∈ (Cτk ,�) and for some S-monotone function ψ on (Cτk ,�).

(iii) The condition numbers cφ on (Fτn×k,�S) of Appendix A.2 are Schur convex, i.e. if X �S Z, then
cφ(X) ≥ cφ(Z), so that Z is better conditioned than X as gauged by every unitarily invariant
condition number {cφ(·);φ ∈ �}.
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Proof: Conclusions (i) and (ii) follow directly on specializing Proposition 3.1, as sketched in
Section 3.3 of Jensen [2]. From Appendix A.2, we have for {cφ(·);φ ∈ �} that

cφ(X) =‖X‖φ‖X†‖φ= φ(κ1, . . . , κk)φ(κ−1
1 , κ−1

2 , . . . , κ−1
k ),

where X† is the Moore–Penrose inverse and {φ∈�} comprise the symmetric gauge functions on
R
k. The Schur convexity of cφ(X) follows on applying Lemma 3.3 of Marshall and Olkin [11], to the

effect that if a � b on (Cτk ,�), then (a)φ(b1, . . . , bk) ≤ φ(a1, . . . , ak) and (b)φ(b−1
1 , b−1

2 , . . . , b−1
k ) ≤

φ(a−1
1 , a−1

2 , . . . , a−1
k ), to give conclusion (iii). �

(iv) Ordered and extremal elements. We seek maximal and minimal elements in (Fτn×k,�S). To
these ends take κ̄ = τ/k, κ̄ = [κ̄ , . . . , κ̄] ∈ (Cτk ,�), and Dκ̄ = Diag(κ̄ , . . . , κ̄); and let πκ be a per-
mutation of the elements of κ . Recall forH ∈ Hn×k thatHH′ is idempotent of rank k andH′H = Ik,
andOk is the real orthogonal group. Next consider the following.

Definition 3.2: Ensembles of matrix expansions in Fn×k of note are

SDH = {X = LDκQ′ | L ∈ Hn×k}; SDO
H

= {X = LDκR′ | (L,R) ∈ (Hn×k,Ok)};
SDπκ = {X = LDπκR′ | (L,R) ∈ (Hn×k,Ok)}; SDκ̄ = {X = LDκ̄R′; (L,R) ∈ (Hn×k,Ok)}.

Remark 3.1: From Appendix Lemma A.1, these matrices all are in the form of singular decomposi-
tions.

In regard to the notions of minimal, and of lower and upper elements in (Fτn×k,�S), a first look
applies Theorem 3.1 to the following effect. Begin with X = PDκQ′ and Z = P1DωQ′

1 such that nei-
ther κ � ω nor ω � κ . That (Cτk ,�) is a lattice is shown by construction in [3], in Equation (2.1) for
κ ∧ ω and Equation (2.2) for and κ ∨ ω in (Cτk ,�), so that {κ ∧ ω � (κ ,ω) � κ ∨ ω}. Define

 = {θ : κ ∧ ω � θ � κ ∨ ω} ⊂ C
τ
k . (1)

Then we have the following, where Dθ = Diag(θ1, . . . , θk), Dκ∧ω = Diag(κ ∧ ω), and Dκ∨ω =
Diag(κ ∨ ω).

Theorem3.2: TakeX=PDQ′ as the SVD forX ∈ Fn×k; allowD to vary; identifyXφ = PDφQ′ forφ ∈
(Cτk ,�); and let F = X′X. For (κ ,ω) ∈ (Cτk ,�), let Dκ∧ω = Diag(κ ∧ ω) and Dκ∨ω = Diag(κ ∨ ω),
and Xκ∧ω = PDκ∧ωQ′ and Xκ∨ω = PDκ∨ωQ′. Then

(i) Bounds on Xθ = PDθQ′ are

Xκ∧ω �S Xθ �S Xκ∨ω, {θ ∈ C
τ
k : κ ∧ ω � θ � κ ∨ ω}, (2)

where Xκ∧ω is the singular minorant, and Xκ∨ω the singular majorant, of {Xθ ; θ ∈ }.
(ii) The vector κ̄ = [κ̄ , . . . , κ̄] is uniquely minimal in (Cτk ,�), in that κ̄ is majorized by every element

ω ∈ (Cτk ,�).
(iii) The ordering Xω�SXκ̄ in (F

τ
n×k,�S) holds for every ω ∈ (Cτk ,�), so that Xκ̄ itself is minimal in

(Fτn×k,�S).
(iv) Xκ̄ is not uniquely minimal in (Fτn×k,�S); instead, SDκ̄ is an equivalence class of minima.
(v) SDH is an equivalence class preserving F = X′X such that, for Z ∈ SDH, it follows that Z′Z ≡ F.

Proof: (i) Clearly {κ ∧ ω � θ � κ ∨ ω} by construction. Conclusion (i) follows from the equivalence
of the orderings (Cτk ,�) and (Fτn×k,�S), together with the definitions of glb and lub in (Cτk ,�).
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(ii) Suppose instead that κ̄ � ω for some ω ∈ (Cτk ,�). Then κ̄ ≥ ω1, and the successive inequal-
ities {tκ̄ ≥ ω1 + · · · + ωt} hold for {1 ≤ t ≤ k − 1}. On the other hand, κ̄ ≤ ωi for some i in order
that

∑k
i=1 ωi = τ . But such ω cannot belong to the ordered simplex C

τ
k , giving conclusion (ii) by

contradiction.
(iii) That Xκ̄ is minimal in (Fτn×k,�S) follows directly from Theorem 3.1.
(iv) Take Z = LDκ̄R′ ∈ SDκ̄ for some (L,R) ∈ (Hn×k,Ok), or equivalently, Z = Zκ̄ . Apply con-

clusion (iii) again for Zκ̄ , so that SDκ̄ contains equivalent minima independently of L and R.
(v) Take X = PDκQ′ as reference, and Z = LDκQ′ ∈ SDH. Then F = X′X = QD2

κQ′ = Z′Z holds
independently of the choice for L. �

Remark 3.2: In correspondence with conclusion (ii), observe that κM = [τ , 0, . . . , 0] is maximal in
(Cτk ,�). However, this at best is of marginal interest here in that XM = PDiag(κM)Q′ has unit rank.

