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a b s t r a c t

Shifts in responses typically are obscured from users, so that regression proceeds as if
unshifted. At issue is the infusion of such shifts into classical analysis. On projecting outliers
into the ‘‘Regressor’’ and ‘‘Error’’ spaces of amodel, findings here are that shifts in responses
may account for shifts in the OLS solutions, or for inflated residuals, or both. These in turn
impact estimation, prediction, and hypothesis tests, all of vital interest to users, and all
considered here. Tools for identifying shifts are given. Case studies illustrate effects of shifts
on regression, to include a reexamination of studies from the literature.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Classical linear inference begins with {Y = Xβ + ε} of full rank having n observations, p regressors, and uncorrelated
errors with variance σ 2, giving (β, S2) as Gauss–Markov (OLS) solutions and the Residual Mean Square (RMS). Such models
long have been staples of theoretical and applied statistics; they serve as templates beyond linearity andOLS; and they carry
a large body of supporting diagnostics in regard to model validation. Basic arrays include Hn = X(X ′X)−1X ′; its diagonal
elements {hii ∈ (0, 1); 1 ≤ i ≤ n} are leverages attributed to rows {x′

i; 1 ≤ i ≤ n} of X ; and elements of (In −Hn)Y = e are
observed residuals. In addition, conventional regression diagnostics seek to identify outlying data, and to label as influential
those observations whose removal would alter essentials of the analysis. Traditional diagnostic procedures and references
are surveyed in Appendix A.2; we return to these subsequently.

In addition to conventional diagnostics, the present study seeks to track effects on the regression exerted by a vector
shift {Y → Y + ω} in the elements of Y . Here ω ∈ Rn is a shift parameter taking fixed but unknown values in particular
applications, as in any non-Bayesian setting. Specifically, ω is decomposed into a ‘‘Regressor’’ component ω1 and an ‘‘Error’’
component ω2, accounting respectively for shifts in the OLS solutions and for inflated variation about the best-fitting line.
Such shifts typically are obscured from the user, who then proceeds as for unshifted data, yet retains vital interest inwhether
such shiftsmay have occurred. Accordingly, critical effects on conventional inferences regarding (β, σ 2), as induced by shifts
in Y , are examined; and venues for securing evidence regarding ω are given, to include estimation and hypothesis tests for
ω1 and ω2. This study fills a long-standing void in regression diagnostics, where the conventional DFBETA’s and DIFFITs
examine a succession of singleton shifts, together with effects of each on the estimated β’s and predictors. Circumstances
for the present approach are found in the sciences and engineering, where the recalibration of a calibrated device is often
required, and in statistical process control. Details of the study are outlined next.
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Supporting developments are given in Section 2, to include notes on g-inverses and the projection of shifts into the ‘‘Re-
gressor’’ and ‘‘Error’’ spaces of amodel, Sections 3 and 4 comprise the principal findings. Section 3 establishes effects of shifts
on the outcomes of regression analysis, to include anomalies in estimation and tests for (β, σ 2). Estimating ω is heretofore
unavailable, requiring that n+p+1 parameters should be supported by n observation vectors. Nonetheless, Section 4 under-
takes inferences regarding the unknown shiftω and its componentsω1 andω2 on utilizing additional observations. Section 5
reports case studies, first for an elementary and transparent example, proceeding then to a reexamination of comprehensive
data from the literature. Appendix A.1 derives the distribution of a ratio of correlated chi-squared variables required for tests
regarding ω2. Connections to other venues are noted, to include deletion diagnostics and robust regression. Outliers under
deletions are special cases of those considered here, and the two approaches are revisited in Appendix A.2.

2. Preliminaries

2.1. Notation

Spaces here include Rn as Euclidean n-space, its positive orthant Rn
+
, and the real symmetric matrices Sn of order n.

Vectors and matrices are set in bold type; the transpose, inverse, trace, and determinant of A are A′, A−1, tr(A), and |A|; In
is the (n×n) identity; and Diag(A1, . . . ,Ak) is a block-diagonal array. Here 1n = [1, 1, . . . , 1]′ ∈ Rn is the unit vector, and 0
a vector of zeros of dimension to be determined in context. If B = [b1, . . . , bk] is of order (n× k) and rank k < n, then Sp(B)
designates the column span of B, i.e., the k-dimensional subspace of Rn spanned by [b1, . . . , bk]. The ordered eigenvalues of
A ∈ Sn are {λi(A) = αi; 1 ≤ i ≤ n} with {α1 ≥ α2 ≥ · · · ≥ αn}, and its spectral resolution is A = PDαP ′

=
n

i=1 αipip′

i ,
where P = [p1, . . . , pn] is orthogonal and Dα = Diag(α1, . . . , αn). The range and null spaces of A are designated as R(A)
and N (A). Specifically, if {α1 ≥ α2 ≥ · · · ≥ αr > αr+1 = · · · = αn = 0} and if P = [P1, P2] with P1 = [p1, . . . , pr ] and
P2 = [pr+1, . . . , pn], then R(A) = Sp(P1) and N (A) = Sp(P2).

Generalized inverses. Given A of order (n × m), g-inverses are pivotal in solving linear systems y = Ax. Consider
G(m × n) together with the properties: A1 : AGA = A; A2 : GAG = G; A3 : (AG)′ = AG; A4 : (GA)′ = GA. Any g-inverse G
of A satisfies A1; a reflexive g-inverse satisfies A1 and A2; and a Moore–Penrose inverse satisfies A1–A4, to be denoted by AĎ.
For reference see [23]. Some g-inverses of interest here are treated in the following.

Lemma 2.1. Consider the model {Y = Xβ + ε} of order n and full rank p < n, and let H be (n × n) symmetric idempotent of
rank k < n. Then
(i) XĎ

= (X ′X)−1X ′ is the Moore–Penrose inverse of X ;
(ii) HĎ

= H is the Moore–Penrose inverse of H ;
(iii) Hn = X(X ′X)−1X ′

= XXĎ with self inverse (XXĎ)Ď = XXĎ
= Hn.

Proof. Conclusions follow directly from the properties A1–A4. �

Distributions of note.Given a random Y ∈ Rn, its distribution, characteristic function (chf ), mean vector, and dispersion
matrix are denoted byL(Y ), φY (t), E(Y ), V(Y ) = 4, say, with variance Var(Y ) = σ 2 onR1. Specifically,L(Y ) = Nn(µ,6)
is Gaussian onRn with (µ, 6) as itsmean and dispersionmatrix. Distributions onR1

+
includeχ2(ν, λ) as chi-squared having

ν degrees of freedom, noncentrality parameter λ, chf φ(t) = (1 − 2it)−ν/2 exp[iλ t/(1 − 2it)], and with mean (ν + λ) and
variance 2(ν+ 2λ); see [16, pp. 132–133]. In addition F(ν1, ν2, λ1, λ2) is the doubly noncentral F-distribution with (ν1, λ1)
and (ν2, λ2) as degrees of freedomand noncentralities in its numerator and denominator, and t2(ν, λ1, λ2) = F(1, ν, λ1, λ2)
is the doubly noncentral Student’s t2. Identify {F > cα} as the conventional α-level rejection rule based on F(ν1, ν2, 0, 0).

Themodel. Take {Yi = β0 +β1Xi1 +· · ·+βkXik +εi; 1 ≤ i ≤ n} tomodel response Yi to regressors {Xi1, . . . , Xik} through
p = k + 1 parameters β′

= [β0, β1, . . . , βk]. Arrayed as {Y = Xβ + ε}, the entitiesβ = (X ′X)−1X ′Y , e = (Y − Xβ), and
S2 = e′e/(n − p) are the OLS solutions, the residual vector, and the RMS, respectively, where OLS solutions are displayed
as β = [β0,β1, . . . ,βk]

′. In this setting Hn is now Hn = X(X ′X)−1X ′. Conventional Gauss–Markov assumptions on error
moments, then distributions, are as follow.

Assumptions A. A1. E(ε) = 0 ∈ Rn, V(ε) = σ 2In; and
A2. L(ε) = Nn(0, σ 2In).

Outliers often are modeled as additive shifts, typically at designated observations to be deleted in deletion diagnostics. To
the contrary, this study allows unfettered shifts {Y → Y + ω} in the collective data, to include single-case and subset
deletions as special cases.

2.2. Classification of shifts

A critical issue, largely unexamined in the literature, is the manner in which a given shift {Y → Y + ω} is infused into
outcomes of conventional regression analyses. To these ends recallHn and (In −Hn) as idempotent (n×n)matrices of ranks
p and (n−p), projecting into the ‘‘Regressor’’ spaceR(Hn) and ‘‘Error’’ spaceR(In−Hn) generated by {Y = Xβ+ε}. Critical
insight is gained on decomposing any ω ∈ Rn as in the following.
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Definition 1. A shift ω ∈ Rn is decomposed as ω = ω1 + ω2, where ω1 = Hnω and ω2 = (In − Hn)ω are respective
projections into the ‘‘Regressor’’ and ‘‘Error’’ spaces of {Y = Xβ + ε}, where Hn = X(X ′X)−1X ′. In addition, let θ1 and θ2 be
respective angles between (ω,ω1) and (ω,ω2).

In consequence, shifts decompose into components lying inR(Hn) andR(In−Hn). These in turn exert profound anddiffering
impacts on the principal outcomes of regression analyses as shown subsequently. Some implications follow immediately:

Lemma 2.2. Given the projection ω = ω1 + ω2 in Rn, it follows that

(i) ω ∈ R(Hn) implies ω2 = 0, and ω ∈ R(In − Hn) implies ω1 = 0;
(ii) X ′ω = X ′ω1, and XĎω = XĎω1;
(iii) X ′ω2 = XĎω2 = 0 ∈ Rp; moreover, Hnω2 = 0 ∈ Rn and (In − Hn)ω1 = 0 ∈ Rn.

Proof. These follow directly from Definition 1.

3. Propagation of shifts

3.1. Basics

The decomposition ω = ω1 + ω2 in Rn is basic; it enables their effects to be tracked separately; and these are found to
differ markedly. To fix ideas, consider outcomes {βω, eω, S2ω} from the model {Yω = Xβω + εω}, modified under a fixed but
unknown shift parameter {Y∅ → Yω = Y∅ +ω} taking place during the course of an experiment. These stand in contrast to
the conventional output {β∅ = XĎY∅, e∅ = (In −Hn)Y∅, S2∅ = e′

∅e∅/(n−p)} under the intendedmodel {Y∅ = Xβ∅ +ε∅}

had no shifts occurred. The subscript (Symbol∅) identifies the quantities sought by experiment, but typically not recoverable
under the shifted model.

Remark 1. Specifically, the parameter space is the Cartesian product (β, σ 2,ω) ∈ Rp
× R1

+
× Rn, a misspecified model

as noted by a Referee. Even for {Y = β01n + Xβ + ε} with intercept, attempts to reconfigure the shift {Yω = Y + ω} as
{Y = (β01n − ω) + Xβ + ε} fail under conventional OLS in having n + p + 1 parameters, some outside the span of the
regressors, to be supported by n observations.

Instead we follow a different approach in order to examine effects exerted by a given shift on regression outcomes. Details
follow.

3.2. Effects on regression

At issue is the manner in which a given shift ω ∈ Rn is infused into properties of {βω, eω, S2ω, Fω}. It is seen for

fixed ω that βω has expectation E(βω)
def
= βω = β + κ as a shifted version of β with κ = XĎω1. Conversely, write

{Y∅ +ω = Xβ+ω1 + (ε+ω2)}; fix κ∗
∈ Rp and lift this toω∗

1 = Xκ∗
∈ Rn, taken to be a component ofω∗. Then themodel

{Y∅ +ω∗
= Xβ +ω∗

1 + (ε+ω∗

2)} emerges as {Yω∗ = Xβω∗ + (ε+ω∗

2)}, since ω∗

1 = Xκ∗. In short, βω ∈ Rp
⇐⇒ ω1 ∈ Rn.

Here and elsewhere we takeM = (X ′X)−1. A first look under moment assumptions follows.

Theorem 1. Consider {Yω = Y∅ + ω} with fixed ω = ω1 + ω2, yielding {βω, eω, S2ω}; let κ = XĎω1 ∈ Rp and ν = n − p; and
define βω = β + κ.

(i) The model elements βω ∈ Rp
⇐⇒ ω1 ∈ Rn are in correspondence.

Under Assumptions A1 we have for βω

(ii) βω = β∅ + κ; E(βω) = βω = β + κ; and V(βω) = σ 2M ;
(iii) Specifically, if ω ∈ R(In − Hn), thenβω ≡ β∅ is observable;
(iv) The MSE efficiency ratio Eff (β∅ : βω) = 1 + (κ′κ/σ 2trM) quantifies the loss in efficiency due to ω in estimating β.

Similarly for the residuals eω, e′
ωeω , and S2ω we have

(v) eω = e∅ + ω2; E(eω) = ω2; V(eω) = σ 2(In − Hn); and, if ω ∈ R(Hn), then eω ≡ e∅ is observable;
(vi) E(e′

ωeω) = νσ 2
+ ω′

2ω2;
(vii) S2ω = e′

ωeω/ν and, if ω ∈ R(Hn), then S2ω ≡ S2∅ is observable;
(viii) E(S2ω) = σ 2

+ λ2 with λ2 = ω′

2ω2/ν and, if ω ∈ R(Hn), then E(S2ω) = σ 2.

Proof. Conclusion (i) was demonstrated in the paragraph preceding. For (ii) observe that βω = XĎYω = XĎ(Y∅ + ω) =β∅ + XĎω1 using XĎω = XĎω1 from Lemma 2.2, and since ω is fixed, if unknown, first and second moments follow
as in conclusion (ii) under Assumptions A1 since E(β∅) = β and V(β∅) = σ 2M . To continue, ω ∈ R(In − Hn) in
(iii) implies ω1 = 0. In (iv) the loss in efficiency is the MSE efficiency ratio Eff (β∅ : βω) = MSE(βω)/MSE(β∅), where
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MSE(β∅) = σ 2trM and MSE(βω) = tr(σ 2M + κκ′) = σ 2trM + κ′κ, to give conclusion (iv). In regard to residuals, observe
that eω = (In − Hn)(Y∅ + ω) = e∅ + ω2 and ω2 is fixed, so that E(eω) = 0 + ω2, V(eω) = V(e∅) = σ 2(In − Hn); moreover,
if ω ∈ R(Hn), then ω2 = 0 and eω ≡ e∅ is observable, giving (v). Conclusion (vi) follows as the expectation of a noncentral
quadratic form as in [21, p. 51]. Conclusion (vii) follows from (v) and (viii) from (vii). �

We draw the following conclusions:

C1. The components (ω1, ω2) induce exclusive shifts in (β, e), respectively.
C2. The extremal case ω = ω1 renders shifts inβ that cannot be discerned through altered residuals. The other extremity,

ω = ω2, leavesβ unscathed as from the intended model, while inflating variability about the intended best-fitting line.
C3. Otherwise the angles (θ1, θ2) of Definition 1 quantify the extent to which ω projects into R(Hn) and R(In − Hn),

respectively.
C4. Ifω consists of a single outlier {Yi+δi} at x′

i , then E(βω) = β+wiδi withwi = (X ′X)−1xi fromTheorem1(ii). This exhibits
the manner in which δi is distributed as bias across elements ofβω as estimators for β, as in Section 3.2 of Jensen [13]
under single-case deletions.