4. Part II. Efficiency and conditioning in linear inference

This portion of our study is designed to draw from the foundations of Part I with special reference to
linear statistical inference, to include further derivations as needed. Details follow.

4.1. Themodels

Models {Y = β01n + Xβ + ε} and themodelmatrixX0 = [1n,X] with intercept are considered, tak-
ing the columns ofX to be centred about theirmeans. The Fisher informationmatrix is F0 = X′

0X0 =
Diag(n,X′X); and theOLS solutions are [β̂0, β̂

′
] with β̂0 = Ȳ and β̂ = (X′X)−1X′Y . Clearly,X serves

as a design matrix and, from the special structure here, it suffices to focus on F = X′X as the Fisher
informationmatrix for β , and its inverse as the dispersionmatrix V(β̂) = � = (X′X)−1, exclusive of
β0. These are subject to the following.

Assumptions.

A1: E(ε) = 0 and V(ε) = σ 2In;
A2: L(ε) = Nn(0, σ 2In).

Remark 4.1: In much that follows it suffices to take σ 2 = 1; otherwise, σ 2 �= 1 may be reinstated as
needed.

4.2. Efficiency indices

It is instructive to survey design efficiency criteria Cr as in Table 1, often employed in design evalua-
tion including Cr-optimal designs. In wide usage are {A,D,E} as the trace, determinant, and largest
eigenvalue of �, as in [13]. Determinants of historical note include the correlation determinant |C|
from� as the scatter coefficient of Frisch [14], and the generalized variance |�| ofWilks [15]. To study
local power in the analysis of variance, Wald [16] first considered E-efficiencies, but opted instead
for D-efficiencies. Standard references are Federov [17], Silvey [18], and Pukelsheim [19], as well as
universal optimality as surveyed recently in [20].

That vector efficiencies are multidimensional in concept is noted in [21]. Accordingly, Kiefer
[22] advocated that designs be screened through multiple criteria. Scalar criteria as summarized in
Table 1 are sorted into Group I depending on the eigenvalues of �, and Group II depending other-
wise on � itself. Corresponding efficiency indices are available for subsets of parameters. See [23],
for example. Regarding D-efficiency, recall {(β̂ − β)′X′X(β̂ − β) ≤ cα} as confidence ellipsoids for
β having volumes proportional to D1/2. Special properties of determinants support a connection
between the D-efficiency for β , and the subset efficiencies D1 for β1 and D2 for β2 in the partitioned
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Table 1. Efficiency criteria Cr for design X having the Fisher information matrix X′X and V(β̂) = � = (X′X)−1, with eigenvalues
λ(�) = [λ1 ≥ · · · ≥ λk], and withminimization as the operation yielding Cr-optimal designs.

Criterion Group Description Comments

A I tr(�) A : Sum of Var(β̂i) for elements of β̂

D I |�| D1/2 :∝ Vol{(β̂ − β)′�−1(β̂ − β) ≤ cα}
E I λ1(�) E : Maximal variance of c′β̂ , |c| = 1

MV II max{Var(β̂i); 1 ≤ i ≤ k} MV : Maximal variance of elements of β̂

T−1 II 1/tr(X′X) T : tr(Fisher information matrix)

c II Var(c′β̂) c′β : A distinguished linear function

W(X) I
kk
∏k

i=1(1/κ
2
i )

[
∑k

i=1(1/κ
2
i )]

k
W: Mauchly’s [12] sphericity criterion

form β ′ = [β ′
1,β

′
2]. Specifically, D = D1D2

∏r
i=1(1 − ρ2i ), where r is the minimum subset size and∏r

i=1(1 − ρ2i ) is the alienation coefficient of Hotelling [24]. See [25]. Here, Mauchly’s [12] criterion
W(X) serves to gauge the non-sphericity of contours of the Gaussian density of β̂ , taking the value
W = 1.0 when spherical andW< 1.0 otherwise.

4.3. Design efficiencies

We draw next on the foundations of Part I as they bear on topics in linear inference. Recall
Definition 3.2 and the ensembles SDH, SDO

H
, and SDπκ .

Theorem 4.1: Consider X = PDκQ′ as reference in (Fτn×k,�S), together with F = X′X as the Fisher
informationmatrix , the OLS solutions β̂ , their dispersionmatrix V(β̂) = � = F−1, and its eigenvalues
λ(�) = [λ1 ≥ · · · ≥ λk].

(i) SDH is an equivalence class having F and � matrices identical to those of X = PDκQ′.
(ii) All matrices in SDO

H
and SDπκ have eigenvalues λ(�) identical to those of X = PDκQ′.

(iii) The Group I criteria of Table 1 are indistinguishable for all designs in SDO
H
and SDπκ .

(iv) The Group II criteria of Table 1 are indistinguishable for all designs in SDH.

Proof: Conclusion (i) follows since F = QD2
κQ′ and � = QD−2

κ Q′ are both independent of the
choice for L. For X ∈ SDO

H
we have � = RD−2

κ R′ independently of L, with reciprocal eigenvalues
[1/κ2k ≥ . . . ≥ 1/κ21 ] since R is orthogonal. Similarly, for X ∈ SDπκ and F = RD2

πκR′, its eigenval-
ues are squares of a permutation πκ of the singular values of X, and λ(�) are reciprocals of these as
asserted in conclusion (ii). Conclusions (iii) and (iv) follow from (i) and (ii) and the definitions of the
Group I and Group II criteria. �

It remains to examine the ordering (Fτn×k,�S) as it bears on the conditioning ofOLS systems, and
on properties of ensuing Gauss–Markov procedures. We have the following.