Effects that shifts exert on fundamental distributionsmay be summarized as follows under the normality Assumption A2.
Here Fω = (βω −βo)

′X ′X(βω −βo)/pS
2
ω is the conventional statistic, but applied under the shift {Yω = Y∅ +ω}, for testing

the intended Hβ0 : β = βo against H
β

1 : β ≠ βo.

Theorem 2. Consider {Yω = Y∅ + ω} with fixed ω = ω1 + ω2, yielding {βω, eω, S2ω, Fω}, and let ν = n − p. Then
under Assumption A we have

(i) L(βω) = Np(β + κ, σ 2M);
(ii) L(eω) = Nn(ω2, σ

2(In − Hn)) and L(e′
ωeω/σ

2) = χ2(ν, λ2), with λ2 = ω′

2ω2/σ
2;

(iii) L(νS2ω/σ
2) = χ2(ν, λ2), and if ω ∈ R(Hn), then L(νS2ω/σ

2) = L(νS2∅/σ
2) = χ2(ν, 0).

(iv) The MSE efficiency ratio in estimating σ 2 is Eff (S2∅ : S2ω) = 1 + [(ν + λ2)
2/2(ν + 2λ2)].

(v) L(Fω) = F(p, ν, λ1, λ2) with λ1 = (β + κ − βo)
′X ′X(β + κ − βo)/σ

2 and λ2 = ω′

2ω2/σ
2.

Proof. Conclusion (i) and the first part of conclusion (ii) are Gaussian versions of Theorem1(ii), (v). To continue, for a random
U ∈ Rn having E(U) = µ, the noncentrality parameter for U ′AU is the quadratic formµ′Aµ in its expectation. Observe that
(In −Hn)eω = (In −Hn)

2(Y∅ +ω) = eω since (In −Hn) is idempotent. Accordingly, e′
ωeω = e′

ω(In −Hn)eω is a quadratic form
of type U ′AU with idempotent matrix A = (In − Hn) of rank n − p, and noncentrality ω′

2(In − Hn)ω2 = ω′

2ω2, to complete
conclusion (ii). Conclusion (iii) follows from (ii). For the MSE efficiency ratio it suffices to consider Eff (e′

ωeω/σ
2

: e′
oeo/σ

2).
From (iii) and moments of χ2(ν, λ2) find MSE(e′

oeo/σ
2) = Var(e′

oeo/σ
2) = 2(ν + 2λ2). Similarly, with E(e′

ωeω/σ
2) =

(ν + λ2), we haveMSE(e′
ωeω/σ

2) = 2(ν + 2λ2)+ (ν + λ2)
2. Combining gives conclusion (iv). Conclusion (v) follows along

conventional lines since (βω, S
2
ω) are mutually independent under Gaussian Assumptions, noting that the scale-invariance

of the ratio Fω frees its distribution from dependence on σ 2. �

We next consider effects on conventional tests regarding β and σ 2, as exerted by shifts in the responses. Details follow.

3.3. Anomalies: tests regarding (β, σ 2)

The test for Hβ0 : β = βo against Hβ1 : β ≠ βo in unshifted data rejects for {F∅ > cα} with cα from the up-
per tail of F(p, n − p, 0, 0), where F∅ is the intended F-statistic. Under {Yω = Y∅ + ω}, the observable statistic be-
comes Fω = (βω − βo)

′X ′X(βω − βo)/S
2
ω , as noted. Theorem 2(v) shows that L(Fω) = F(p, n − p, λ1, λ2) with λ1 =

(β + κ − βo)
′X ′X(β + κ − βo) and λ2 = ω′

2ω2, where κ = XĎω1 depends on ω1.
Aberrations in testing Hσ0 : σ 2

= σ 2
0 against Hσ1 : σ 2

≠ σ 2
0 also are germane. Against one-sided upper alternatives

Hσ1U : σ 2 > σ 2
0 , normal-theory tests reject at level α for {νS2∅/σ

2
0 > cα}; against Hσ1L : σ 2 < σ 2

0 the rejection rule is
{νS2∅/σ

2
0 < c1−α} with (c1−α, cα) from lower and upper tails of χ2(ν, 0). These are as intended had there been no shifts;

under shifts the altered statistic is νS2ω/σ
2
0 . Effects of shifts in tests regarding both β and σ 2 are reported next.

Corollary 1. Consider testing Hβ0 vs. Hβ1 using Fω = (βω − βo)
′X ′X(βω − βo)/S

2
ω as altered under {Yω = Y∅ + ω}; and let

ν = n − p. The test has the following properties.

(i) Suppose that ω2 = 0; then L(Fω) = F(p, ν, λ1, 0) with λ1 = (β + κ − βo)
′X ′X(β + κ − βo); and if Hβ0 holds, then

λ1 = κ′X ′Xκ = ω′

1ω1.
(ii) Suppose that ω1 = 0; then L(Fω) = F(p, ν, λ1, λ2) with λ1 = (β − βo)

′X ′X(β − βo) and λ2 = ω′

2ω2; and if Hβ0 holds,
then the null distribution is L(Fω | Hβ0 ) = F(p, ν, 0, λ2).
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(iii) (a) In consequence, for ω1 = 0, the test is conservative in that P(Fω > cα) < α; and (b) for ω2 = 0 the test is anti-
conservative in that P(Fω > cα) > α.

In testing Hσ0 vs. Hσ1 using {νS2ω/σ
2
0 }, shifts {Yω = Y∅ + ω} exert effects as follow.

(iv) L(νS2ω/σ
2
0 | Hσ0 ) = χ2(ν, λ2) with λ2 = ω′

2ω2/σ
2
0 .

(v) (a) In consequence, for ω2 ≠ 0, the test for Hσ1L using {νS2ω/σ
2
0 < c1−α} is conservative in that P(νS2ω/σ

2
0 < c1−α) < α;

and (b) for ω2 ≠ 0, the test for Hσ1U using {νS2ω/σ
2
0 > cα} is anti-conservative in that P(νS2ω/σ

2
0 > cα) > α.

Proof. Conclusions (i), (ii) and (iv) are direct consequences of Theorem 2. Conclusion (iii) follows since F(p, ν, 0, λ2) is
stochastically smaller than F(p, ν, 0, 0) and F(p, ν, λ1, 0) is stochastically larger than F(p, ν, 0, 0). Similarly, conclusion (v)
follows since L(U) = χ2(ν, λ2) is stochastically larger than L(U) = χ2(ν, 0). �

Remark 2. (a) Conclusions (iii(a)) and (v(a)) are akin to Masking in deletion diagnostics. That is, suppressing evidence in
favor of Hβ1 and Hσ1L, respectively; specifically, suppressing that β ≠ βo, or that the actual variance σ 2 is smaller than
the hypothetical σ 2

0 .
(b) Conclusions (iii(b)) and (v(b)) are akin to Swamping in deletion diagnostics. Specifically, inferring through inflated statis-

tics that Hβ1 : β ≠ βo holds when in fact β = βo; or that the actual variance σ 2 exceeds the hypothetical σ 2
0 when it

does not. An assessment of the latter is to evaluate P(νS2ω/σ
2
0 > cα) from the actual distributionL(νS2ω/σ

2
0 ) = χ2(ν, λ2)

under Hσ0 .

We next examine whether a given shift might exert differential effects on subsets of the betas.

3.4. Effects on subsets of betas

Consider a design {Y = X1β1 +X2β2 +ε}, semiorthogonal in that X1 ⊥ X2, i.e., X ′

1X2 = 0. Then X ′X = Diag(X ′

1X1,X ′

2X2)
and thus

XĎ
=


(X ′

1X1)
−1X ′

1

(X ′

2X2)
−1X ′

2


=


XĎ
1

XĎ
2


. (3.1)

It is instructive to examine whether shifts may be induced in some estimators but not others. Shifting {Y → Y + ω} and
taking ω = ω1 + ω2 as before, it follows that βω = β∅ + XĎω1. Recalling that ω1 ∈ R(Hn) = R(X), now partition
ω1 = ω11 + ω12 with ω11 ∈ R(X1) and ω12 ∈ R(X2). Then ω11 ∈ N (X2) and ω12 ∈ N (X1) since X1 ⊥ X2, where for
convenience we use the notation N (Xi) for {R(In − Xi(X ′

iXi)
−1X ′

i ); i = 1, 2}. It follows thatβω1βω2


=

β∅1β∅2


+


XĎ
1ω11

XĎ
2ω12


. (3.2)

In short, it is seen that shifts in Y may induce shifts in (β1,
β2, e, S2).

Theorem 3. Consider {Y = X1β1 + X2β2 + ε} such that X1 ⊥ X2. Suppose that {Y → Y + ω} with ω1 = ω11 ∈ R(X1).

(i) This induces a shift in the component βω1 only, asβω1βω2


=

β∅1β∅2


+


XĎ
1ω1

0


. (3.3)

(ii) In consequence, E(βω1) = β1 + XĎ
1ω1 and E(βω2) = β2.

(iii) The residuals e, MSE and S2 retain properties given in Theorems 1 and 2.

Proof. Conclusion (i) follows from (3.2) since ω1 = ω11 implies ω12 = 0 and thus (ii). Conclusion (iii) holds since
ω = ω11 + ω2, and that developments in Theorems 1 and 2 continue to apply regarding ω2. �

4. Inferences regarding shifts

Evidence is sought regarding an unknown shift ω = ω1 + ω2 ∈ Rn. To motivate, one of the authors was asked to consult
with a manufacturer of automotive drive line subassemblies. A model relating a critical response to designated regressors
had been established as a benchmark free of extraneous aberrations through a carefully controlled pilot study. It remained
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to see whether the benchmark model continues to apply under the vagaries of a full production line, in the framework of
statistical process control as introduced in [14]. Moreover, an examination of elements of ω, if assessed empirically, would
aid in identifying regressor settings under full production that are prone to shifts. Another venue in practice is to determine
whether a calibrated instrument requires recalibration.

In this setting we postulate separate experiments, namely {Yω = Xβω + εω} having shifted responses as in Section 3,
together with {Yo = Xoβ + εo} taken to be free of shifts. Both Yω and Yo are observable. The two experiments may differ
in design and size; they are commensurate in having the same β’s; and they are to be carried out independently. In our
experience researchers often know that aberrations may have occurred, in retrospect through careful notes taken during
the course of an experiment.

Accordingly, we carry over from Section 3 the notation and findings for {Yω = Xβω + εω} as in the following display,
together with corresponding items from the unshifted array {Yo = Xoβ + εo}.

{n,X,M,XĎ,Hn,βω, eω, S2ω, κ} under Y + ω = Xβ + ε

{m,Xo, Mo, XĎ
o , Ho, βo, eo, S

2
o } under Yo = Xoβ + εo.

Specifics are XĎ
o = (X ′

oXo)
−1X ′

o,
βo = XĎ

o Yo,Mo = (X ′
oXo)

−1, Ho = Xo(X ′
oXo)

−1X ′
o, eo = (Yo − Xoβo), and S 2

o = e′
oeo/

(m − p), where (βo, S
2
o ) are unbiased in the conventional Gauss–Markov setting, namely Assumption Ao for the reference

experiment on replacing n by m in Assumption A.
To continue, since ω ∈ Rn, we seek evidence regarding ω1 ∈ R(Hn) and ω2 ∈ R(In − Hn). First considerκ = (βω −βo)

as a prospective estimator for κ = XĎω1 ∈ Rp. This turns out to be unbiased with further properties to be cited. However,
the challenge is to lift this from κ ∈ Rp to ω1 ∈ Rn. As a tentative step note that both κ ∈ Rp and ω1 ∈ R(Hn) in effect
are p-dimensional. Accordingly, we next apply X to κ = XĎω1 as XXĎω1 = Hnω1 = ω1 to get the prospective estimatorω1 = X(βω − βo) ∈ Rn. Details are given subsequently. Similarly, for the case that m = n, consider ω2 = (eω − eo)
for estimating ω2 ∈ Rn. Looking ahead, the n-dimensional joint distributions L(ω1) and L(ω2) on Rn necessarily will be
singular of ranks p and n− p, respectively, as will their (n×n) dispersion matrices, sinceω1 ∈ R(Hn) andω2 ∈ R(In −Hn).
Essential properties are collected in the followingwhere, on occasion, considerable simplification accrues on allowing n = m
and the designs X and Xo to coincide.

Theorem 4. Consider κ = (βω − βo) ∈ Rp and ω1 = X(βω − βo) ∈ Rn as prospective estimators for κ = XĎω1 and ω1 ∈

R(Hn). Further taking m = n, consider ω = (Yω − Yo) andω2 = (eω − eo) ∈ Rn for estimating ω ∈ Rn and ω2 ∈ R(In −Hn).
Under Assumption A and Ao we have

(i) E(κ) = κ,V(κ) = σ 2(M + Mo) and, if X = Xo, then V(κ) = 2M ;
(ii) E(ω1) = ω1, V(ω1) = σ 2V with V = X(M + Mo)X ′ and, if X = Xo, then V = 2Hn;
(iii) E(ω2) = ω2 and V(ω2) = 2(In − Hn);
(iv) E(ω) = ω and V(ω) = 2σ 2In.

Moreover, taking m = n, for ω and ω2 we have
(v) L(κ) = Np(κ, σ

2(M + Mo)) and, if X = Xo, then L(κ) = Np(κ, 2σ 2M);
(vi) L(ω1) = Nn(ω1, σ

2V ) and, if X = Xo, then L(ω1) = Nn(ω1, 2σ 2Hn);
(vii) L(ω2) = Nn(ω2, 2σ 2(In − Hn)).
(viii) L(ω) = Nn(ω, 2σ 2In) and L(ω′ω/2σ 2) = χ2(n, δ) with δ = ω′ω/2σ 2.
(ix) L(ω′

1V
Ďω1/σ

2) = χ2(p, δ1) with V Ď as the Moore–Penrose inverse and δ1 = ω′

1V
Ďω1/σ

2 and, if X = Xo, then
L(ω′

1ω1/2σ 2) = χ2(p, δ1) with δ1 = ω′

1ω1/2σ 2.
(x) L(ω′

2ω2/2σ 2) = χ2(n − p, δ2) with δ2 = ω′

2ω2/2σ 2.
(xi) For the case X = Xo it follows that ω = ω1 + ω2, and the noncentrality parameters satisfy δ = δ1 + δ2.