Theorem 4.2: Consider matrices (X,Z) ∈ (Fτn×k,�S), together with invariant functions taking
F
τ
n×k → R

1; in particular, the condition numbers cφ(X), the inverse operators�(X) = |�(X)|,�(X) =
tr(�(X)), and the eigenvalues λ(�(X)) = [λ1 ≥ . . . ≥ λk]. Then

(i) The inverse determinant operator X → �(X) on (Fτn×k,�S) is Schur convex , i.e. if X �S Z, then
�(X) ≥ �(Z).

(ii) The inverse trace operator X → �(X) is Schur convex on (Fτn×k,�S), i.e. if X �S Z, then �(X) ≥
�(Z).
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(iii) The inverse extremal eigenvalues X → λ1(�(X)) and X → λk(�(X)) are, respectively, Schur
convex and Schur concave on (Fτn×k,�S), i.e. if X �S Z, then λ1(�(X)) ≥ λ1(�(Z)) and
λk(�(X)) ≤ λk(�(Z)).

(iv) Considered as functions on (Fτn×k,�S), the (A,D,E)-efficiency indices for �(X) are minimized at
Xκ̄ = PDκ̄Q′. Accordingly, the ensemble SDκ̄ of Definition 3.2 comprises an equivalence class of
(A,D,E)-optimal designs.

(v) For k= 2 Mauchly’s criterion W(X) is Schur concave on (Fτn×k,�S), i.e. if X �S Z, then W(X) ≤
W(Z) and the Gaussian contours of β̂(X) are less spherical than β̂(Z).

Proof: For reference let X = PDκQ′ and Z = P1DωQ′
1. Objects to be ordered in (Fτn×k,�S) are

invariant under left and right unitary operators X → UXV ′, thus depending on a maximal invari-
ant. To continue, denote a generic function on R

k+ as g(u) = g(u1, . . . , uk), and its partial derivatives
as {g(i)(u) = ∂g(u)/∂ui; 1 ≤ i ≤ k}. On examining (ui − uj)[g(i)(u)− g(j)(u)] in reference to con-
clusion (i), we have g(u) = ∏k

i=1(1/u
2
i ). Since g(u) is symmetric, it suffices to consider the case

(i, j) = (1, 2):

(u1 − u2)[g(1)(u)− g(2)(u)] = 2(u1 − u2)2V/u31u
3
2 > 0, (3)

with V = ∏k
i=3(1/u

2
i ). The Schur convexity of g(u) = ∏k

i=1(1/u
2
i ), and thus conclusion (i), now

follow from Theorem A.4 of Marshall and Olkin [5, p.57]. To continue, the Schur convexity of
tr(�(X)) = ∑k

i=1(1/κ
2
i ) follows from Proposition C.1 of Marshall and Olkin [5, p.64], since κi →

(1/κ2i ) is convex, to give conclusion (ii). For conclusion (iii), �(X) = QD−2
κ Q′ with eigenvalues

[1/κ2k ≥ · · · ≥ 1/κ21 ], and �(Z) = QD−2
ω Q′ with eigenvalues [1/ω2

k ≥ · · · ≥ 1/ω2
1]. Conclusion (iii)

follows as claimed since κ � ω implies κ1 ≥ ω1 and κk ≤ ωk. Conclusion (iv) follows from Conclu-
sions (i)–(iii) together with Theorem 3.2(iii). Conclusion (v) follows as in (i) on evaluating Schur’s
condition

(u1 − u2)[W(1)(u)− W(2)(u)] = −8u1u2(u1 − u2)2(u2 + u1)2

(u22 + u21)3
< 0 (4)

to complete the proof for (v). A counter example to (v) for k= 3 is given in Appendix 3. �

Illustration 4.1: Suppose that k = 3, Dκ = Diag(3, 2, 1); next modify X = PDκQ′ → Z = PDκ̄Q′
withDκ̄ = Diag(2, 2, 2). ThenZ has enhanced conditioning by Theorem4.2. Specifically, tr(�(X)) =
[1 + 1

4 + 1
9 ] = 1.36111 and tr(�(Z)) = 3 × ( 14 ) = 0.7500; |�(X)| = 1 × 1

4 × 1
9 = 0.029778 and

|�(Z)| = ( 14 )
3 = 0.015625; and similarly λ1(�(X)) = 1.00 and λ1(�(Z)) = 0.25. Moreover, PDκ̄Q′

is (A,D,E)-optimal by Theorem 4.2(iv). These conclusions hold for allX ∈ F6n×3 having any n, k = 3,
and τ = 6, independently of the choice for (P,Q).

4.4. Informationmixtures

A further approach to ill-conditioning in {Y = β01n + Xβ + ε}, with X = PDκQ′, is to visualize a
Fisher information matrix as a weighted average. To these ends, we again focus on Xβ , and we adopt
the following convention for sums of diagonal matrices.

Definition 4.1: Let Da = Diag(a1, . . . , ak) and Db = Diag(b1, . . . , bk). By (Da + Db)
1/2 is meant

the matrix Diag((a1 + b1)1/2, . . . , (ak + bk)1/2).
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To continue, extend the notion of Fisher information X → FI(X) = X′X to include

FI(Xt) = Q[(1 − t)D2
κ + tD2

κ̄ ]Q
′; t ∈ [0, 1];

Xt = P[(1 − t)D2
κ + tD2

κ̄ ]
1/2Q′; t ∈ [0, 1];

Xt = PDiag([(1 − t)κ2i + tκ̄2]1/2; 1 ≤i≤k)Q′
(5)

offering the continuum {Xt ; t ∈ [ 0, 1]} as prospects for improved conditioning. Recall at t= 1 that
X1 = PDκ̄Q′ = Xκ̄ is minimal, so that X is drawn towards the minimal Xκ̄ through Xt as t increases
in [0, 1].

Remark 4.2: This is an innovation on surrogate regression (SR), where Diag((κ2i + c)1/2) in SR to
be replaced by Diag((1 − t)κ2i + tκ̄2)1/2) to give Xt .