Proof. Conclusions (i)–(iii) follow on combining properties of (βω, eω) from Theorem 1(ii), (v) under Assumptions A1,
with those of (βo, eo) under A01, together with independence of the two experiments. Since ω2 = (eω − eo), we have
V(ω2) = σ 2

[(In − Hn) + (In − Ho)]. Because Sp(X) = Sp(Xo), it follows that Hn and Ho are interchangeable in projecting
to this common subspace. Accordingly, V(ω2) = 2σ 2(In − Hn) as asserted in conclusion (iii). Conclusion (iv) follows since
V(Yω − Yo) = 2σ 2In. Assertions (v)–(viii) follow directly from (i)–(iv) and linearity under Gaussian errors. Conclusion (ix)
follows initially from Theorem 9.2.3 of Rao and Mitra [23, p. 173] since V Ď is also a reflexive g-inverse. The second part of
(ix) follows since V = 2Hn and V Ď

=
1
2Hn from Lemma 2.1(iii), so that ω′

1V
Ďω1 =

1
2ω′

1Hnω1 =
1
2ω′

1ω1, and similarly
ω′

1V
Ďω1 =

1
2ω

′

1Hnω1 =
1
2ω

′

1ω1 for its noncentral parameter. Conclusion (x) follows directly from (iii) and (vii). Conclusion
(xi) follows from conclusion (viii) and the special case in the second part of (ix). �

Remark 3. For the general case that V(ω1) = V = X(M + Mo)X ′ of order (n × n) and rank p, its Moore–Penrose inverse
V Ď may be found through its spectral decomposition V = QDQ ′ with D = Diag(D1, 0) and D1 = Diag(d1, . . . , dp). Then
V Ď

= QDĎQ ′ is the Moore–Penrose inverse of V , where DĎ
= Diag(D−1

1 , 0).

We turn next to hypothesis tests regarding ω = ω1 + ω2.
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Table 1
Values {κ,ω1,ω2} from X and ω′

= [4, 0, 0, 0]; observations Y of {Yi = 13 + 2Xi + εi}; Yω = Y + ω; together with OLS
solutions (β,βω) and residual vectors (e, eω).

κ ω1 ω2 Y β e Y + ω βω eω

1.0 2.8 1.2 7.9935 12.8525 1.01570 11.9935 13.8525 2.21570
−0.6 1.6 −1.6 9.6834 1.9582 −1.21088 9.6834 1.3582 −2.81088

0.4 −0.4 14.1854 −0.62534 14.1854 −1.02634
−0.8 0.8 19.5477 0.82052 19.5477 1.62052

Theorem 5. Consider ω1 = X(βω − βo) ∈ Rn, and for m = n, ω2 = (eω − eo) ∈ Rn as estimators for ω1 ∈ R(Hn) and
ω2 ∈ R(In − Hn), respectively, with properties as in Theorem 4. Under Assumption A and Ao we have
(i) A normal-theory test for H0 : ω1 = 0 against H1 : ω1 ≠ 0 at level α utilizes the statistic F = (ω′

1V
Ďω1/pS 2

o ) together with
the rejection rule F > cα from F(p,m − p, 0); specifically, if n = m and X = Xo, then F = (ω′

1ω1/2pS 2
o ) with cα from

F(p, n − p, 0).
(ii) For the case n = m and X = Xo, a normal-theory test for H0 : ω2 = 0 against H1 : ω2 ≠ 0 at level α utilizes the statistic

G = (ω′

2ω2/2e′
oeo)

1/2 together with the rejection rule G > c∗
α from the distribution Gρ(n − p, n − p, 0) of correlated ratios

as in Lemma A.1(iii).

Proof. Conclusions (i) and (ii) are complicated by prospective dependences between (ω1, eo) and (ω2, eo). Observe thatω1 = X(XĎYω −XĎ
o Yo) = HnYω −XXĎ

o Yo. The cross-covariance in (i) is Cov(ω1, eo) = Cov((HnYω −XXĎ
o Yo), (In −Ho)Yo) =

Cov(HnYω, (In − Ho)Yo) − Cov(XXĎ
o Yo, (In − Ho)Yo) = 0 − Cov(Xβo, eo) = 0. Conclusion (i) follows from Theorem 4(ix)

together with the central distribution L((m − p)S 2
o /σ

2) = χ2(m − p, 0) and independence of (ω1, S 2
o ) under Gaussian

errors. The given statistic for testing H0 : ω2 = 0 against H1 : ω2 ≠ 0 is complicated by the fact thatω2 = (eω − eo) and eo
are dependent. Details accounting for this are supplied in Lemma A.1, giving in conclusion (iii) of that lemma an expression
for the pdf of Gρ(n − p, n − p, 0), its upper cutoff value c∗

α giving the rejection rule of conclusion (ii). �

5. Case studies

We begin with an elementary example in monitoring linear profiles, and then proceed to more expansive studies from
the literature. Recalling that single-case and subset deletions are special cases restricting ω to one or a few nonzero entries,
further connections to deletion diagnostics are outlined in Appendix A.2.

5.1. Case study 1

An example with (n = 4, p = 2) is taken from Kang and Albin [18] and Kim et al. [20], who carried out extensive
simulation studies in regard tomonitoring linear profiles in statistical process control. In the centered form of Kim et al. [20],
observations {Yi = 13 + 2Xi + εi; 1 ≤ i ≤ 4} are generated as reported in Table 1 for Xi ∈ [−3,−1, 1, 3] in order, where
the disturbances are N(0, 1) deviates. The shift is ω′

= [4, 0, 0, 0], a single outlier in the parlance of deletion diagnostics.
Also listed in Table 1 are ω1 = H4ω and ω2 = (I4 − H4)ω and κ = XĎω1. Computations utilize the MINITAB package. As
in Definition 1 the angles (θ1, θ2) between (ω,ω1) and (ω,ω2) are θ1 = 33.2° and θ2 = 56.8°. These gauge the proximity
of the shift ω′

= [4, 0, 0, 0] to the ‘‘Regressor’’ and ‘‘Error’’ spaces, favoring the latter, where ω1 and ω2 serve to perturb
the OLS solutions and the residuals, respectively. In contrast to these, the shift ω = [1,−2, 1, 0] ∈ R(Hn) yields θ2 = 0°,
perturbingβ but not e. Alternatively, ω′

= [3, 2, 1, 0] ∈ R(In − Hn) yields θ1 = 0°, perturbing the residuals e but notβ.
Our analysis continues in regard to the shift ω′

= [4, 0, 0, 0].
For completeness we list the transpose of XĎ and the (4 × 4)matrix H4 as follows.