The referenced SR has been studied in detail in [26], in comparison with ridge regression (RR)
and OLS. Contrary to published claims that versions of RR ‘act more like an orthogonal system’, it
was shown that RR typically exhibits erratic divergence from orthogonality as the ridge scalar evolves,
often reverting back to OLS in the limit. In contrast, SR solutions converge monotonically to those
from orthogonal systems.

Accordingly, we examine properties of {Xt ; t ∈ [ 0, 1]} corresponding to those for Xk in [26], in
comparison with OLS. Let β̂ t = β̂(Xt) = (XtXt)

−1X′
tY ; observe that β̂t is biased for t> 0; note that

V(β̂t) = σ 2�t with �t = (XtXt)
−1, and recall that biased estimators typically are assessed by their

mean square error (MSE) at E(β̂t) = β0, namely,

MSE(β̂t) = tr(V(β̂t))+ (β − β0)
′(β − β0).

Essentials are

E(β̂t)− β = [(XtXt)
−1X′

tX − Ik]β ,

V(β̂ t) = σ 2�t = σ 2Q[(1 − t)D2
κ + tD2

κ̄ ]
−1Q′,

‖ E(β̂t − β ‖2 = β ′Q[(1 − t)D2
κ + tD2

κ̄ ]
−1/2(D2

κ)
1/2 − Ik]2Q′β ,

MSE(β̂ t) =
k∑

i=1

σ 2

(1 − t)κ2i + tκ̄2
+

k∑
i=1

θ2i

⎡⎣ κi√
(1 − t)κ2i + tκ̄2

− 1

⎤⎦2

, (6)

where the squared bias in the second term on the right of Equation (6) is expressed in terms of the
canonical parameters θ = Q′β .

To continue, in order to track properties of {Xt ; t ∈ [0, 1], it is critical to examine the manner in
which MSE(β̂ t) evolves with t, recalling that MSE(0) = σ 2tr(X′X)−1, the dispersion matrix of the
OLS solution β̂t at t= 0. In Section 5.3, we modify Xt to assure that MSE(β̂t) is decreasing at t = 0.

5. Part III. Case studies: enhanced designs

We seek to illustrate earlier developments, specifically, to modify a given design, or to construct new
designs, so as to achieve enhanced design capabilities.

5.1. Case 1: equivalent designs

Regarding {Y = β01n + Xβ + ε}, take X0 = [1n,X] with X′ as the first three rows of Table A1,
Appendix 2, to include also its singular vectors (P′,Q). To continue, constructX1 = PDiag(κ3, κ2, κ1)
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Table 2. Variances ofOLS solutions; eigenvalues of thedispersionmatrix	 ∈ {�0,
0,�0} for thedesigns
{X,X1,Xκ̄ }; and A, D, and E efficiencies for these designs.

Design characteristics

Design X X1 Xκ̄ X X1 Xκ̄
Estimates Variances Eigenvalues of 	

β̂0 0.12500 0.12500 0.12500 3.53636 3.53636 0.12500
β̂1 1.38170 1.83546 0.21629 0.22694 0.22694 0.21629
β̂2 0.69002 0.26120 0.21629 0.12500 0.12500 0.21629
β̂3 1.76012 1.73518 0.21629 0.06854 0.06854 0.21629

Diagnostic A D E

�0 3.95684 0.00688 3.53636

0 3.95684 0.00688 3.53636
�0 0.77387 0.00126 0.21629

Q′ ∈ SDπκ in the terminology of Definition 3.2, together with Xκ̄ = PDκ̄Q′ ∈ SDκ̄ as in
Definition 3.2, with Dκ̄ = Diag(κ̄ , κ̄ , κ̄) and κ̄ = 2.1503, giving both X1 and Xκ̄ as reported in
Table A1.

Essentials of the output are reported in Table 2, where (�0,
0,�0) refer to the full Fisher
information matrix for each of the models [1n,X], [1n,X1], and [1n,Xκ̄ ], respectively, i.e. �0 =
Diag(1/n, (X′X)−1). Clearly, (�0,
0,�0) differ, their diagonals reported as variances. Nonetheless,
as X and X1 belong to SDπκ , they have common eigenvalues by Theorem 4.1(ii), and thus identical
(A,D,E)-efficiencies as asserted in Theorem 4.1(iii) and as seen in Table 2.

Noting that {X,X1,Xκ̄} all belong to (Fτn×3,�S), with τ = κ1 + κ2 + κ3 = 6.4508 and n= 8, it
follows thatXκ̄ is (A,D,E)-optimal for all matrices {X = LDR′; (L,R) ∈ (Hn×3,O3)}whose singular
values sum to 6.4508 by Theorem 4.2(iv), and for any n.

Remark 5.1: Despite their genesis, the designs (X,X1) are clearly disparate. Nonetheless, neither can
be distinguished using the Group I criteria of Table 1. If information regarding β2 is deemed critical,
a choice between X and X1 would opt for X1 in view of the variances Var(β̂2(X1)) = 0.26120σ 2 and
Var(β̂2(X)) = 0.69002σ 2.

5.2. Case 2: Nonunique optimality

We revisit claims for ‘variance optimality’ in Example 7.2 of Myers and Montgomery [27, p.285] in
n= 8 experimental runs and k= 3 regressors. This represents a 1

2 fraction of a 23 factorial design,
replicated. The centred X in [1n,X] is transposed into the first three rows of Table 3. As before take
X = PDκQ′. The authors assert that

‘This design is “variance optimal” for the model ŷ = β0 + β1x1 + β2x2 + β3x3. That is, all coeffi-
cients in the above model have minimum variance over all designs with sample size n= 8’.

To proceed, construct Z = LDκQ′ as in Table 3, taking L as listed. Direct computations show that
V(β̂(X)) = V(β̂(Z)) = (σ 2/8)I3, so that both distributions are isotropic, with Mauchly’s [12] value
W = 1. We infer that X = Xκ̄ with κ̄ = √

8 and � = (σ 2/8)I3. Theorem 2(iii) gives Xκ̄ as minimal
in (Fτn×k,�S), but not uniquely so as in Theorem 3.2(iv). In fact, returning to Definition 3.2, we have
shown that SDκ̄ = {X = LDκ̄R′; (L,R) ∈ (Hn×k,Ok)} is an equivalence class comprising all minima
in (Fτn×k,�S). Indeed, that Z in Table 3 is a member of this class is seen on taking L ∈ Hn×k as in
Table 3, together with R = Q ∈ Ok from the singular decomposition of X.

In short, there are uncountably many designs in SDκ̄ , found on varying (L,R), all having identical
‘minimum variance’ among designs ‘with sample size n= 8’. Moreover, such designs are indistin-
guishable under the design criteria of Table 1. In consequence, the ‘variance optimal’ designs, having
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Table 3. DesignmatrixX as Example 7.2 of Myers andMontgomery [27]; L as alternative toP; and the derivedmatrixZ = LDκQ′ ;
all of orders (8 × 3).

Design X′
1.0000 1.0000 −1.0000 −1.0000 −1.0000 −1.0000 1.0000 1.0000
−1.0000 −1.0000 1.0000 1.0000 −1.0000 −1.0000 1.0000 1.0000
−1.0000 −1.0000 −1.0000 −1.0000 1.0000 1.0000 1.0000 1.0000

Design Z′ = [LDκQ′]′
1.4142 −1.4142 −1.4142 1.4142 0.0000 0.0000 0.0000 0.0000
1.4142 −1.4142 1.4142 −1.4142 0.0000 0.0000 0.0000 0.0000
−1.4142 −1.4142 1.4142 1.4142 0.0000 0.0000 0.0000 0.0000

L′ in lieu of P′
0.5000 0.5000 −0.5000 −0.5000 0.0000 0.0000 0.0000 0.0000
0.5000 −0.5000 0.5000 −0.5000 0.0000 0.0000 0.0000 0.0000
0.5000 −0.5000 −0.5000 0.5000 0.0000 0.0000 0.0000 0.0000

identical design characteristics and hallmarks of conditioning, comprise an equivalence class in
(Fn×k,�S).

Further comparisons between X and Z may be drawn. The use of center runs often is advocated,
whereas X has none, there are four center runs in Z, thus three degrees of freedom for ‘pure error’. In
essence, all empirical evidence, initially distributed among the eight rows ofX, has been redistributed
into the four non-center runs of Z.

It is clear that equi-optimal designs having further attractive features may be constructed, for
example, having two center runs. In this case, essential information contained in X would be redis-
tributed to six points in the newly constructedZ1, as were redistributed fromX to the four non-center
runs of Z.

5.3. Case 3: Hospital manpower

We revisit the Hospital Manpower data of Myers [28, p.132], itself notoriously ill-conditioned, and
often reexamined in the literature for this reason. Again take {Y = β01n + Xβ + ε}. This study seeks
to ameliorate the ills of ill-conditioning, to include variance inflation factors (VIFs), condition num-
bers,OLS solutions β̂ having excessive lengths and variances, and relatedmatters. Here, the condition
number {c1(M);M ∈ S

+
k } is the ratio of its largest to smallest eigenvalue, and the VIFs are computed

as the diagonals of the inverse of the correlation matrix of the scaled and centred regressors. We
expressly apply the tools of Section 4.4, constructing {Xt ; t ∈ [0, 1]} as in Equation (5).

The Hospital Manpower data have n= 17 runs and k= 5 regressors, with condition number c1 =
3.904 × 1010 as the ratio of the largest to smallest eigenvalues of the Fisher information matrix X′X.
From Appendix A.2, these are squares of the condition numbers cφ(X) of Definition A.3, on taking
φ(x) = max |xi| inDefinitionA.2. Near singularity holds, with ρ = 0.9999 as the correlation between
the first and third columns of the data matrix. Taking this matrix into its centred form X(17 × 5), as
prescribed by Belsley [29] to improve conditioning, gives c1 = 8.517 × 108, together with VIFs for
[β̂1, . . . , β̂5] as [9597.57, 7.94, 8933.09, 23.29, 4.28] under OLS. Even these are grossly in excess: A
widely adopted threshold value is {VIF(i) ≤ 10.0} for data with acceptable conditioning. Accordingly,
we choose Xt0 with t0 = 0.000295 in order that max{VIF(i); 1≤i≤5} = 10. This is a decrease, in
orders of magnitude, from the starting maximal VIF of 9597.57. The value t0 was found using the
Maple software package.

If the singular values for Xt in Equation (5) have the term κ̄2 replaced by κ2 then we have an
alternate designXt0 with t0 = 0.0000702. For both designs, the values in Tables 4 and 5 agree to a least
three significant digits. For this alternative design, Appendix 4 shows that MSE(β̂t) is decreasing at
t= 0 and so satisfies the Admissibility Condition. In a forthcoming paper, we will compare various
mixture estimators.
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Table 4. Modified parameter estimates β̂(t)with t0 = 0.0000702.

t β̂1(t) β̂2(t) β̂3(t) β̂4(t) β̂5(t)

0.00 −15.8517 0.0559 1.5896 −4.2187 −394.3141
0.2t0 −3.7550 0.0731 0.9414 0.6549 −8.9341
0.4t0 −2.6476 0.0735 0.9053 0.5329 −6.3195
0.6t0 −2.1567 0.0738 0.8895 0.4614 −5.1605
0.8t0 −1.8640 0.0739 0.8801 0.4130 −4.4693
t0 −1.6643 0.0741 0.8737 0.3775 −3.9976

Table 5. Design criteria for Xt with t0 = 0.0000702, to include the squared lengths ‖β̂(t)‖2, the condition
numbers c1(Mt)withMt = X′

tXt , the maximal VIFs, the correlations ρ(Y , Ŷ t), and MSE(β̂ t).

t ‖β̂(t)‖2 c1(Mt) max{VIF(i)} ρ(Y , Ŷ t) MSE(β̂ t)