XĎ′
=

−0.15 0.25
−0.05 0.25
0.05 0.25
0.15 0.25

 ; H4 =

 0.7 0.4 0.1 −0.2
0.4 0.3 0.2 0.1
0.1 0.2 0.3 0.4

−0.2 0.1 0.4 0.7

 . (5.1)

Observe in Table 1 that κ = XĎω1, βω = β + κ and eω = e + ω2 are verified numerically.
To illustrate Remark 3, suppose instead that Xi ∈ [−3, 0, 0, 3] in Xo. Then the eigenvalues of V = X(M + Mo)X ′ are

[2.11111, 2, 0, 0]. The Moore–Penrose inverse of V is

V Ď
=

 0.33816 0.19605 0.05395 −0.08816
0.19605 0.14868 0.10132 0.05395
0.05395 0.10132 0.14868 0.19605

−0.08816 0.05395 0.19605 0.33816


to be compared with (2H4)

Ď
=

1
2H4 from (5.1) for the case Mo = M . To illustrate Comment C4 following Theorem 1, we

compute (X ′X)−1x1δ1 =


4 0
0 20

−1 
1

−3


(4) =


1.0

−0.6


as the bias owing to the shift {Y1 + 4}, given also as κ in Table 1.
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Table 2
Responses for analyses, to include Y∅ = f (X) + ε, Yω = (Y∅ + ω), (Y∅ + ω11), (Yω + ω11), and (Yω − ω12), with
ω11 = X(βω − βo) and ω12 = Xβo; to include OLS solutions and S2 for each; partial elements of residuals e∅ and eω; and
the bias B(S2) for S2 taking values S2∅ and S2ω .

Item Y∅ Yω Y∅ + ω11 Yω + ω11 Yω − ω12 e∗
∅ e∗

ωβ0 −0.40989 −1.26129 −1.67118 −2.52258 −1.26129 0.918 3.309β1 0.99809 1.09743 1.09552 1.19486 0.09743 −0.508 1.891β2 1.04608 1.11081 1.15689 1.22162 0.11081 −1.489 0.918
e′e 17.16630 37.31680 17.16630 37.31680 37.31680 1.359 −0.266
S2 0.78029 1.30230 0.78029 1.30230 1.30230 0.052 0.351
B(S2) 0.00000 1.30830 0.00000 1.30830 1.30830 −1.389 −1.886

5.2. Case study 2: Hadi and Simonoff data

5.2.1. Background
Hadi and Simonoff [10] presented an artificial data set with two predictor variables {X1,X2} having response Y =

X1 + X2 + ε, sample size n = 25, and outliers embedded in rows {1, 2, 3} designed to be difficult to find. Their errors were
generated from N(0, 1) for rows {4, . . . , 25} and zeros for rows {1, 2, 3}. Outliers are fixed at ω = [4, 4, 4, 0, . . . , 0]′ ∈ Rn.
Since their responses were generated with a constant term of zero, we write {Y = β01n + β1X1 + β2X2 + ε}, where the
actual parameters generating the data are β′

o = [β0, β1, β2] = [0, 1, 1]. For our case studies all rows, including {1, 2, 3}, are
disturbed by N(0, 1) errors so as to be amenable to Gauss–Markov theory. The design matrix X = [1n,X1,X2] is retained
throughout; components ω1 = Hnω and ω2 = (In − Hn)ω in Rn are reported subsequently in Table 3, where we determine
that ω′

1ω1 = 19.2173 and ω′

2ω2 = 28.7827. Accordingly, the angle θ1 between (ω,ω1) is θ1 = 50.8°, indicating that ω has
only a slight propensity towards the ‘‘Error’’ space. Hadi and Simonoff [10] and others offer often intricate subset deletion
algorithms for identifying outlying subsets. Our work supports the view that shifts in responses are tantamount to shifts in
the OLS solutions, and to inflated variation about the best-fitting line, these being the principal deleterious consequences
of outlying data. Accordingly, methods offered here would seem appropriate for first determining whether such shifts are
apparent.

5.2.2. Case 2.1
We first illustrate basics of Theorems 1 and 2. Given the origins of these data, shifts otherwise unknown in practice, the

unobservable underlyingmodel {Y∅ = Xβ+ε} of Section 3 now can be recovered. Specifically, outcomes {Y∅,β∅, e∅, S2∅} all
are nowobservable. In the Case 2.1 studieswe retain the data ofHadi and Simonoff [10] as reported in their Table 1, to include
their simulatedN(0, 1) disturbances. In additionwe attach standard normal disturbances {Y1+1.17062, Y2−0.25768, Y3−

1.24093} giving the shifted model {Yω = Xβω + εω} of Section 3. Subtracting ω = [4, 4, 4, 0, . . . , 0]′ from these responses
gives the actual unshifted model {Y∅ = Xβ + ε}, retaining the same random disturbances in keeping with our model for
shifted data. Accordingly, elements of {β∅ = XĎY∅, e∅ = (In−Hn)Y∅, S2∅ = e′

∅e∅/(n−p)} of Section 3 are now observable;
these are listed in column 2 of Table 2, where in the interests of brevity e∅ is given in part in column 7. For reference the OLS
solutions in Table 2 are identified asβ(Y ∗), with Y ∗ taking successive values heading columns 2–6. Specifically,β(Y∅) = β∅

andβ(Yω) = βω in notation set earlier. Accordingly, elements of {βω = XĎYω, eω = (In − Hn)Yω, S2ω = e′
ωeω/(n − p)} are

listed in column 3 of Table 2, with eω appearing in part in column 8 with only the first six entries displayed, as in column 7.
The matrix XĎ

= (X ′X)−1X ′ next is applied to ω = [4, 4, 4, 0, . . . , 0]′ to give κ = XĎω = XĎω1 = [−0.85140,
0.09934, 0.06473]′ as in Theorem 1. This illustrates from Table 2 the Theorem 1(ii) dictum thatβω = β∅ + κ, specifically,

−1.26129
1.09743
1.11081


=


−0.40989
0.99809
1.04608


+


−0.85140
0.09934
0.06473


.

Moreover, Theorem 1(v) assertion that eω = e∅ + ω2 is illustrated numerically, as seen for the subsets (e∗
∅, e

∗
ω) in columns

7 and 8 together with corresponding elements of ω2 from Table 3. In particular, elements in the first row of columns 7 and
8 are related by 0.918 + 2.391 = 3.309.

Further options are seen for manipulating the OLS solutions and their residuals on shifting Y∅ and Yω as in Theorem 1(i).
Specifically, replace κ′ by

(βω − βo)
′
= [−1.26129, 0.09743, 0.11081]

withβω from the third column of Table 2 and βo = [0, 1, 1]′ as the actual values giving the simulated data. From this we
recover the corresponding ω11 as ω11 = X(βω − βo), then apply this to Y∅ as {Y∅ → Y∅ + ω11} as in Table 2. It is verified
numerically thatβ(Y∅ + ω11) in column 4 of Table 2 satisfiesβ(Y∅ + ω11) = β∅ +βω − βo. Similarly, when applied to Yω

as {Yω → Yω + ω11}, it follows thatβ(Yω + ω11) = βω +βω − βo with values as reported in column 5 of Table 2.
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Table 3
Data Yo = Xoβo +εo and Yω = Xβω +εω as in Section 4 havingN(0, 1) deviates generated independently within and across
samples, to include residuals eo and eω and values for ω1 = Hnω, ω2 = (In −Hn)ω,ω1 = X(βω −βo), andω2 = (eω − eo).

Yo eo Yω eω ω1 ω2 ω1 ω2

30.263 0.635 34.414 3.526 1.610 2.391 1.260 2.891
29.169 −0.359 33.488 2.704 1.601 2.399 1.257 3.063
31.826 2.397 32.598 1.917 1.593 2.407 1.253 −0.480
29.609 −0.887 28.896 −2.595 1.625 −1.625 0.995 −1.708
5.965 −0.369 7.838 1.015 −0.299 0.299 0.489 1.384

15.658 −1.408 16.308 −1.159 0.497 −0.497 0.401 0.249
15.839 1.918 14.488 0.219 0.249 −0.249 0.348 −1.699
12.801 −0.573 13.593 −0.493 0.276 −0.276 0.710 0.081
14.802 −0.034 14.553 −1.195 0.424 −0.424 0.912 −1.161
15.164 −1.096 16.495 −0.755 0.547 −0.547 0.990 0.341
10.600 −1.109 12.536 −0.264 0.221 −0.221 1.091 0.845
2.042 0.086 1.596 −0.859 −0.628 0.628 0.499 −0.945

25.196 0.255 25.844 −0.497 1.281 −1.281 1.399 −0.751
15.447 2.364 15.374 1.367 0.294 −0.294 0.925 −0.997
11.920 0.515 13.260 0.604 0.228 −0.228 1.250 0.089
6.515 −1.035 7.731 −0.371 −0.195 0.195 0.552 0.663

27.092 −1.093 26.351 −2.777 1.441 −1.441 0.943 −1.684
21.759 0.388 21.063 −0.749 0.830 −0.830 0.442 −1.137
9.069 0.802 8.496 0.085 −0.218 0.218 0.143 −0.717

17.883 −0.331 18.181 −1.531 0.791 −0.791 1.498 −1.200
6.398 −0.531 5.462 −1.934 −0.258 0.258 0.467 −1.404
0.810 0.582 1.677 1.228 −0.811 −0.811 0.222 0.645

14.5854 −0.491 15.868 0.726 0.283 −0.283 0.065 1.217
21.962 −0.710 23.719 −0.266 1.093 −1.093 1.313 0.444
5.045 0.086 7.102 2.055 −0.478 0.478 0.088 1.969

Special features emerge if insteadwe liftβo = [0, 1, 1]′ inRp asω12 = Xβo inRn and apply as the shift {Yω → Yω −ω12}.
Then the beta values for (Yω −ω12) in column 6 are seen to beβ(Yω −ω12) = βω −βo, generating the discrepancies betweenβω and βo. In particular, these values give Q = (βω −βo)

′X ′X(βω −βo) = 26.5775 as the numerator for the normal-theory
F-statistic in testing Hβ0 : βω = βo against H

β

1 : βω ≠ βo. But since σ
2

= 1.0 for these data and L(Q | H0) = χ2(3, 0), the
p-value in testing at level α = 0.05 is P(Q > 26.5775) = 0.722×10−5. This in turn offers overwhelming evidence not only
that responses have shifted in the Table 1 data of Hadi and Simonoff [10], but that these shifts are accompanied by riveting
standardized changes in the betas.

Further evidence resides in the residuals. Note first that shifts inY∅ whereω2 ≠ 0 generate shifted residuals as in columns
3, 5 and 6. Residuals remain unshifted when ω2 = 0 as in columns 2 and 4. In consequence, E(S2ω) = σ 2

+ ω′

2ω2/(n − p)
from Theorem 1(viii), with ω′

2ω2/(n − p) = 28.7827/22 = 1.3083 as the bias B(S2ω) shown in Table 2. Moreover, the
normal-theory statistic in testing Hσ0 : σ 2

= σ 2
0 against Hσ1 : σ 2 > σ 2

0 is W = (n − p)S2/σ 2
0 having distribution

L((n−p)S2/σ 2
0 | Hσ0 ) = χ2(n−p, 0)with (n−p) = 22. The critical value for a test at levelα = 0.05 is cα = 33.924. Accord-

ingly, the p-values for S2∅ and S2ω in testing Hσ0 : σ 2
= 1.0 against upper alternatives are P((n−p)S2∅ > 17.16630) = 0.7540

and P((n− p)S2ω > 37.31680) = 0.0218 from Table 2, as evaluated from χ2(22, 0). Consequently, evidence points towards
a significant increase in variability in concert with the shift {Yω = Y∅ + ω} with ω′

= [4, 4, 4, 0, . . . , 0]′. In reality, under
Gaussian errors we have L((n − p)S2ω/σ

2) = χ2(n − p, λ2) with σ 2λ2 = ω′

2ω2 = 28.7827 from Theorem 2(iii), under
which P((n − p)S2ω > 37.31680) = 0.8620.

5.2.3. Case 2.2
Our Case 2.1 analyses exploited the known structure of the Hadi and Simonoff [10] data in recovering Y∅ = Yω − ω.

This enabled us to illustrate essentials of Theorems 1 and 2. Since such structure typically is unavailable, we turn next to
essentials of Section 4.

To these ends, we continue as in Section 4 in the context of the (1993) study. Specifically, we take Xo = X = [1n,X1,X2]

as before, with n = m = 25; p = 3; Yo = Xβo + εo which is free of shifts; whereas Yω = Xβω + εω has its response
vector shifted by ω = [4, 4, 4, 0, . . . , 0]′ as before. In addition, the error vectors {εo, εω} are N(0, 1) deviates generated
independentlywithin and across samples in keepingwith the tenets of Section 4. Values Yo so generated are listed in column
1 of Table 3; similarly, values Yω are listed in column 3 of Table 3; each is disturbed by N(0, 1) deviates generated anew
within and across samples. Moreover, S 2

o = e′
oeo/(n− p) and S2ω = e′

ωeω/(n− p);Ho = Hn = X(X ′X)−1X ′
; ω1 = Hnω; and

ω2 = (In − Hn)ω are as reported in Table 3.
From Theorem 4 we carry forwardω1 = X(βω −βo) ∈ Rn andω2 = (eω − eo) ∈ Rn with values as reported in Table 3.

Estimated parameters are determined to be

βo =


−0.25596
1.00180
0.99046


; βω =


−0.05315
1.12669
0.93606


;


S 2
o
S2ω


=


1.18595
2.67888


.
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The vectors {ω1,ω2} are orthogonal, with ω′

1ω1 = 19.2173 and ω′

2ω2 = 28.7827 such that ω′ω = 48. Similarly {ω1,ω2}

are orthogonal, withω′

1ω1 = 20.0377 andω′

2ω2 = 44.8657 such thatω′ω = 64.9034. Table 3 records the response vectors
Yo and Yω; residual vectors eo and eω; the shift vectors {ω1,ω2} and their estimates {ω1,ω2}. Computations utilized the
software package MINITAB.

The distributions L(ω′

1ω1/2σ 2) = χ2(p, ω′

1ω1/2σ 2) and L(ω′

2ω2/2σ 2) = χ2(n − p, ω′

2ω2/2σ 2) are as in Theorem 4.
For our case study with σ 2

= 1.0, the p-values are

P(ω′

1ω1/2 > 20.0377/2) = 0.602 from L(ω′

1ω1/2) = χ2(3, 19.2173/2)

P(ω′

2ω2/2 > 44.8657/2) = 0.934 from L(ω′

2ω2/2) = χ2(22, 28.7827/2)

showing that both quantities {ω′

1ω1,ω′

2ω2} are within the range of their respective 95% confidence intervals.
To test H0 : ω = 0 against H1 : ω ≠ 0, we test both H01 : ω1 = 0 and H02 : ω2 = 0 against H11 : ω1 ≠ 0 and

H12 : ω2 ≠ 0. One application in statistical process control is to assess whether a process has remained in control (ω = 0)
or has shifted (ω ≠ 0); and whether ω1 ≠ 0 has shifted the OLS solutionsβ, or whether ω2 ≠ 0 has shifted the residuals
and thus inflated the variation about the best-fitting line.