0.00 155,755.2257 8.517×108 9597.5708 0.9954 52,845.14
0.2t0 95.2388 3.528×105 26.2453 0.9935 49.13
0.4t0 48.0545 1.764×105 16.2575 0.9934 26.63
0.6t0 32.2911 1.176×105 12.8172 0.9934 18.57
0.8t0 24.4003 8.823×104 11.0646 0.9934 14.38
t0 19.6625 7.058×104 10.0000 0.9934 11.80

It remains to examine further consequences of taking Xt0 in lieu of X. Our revised estimators
use the modified moment matrix in solving {X′

tXtβ̂(t) = X′
tY} as in SR. Values for β̂(t) are given in

Table 4 for selected values of t. The negative sign for the OLS β̂4(0) has been observed to be ‘curi-
ous’, Myers [28, p.131], as sign reversal itself is often a disqualifying hallmark of ill-conditioning. In
contrast, for u ∈ {0.2t0, 0.4t0, 0.6t0, 0.8t0, t0}, the modified β̂4(u) > 0, reflecting a more substan-
tive empirical model even for exceedingly small perturbations t. In addition to VIFs and signs of
estimators, other concerns with ill-conditioning include excessive lengths of the OLS solutions, and
the conditioning of the moment matrix Mt = X′

tXt . Values for ‖β̂(t)‖2 and c1(Mt) are reported in
Table 5 for selected values of t. To demonstrate the predictive utility of Xt , the correlations ρ(Y , Ŷ t)
between the observed and predicted responses are also reported. Moreover, as a measure of displace-
ment of Xt0 from X, the relative mean absolute deviation between these is found to be less than 1%.
Computations were carried out using the Maple software package.

To demonstrate Theorem 4.3, we report in column 6 of Table 5 the values for MSE(β̂ t) for values
of t in column 1. Equation (5) for MSE(β̂t) requires knowledge of the unknown parameters σ 2 and
θ = Q′β . For this computation, we have used β ′ = [−1.600, 0.075, 0.870, 0.380,−4.000] and σ 2 =
(637.75)2, the corresponding estimated error variance. As seen for ‖β̂(t)‖2 and max{VIF(i)}, the
values for MSE(β̂t) decrease precipitously from the starting OLS value at t= 0. We note that while
MSE(β̂t) decreases monotonically over t ∈ [0, t0], it is not monotone over the domain [0, 1]; instead,
further computations show that it turns upward at t= 0.756.

In short, we find it to be remarkable in the extreme, that a centred matrixXt0 , so near to the highly
ill-conditioned X ∈ Fn×k, should exhibit such thoroughly enhanced conditioning characteristics.

6. Conclusions

We have studied the ordering X �S Z for two design matrices in the space (Fτn×k,�S), with ordering
induced from the majorization ordering of their singular values in (Cτk ,�). This continues the work
of Jensen [3] who introduced the spectral glb and spectral lub for a pair of matrices in (S+

k ,�L). The
spectral lub for two Fisher information matrices can yield a design with enhanced OLS efficiencies
dominating both, as shown in [4]. Our study here has focused on two types of principal findings.

The first establishes equivalence classes of designs, these being indistinguishable under the
standard design criteria of Table 1. Our equivalent designs typically are variations on the singular
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decompositionX = PDκQ′, for example on permuting the singular values, as shown in Theorem 3.2.
Further examples follow on replacing P by some L ∈ Hn×k since the FI matrix X′X holds indepen-
dently of P.

The second principal finding seeks extreme designs in (Fτn×k,�S). Theorem 3.2 establishes
extremal elements for X ∈ (Fτn×k,�S) using extremal elements for κ = [κ1, . . . , κk] in (Cτk ,�). In
particular, a design having equal singular values in (Cτk ,�) is minimal in (Fτn×k,�S). Suppose that
neither X �S Z nor Z �S X. Then, lattice properties of (C

τ
k ,�) enable the construction of the singu-

lar minorant Xm, and the singular majorant XM , bounding an ensemble of designs including X and
Z. This provides a venue for amalgamating two designs into a single design superior to both in the
ordering (Fτn×k,�S).

Related studies show the sense in which these orderings will matter in practice. Theorem 4.2 shows
that condition numbers, as well as the (A,D,E) diagnostics forV(β̂(X)) = �(X), are Schur convex on
(Fτn×k,�S). In consequence, smoother designs, in the sense ofmajorized singular values, have superior
(A,D,E) efficiencies. Their equivalent minimal matrices comprise equivalence classes of (A,D,E)-
optimal designs, showing the latter not to be unique. In the literature various algorithms serve to
return a single design as optimal under a given criterion; it is reasonable ask how such algorithms
manage to single out but one of the often uncountably many equivalently optimal candidates.

Theorem 4.2(v) regarding Mauchly’s [12] sphericity criterion applies for k= 2; for k> 2 a counter
example is given in Appendix 3. To the contrary, regardless of k, the distribution of β̂(X) is less
isotropic than β̂(Z) by Mauchly’s [12] W(·) criterion, under the alternative Loewner [1] ordering
X′X�LZ′Z, as in Theorem 1 of Jensen [25].

A variation on surrogate and ridge regression, motivated by earlier developments in this study,
replaces X by {Xt = PDiag([(1 − t)κ2i + tκ̄2]1/2; 1≤i≤k)Q′} to give a continuum {Xt ; t ∈ [0, 1]} of
prospective modified designs. At t= 0 we have Xt = X, and at t= 1.0 the design Xt = Xκ̄ is minimal
in (Fτn×k,�S). Otherwise, {t ↑} drives X towards this minimal design. The Hospital Manpower data
of Myers [28, p.132], notoriously ill-conditioned, is amenable to this approach. Case Study 3 reports
remarkable improvement in conditioning on choosing t0 = 0.0000702 so as to achieve the maximal
VIF at 10.0, a widely used threshold value beyond which a design is declared to be ill-conditioned.
In addition, the relative mean absolute deviation between X and Xt0 is less than 1%. In short, we find
estimators modified in this manner to be attractive alternatives to ridge and surrogate solutions in
the analysis of ill-conditioned data.

Acknowledgments
Following the presentation of Jensen [3] to the Joint AMS-IMS-SIAM Summer Research Conference on Stochas-
tic Inequalities, Seattle, Washington, July 1991, the late Professor Samuel Kotz remarked as most important the
approximately three pages supporting, in retrospect, the present manuscript.

Disclosure statement
No potential conflict of interest was reported by the authors.

ORCID
D.E. Ramirez http://orcid.org/0000-0002-2419-4538

References
[1] Loewner C. Uber monotone matrixfunktionen. Math Z. 1934;38:177–216.
[2] JensenDR. Invariant ordering and order preservation. In: TongYL, editor. Inequalities in statistics and probability.

IMS Lecture Notes/Monograph Series, Vol. 5. Hayward (CA): Institute of Mathematical Statistics; 1984.
[3] Jensen DR. Matrix extremes and related stochastic bounds. Stoc Inequal. 1993;22:133–144. (IMS Lecture

Notes/Monograph Series).

http://orcid.org/0000-0002-2419-4538


JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 1839

[4] Jensen DR, Ramirez DE. Enhanced design efficiency through least upper bounds. J Stat Comput Simul.
2016;86:1798–1817.

[5] Marshall AW, Olkin I. Inequalities: theory of majorization and its applications. New York: Academic Press; 1979.
[6] Chan NN, Li K-H. Majorization for A–optimal designs. J Math Anal Appl. 1989;142:101–107.
[7] Bhaumik DK. Majorization and D-optimality for complete block designs under correlations. J Royal Statist Soc

Ser B. 1995;57:139–143.
[8] Zhang A, Fang K-T, Li R, et al. Majorization framework for balanced lattice designs. Ann Statist.

2005;33:2837–2853.
[9] Pericleous K, Kounias S. The concept of majorization in experimental design. Commun Statist Theory Methods.

2012;41:2836–2850.
[10] Vinograde B. Canonical positive definite matrices under internal linear transformations. Proc Amer Math Soc.

1950;1:159–161.
[11] Marshall AW, Olkin I. Norms and inequalities for condition numbers. Pacific J Math. 1965;15:241–247.
[12] Mauchly JW. Significance test for sphericity of a normaln-variate distribution. AnnMath Statist. 1940;11:204–209.
[13] Kiefer J. Optimum experimental designs. J Roy Statist Soc Ser B. 1959;21:272–304.
[14] Frisch R. Correlation and scatter in statistical variables. Nordic Statist J. 1929;1:36–102.
[15] Wilks SS. Certain generalizations in the analysis of variance. Biometrika. 1932;24:471–494.
[16] Wald A. On the efficient design of statistical investigations. Ann Math Statist. 1943;14:134–140.
[17] FedorovVV. StuddenWJ andKlimkoEM, translators, Theory of optimal experiments.NewYork: Academic Press;

1972.
[18] Silvey SD. Optimal design. London: Chapman and Hall; 1980.
[19] Pukelsheim F. Optimal design of experiments. New York: Wiley; 1993.
[20] Druilhet P. Conditions for optimality in experimental designs. Linear Algebra Appl. 2004;388:147–157.
[21] Jensen DR. Vector efficiency in multiparameter estimation. Linear Algebra Appl. 1991;151:143–155.
[22] Kiefer J. Optimum design: variation in structure and performance under change of criterion. Biometrika.

1975;62:277–288.
[23] Sibson R. DA-optimality and duality. In: Gani J, Sarkadi K, Vincze I, editors. Progress in statistics, Proc. 9th

European meeting of statisticians, Budapest, 1972, Vol. 2. Amsterdam: North-Holland; 1974.
[24] Hotelling H. Relations between two sets of variates. Biometrika. 1936;28:321–377.
[25] Jensen DR. Condition numbers and D-efficiency. Statist Probab Lett. 2004;66:267–274.
[26] Jensen DR, Ramirez DE. Surrogate models in ill-conditioned systems. J Statist Plann Infer. 2010;140:2069–2077.
[27] Myers RH, Montgomery DC. Response surface methodology: process and product optimization using designed

experiments. New York: Wiley; 1995.
[28] Myers RH. Classical and modern regression with applications. 2nd ed. Boston (MA): PWS-KENT; 1990.
[29] Belsley DA. Centering, the constant, first-differencing, and assessing conditioning. In: Belsley DA, Kuh E, editors.

Model reliability. Cambridge (MA): MIT Press; 1986. p. 117–153.

Appendix 1. Properties of Fn×k

A.1 The singular decomposition
For X ∈ Fn×k with k< n, equivalent versions of its SV D follow, with Dκ = Diag(κ1, . . . , κk).

Definition A.1:

(i) X = P0DQ′ with P0 ∈ O(n), Q ∈ Ok, andD = [Dκ , 0]′.
(ii) X = PDκQ′ on partitioning P0 = [P,P1] with P ∈ Hn×k as defined in Section 2.
(iii) Columns of P = [p1, . . . , pk] comprise the left singular vectors, and ofQ = [q1, . . . , qk] the right singular vectors.
(iv) Its Moore–Penrose pseudo-inverse is X† = QD−1

κ P′.

The following refers to the structure, synthesis, and identity of matrix decompositions in Fn×k.

Lemma A.1: Let P = [p1, . . . , pk] ∈ Hn×k and Q ∈ Ok such that {piq′
i; 1≤i≤k} comprise a collection of frames in

Fn×k.

(i) Then the SV D X = ∑k
i=1 κipiq

′
i lifts each frame {piq′

i ∈ Fn×k} by κi.
(ii) Conversely, given L ∈ Hn×k,Dω = Diag(ω1, . . . ,ωk), and R ∈ Ok, then the assemblage Z = LDωR′ is the singular

decomposition of Z.
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Table A1. Design X, derived matrices X1 and Xκ̄ ; the left (P′) and right (Q) singular vectors; and the singular values κ =
[3.8198, 2.0992, 0.5318] for Case Study 1.

−1.0000 1.0000 −1.4142 1.4142 −1.0000 1.0000 0.0000 0.0000
X′ 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 −1.0000 −1.0000

−0.8000 0.6000 −0.8000 2.0000 −0.8000 0.6000 −0.8000 0.0000
0.4279 −1.0391 0.2809 0.7126 0.4279 −1.0391 −1.1080 1.3370

X′
1 −0.0193 −0.3197 −1.3211 −0.3556 −0.0193 −0.3197 0.4993 1.8556

−0.1811 0.8999 0.2484 −1.1704 −0.1811 0.8999 1.1798 −1.6954
−0.3045 −0.1498 −0.5095 1.5719 −0.3045 −0.1498 −0.9855 0.8316

X′
κ̄ 0.0162 0.1501 1.1888 0.6961 0.0162 0.1501 −0.7762 −1.4414

−0.7081 1.0106 −0.8536 0.3366 −0.7081 1.0106 0.5610 −0.6490
−0.3308 0.2946 −0.3736 0.6594 −0.3308 0.2946 −0.1792 −0.0342

P′ 0.0960 −0.1138 0.6024 0.3785 0.0960 −0.1138 −0.5082 −0.4372
0.0996 −0.3618 −0.1302 0.2927 0.0996 −0.3618 −0.3435 0.7055

−0.7099 −0.1307 −0.6921
Q 0.3508 −0.9177 −0.1865

0.6108 0.3752 −0.6973

Proof: Conclusion (i) is the conventional SV D expressed in terms of frames. To examine Z = LDωR′, the expansion
ZZ′ = LD2

ωL′ = ∑k
i=1 ω

2
i lil

′
i, and that L is semi-orthogonal, gives the spectral equations {ZZ′lj = ω2

j lj; 1 ≤ j ≤ k},
verifying L as the left singular vectors and Dω = Diag(ω1, . . . ,ωk) as the singular values. That R contains the right
singular vectors follows similarly on expanding Z′Z, to give conclusion (ii). �

A.2 Norms and condition numbers
The unitarily invariant norms on Fn×k are invariant under left and right unitary operators X → UXV ′. The symmetric
gauge functions φ : Rk → R1 in the class� are defined in [5, p.96].

Definition A.2: (i) The class of unitarily invariant norms on Fn×k is given by composition as

{‖X‖φ= φ(σ(X)) = [φ ◦ σ ]X;φ ∈ �},
with σ(X) as its singular-value mapping.

(ii) Prominent examples are φ(x) = max |xi| and φ(x) = (
∑ |xi|r)1/r , r ≥ 1.

With A ∈ Fn×k the conditioning of the linear system Ax = b has to do with the propagation of disturbances within
the system into its solutions. For A ∈ Fn×n of full rank, the condition number cφ(A) typically is defined as cφ(A) =
φ(A)φ(A−1), where φ ordinarily is a norm. See [5, p.270 ff]. If instead A ∈ Fn×k with SVD A = PDaQ′, a solution to
Ax = b is A†Ax = A†b, that is

QD−1
a P′PDaQ′x = QD−1

a P′b,
so that x = QD−1

a P′b with A† as the Moore–Penrose inverse. Accordingly, we have the following.

Definition A.3: Elements of {cφ(X) =‖X‖φ‖X†‖φ ;φ ∈ �} comprise the unitarily invariant condition numbers on
Fn×k.

Appendix 2. Tables: Case study 1
Details are supplied here for completeness in regard to Case Study 1, beginning with X as listed in Table A1. The
principals of its singular decomposition are given as (P,Q, κ). DesignsX1 andXκ̄ , as listed in Table A1, are constructed
from the singular decomposition of X.

Appendix 3. A counter example
Disclaimer: Mauchly’s [12] criterion is not Schur concave for k> 2.

Denote the criterion as k−kW(�(X)) = |�(X)|/[tr(�(X)]k, where � = QD−2
κ Q′, so that k−kW(�(X)) =

k−kW(κ) = ∏k
i=1(1/κ

2
i )/[

∑k
i=1(1/κ

2
i )]

k. For k= 3 let a1 = [11.1, 1.0, 1.0] and a2 = [11.0, 1.1, 1.0] be surrogates
for κ . Clearly, a1 � a2 in (Cτ

k ,�). Similarly, let b1 = [6.1, 4.9, 1.0] and b2 = [5.9, 5.1, 1.0] be further surrogates for
κ , with b1 � b2 in (Cτ

k ,�). Direct computations for a1 � a2 give 3−3W(a1) = 0.00100 and 3−3W(a2) = 0.00111.
However, the ordering reverses at b1 � b2, namely, 3−3W(b1) = 0.000917 and 3−3W(b2) = 0.000909.
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Appendix 4. Admissibility Condition

Take the derivative (d/dt)MSE(β̂ t) at Equation (5) and evaluate it at t= 0 to get (using Maple)

d
dt

MSE(0) = −σ 2
k∑

i=1

(−κ2i + κ2)

κ4i
= σ 2

[ k∑
i=1

1
κ2i

− κ2
k∑

i=1

1
κ4i

]
≤ 0.

Inequality at the last step is a consequence of Chebychev’s inequality: With {a1≥· · ·≥ak > 0} and {0 < b1 ≤ . . . ≤
bk}, Chebyshev’s inequality gives

k(a1b1 + · · · + akbk) ≤ (a1 + · · · + ak)(b1 + · · · + bk)

k

(
κ21

1
κ41

+ · · · + κ2k
1
κ4k

)
≤ (κ21 + · · · + κ2k )

(
1
κ41

+ · · · + 1
κ4k

)

so that
∑k

i=1(1/κ
2
i ) ≤ κ̄2

∑k
i=1(1/κ

4
i ).
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