For testing H01 : ω1 = 0, not assuming σ 2 to be known but estimated unbiasedly by S 2
o , Theorem 5(i) shows that

F = ω′

1ω1/2pS 2
o has under H01 the distribution L(F) = F(p, n − p, 0), with critical value cα = 3.04912 from F(3, 22, 0)

at α = 0.05. With the values from our case study, we find P(F > 20.0377/2(3)(1.18595) = 2.81598) = 0.06280 as
borderline evidence in favor of H11 : ω1 ≠ 0. Equivalently, as in the Case 2.1 study, we infer not only that responses have
shifted in the Yω data, but that these shifts are accompanied by standardized changes in the betas.

For the test H0 : ω2 = 0, Theorem 5(ii) gives R2
= ω′

2ω2/2e′
oeo = ω′

2ω2/2(n − p)S 2
o as a ratio of dependent chi-squared

variates with parameter ρ2
= 1/2 and with degrees of freedom (n − p, n − p). Its positive square root has the distribution

L(R) = Gρ(n−p, n−p, 0). Values from our case study give R2
= ω′

2ω2/2(n−p)S 2
o = 44.8657/2(22)(1.18595) = 0.85980

and R = 0.92725 with p-value P(R > 0.92725) = 0.59776 from L(R) = Gρ(22, 22, 0), which in turn supports the null
hypothesis H02 : ω2 = 0.

The experiment was repeated 250 times to recover estimates for the expected values of F = ω′

1ω1/2pS 2
o and R =

[ω′

2ω2/2(n − p)S 2
o ]

1
2 as 2.680 and 0.7250, respectively, with associated p-values P(F > 2.680) = 0.0718 from F(3, 22, 0),

and P(R > 0.7250) = 0.8520 from L(R) = Gρ(22, 22, 0), indicating borderline evidence in favor of H11 : ω1 ≠ 0, while
supporting the null hypothesis H02 : ω2 = 0.

5.2.4. Shifts: moment estimation
The Hadi and Simonoff data in Section 5.2 were shifted by ω ≠ 0 units. In this section we show how to compute a

moment estimator ω for the shift vector ω. To conform with the notation of Jensen and Ramirez [15] as in Appendix A.2,
these follow on eliminating s rows [YI , Z, εI ] from [Yo,Xo, εo], leaving {Y = Xβ + ε} of full rank with r = n − s > p rows,
giving observed residuals e′

o = [e′, e′

I ] and (βI , S
2
I ) from the reduced data. The case s = 1 has {Z = z ′

i ,
βI = β(i), S2I = S2(i)}.

Taking {Yo → Yo + ω} with ω′
= [γ ′, δ′

] ∈ Rn and γ fixed, Lemma A.3 of Jensen and Ramirez [15] under Assumption A
gives δ(γ) = (YI − ZβI)+ Z(X ′X)−1X ′γ : s > 1; (5.2)δi(γ) = (Yi − z ′

i
β(i))+ z ′

i (X
′X)−1X ′γ : s = 1; (5.3)

as unbiased for (δ, δi) with γ fixed, having dispersion matrix V(δ) = σ 2
[Is + Z(X ′X)−1Z ′

] not depending on γ . A seminal
tool in outlier detection is the ratio λ = e′

oeo/e
′

IeI , with λ >> 1 supporting the conjecture that outlying shifts {YI → YI +δ}
have occurred in the subset YI .

The data of Hadi and Simonoff [10] are intended to hide the shifts in rows {1, 2, 3}. We next demonstrate that moment
equations of type (5.3) provide good estimates for the hidden shifts. To these endswe analyze responses from Table 3, where
Yω by construction has shifts of 4.0 in rows {1, 2, 3} in keeping with Hadi and Simonoff [10]. To illustrate the methodology,
we suppose that strict experimental control may have lapsed during the first six runs and, accordingly, that the researcher
is concerned about prospective shifts {Yi + δi; 1 ≤ i ≤ 6}, to be denoted as {δ1, δ2, δ3, δ4, δ5, δ6}, with no shifts having
occurred subsequently. The statistic λ = 58.94/18.82 = 3.13 supports the claim that there are outlier shifts in YI .

The moment equation for δ1 is given by

δ1 = (Y1 − z ′

1
β(1))+ z ′

1(X
′X)−1X ′

[δ2, δ3, δ4, δ5, δ6, 0, . . . , 0]′

where elements [δ2, δ3, δ4, δ5, δ6, 0, . . . , 0]′ replace γ , of order (24×1), in (5.3), with similar equations for {δ2, . . . , δ6}. For
Yω the six consistent moment equations in the six unknowns are

δ1 = +4.0752 + 0.1550δ2 + 0.1542δ3 + 0.1574δ4 − 0.0293δ5 + 0.0479δ6
δ2 = +3.1204 + 0.1548δ1 + 0.1532δ3 + 0.1563δ4 − 0.0287δ5 + 0.0478δ6
δ3 = +2.2083 + 0.1538δ1 + 0.1530δ2 + 0.1553δ4 − 0.0281δ5 + 0.4772δ6
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δ4 = −3.1216 + 0.1637δ1 + 0.1629δ2 + 0.1621δ3 − 0.0370δ5 + 0.1030δ6
δ5 = +1.1100 − 0.0277δ1 − 0.0272δ2 − 0.0267δ3 − 0.0336δ4 + 0.0357δ6
δ6 = −1.2916 + 0.0462δ1 + 0.0463δ2 + 0.0462δ3 + 0.0954δ4 + 0.0364δ5

with solutionsδ1 = 4.99, δ2 = 4.16,δ3 = 3.37, δ4 = −1.19, δ5 = 0.78,δ6 = −0.80. The estimated standard deviation
from the reducedmodel eliminating {Yi; 1 ≤ i ≤ 6} is SI = 1.0845, so that standardized shifts are given byδi/SI with values
{4.60, 3.84, 3.10, −1.10, 0.72, −0.74}, namely, the first three shifts near 4.0, and remaining shifts near 0.0. This provides
evidence that the only essential shifts are in rows {1, 2, 3}. We next analyze these rows separately.

Given shifts only in rows I = {1, 2, 3}, Eq. (5.3) gives

δ1 = 4.0752 + 0.1550δ2 + 0.1542δ3
δ2 = 3.1204 + 0.1548δ1 + 0.1532δ3
δ3 = 2.2083 + 0.1538δ1 + 0.1530δ2

with solutionsδ1 = 5.35,δ2 = 4.52, δ3 = 3.72. The estimated standard deviation from the reduced model eliminating
{Y1, Y2, Y3} is SI = 1.0443. The standardized shifts are given byδi/SI with values {5.12, 4.33, 3.56}, empirically supporting
the claim that the shifts in rows {1, 2, 3} are around 4.0.

5.2.5. A caveat
For completeness it should be recorded that the analysis of Hadi and Simonoff [10] in regard to their Table 1 is strictly

inadmissible. Specifically, they applied OLS when their first three observations are deterministic since devoid of random
disturbances. This is not countenanced in Gauss–Markov theory; indeed, weighted regression would entail infinite weights;
and otherwise the equations {Y = Xβ + ε∗

}, with ε∗
= [0, 0, 0, ε′

]
′
∈ Rn, are inconsistent. We have preempted this pitfall

here on assigning random N(0, 1) disturbances to all observations.

6. Conclusions

Traditional deletion diagnostics focus on shifts in one or a proper subset of elements of Y . The present study allows a
fixed but unknown vector ω to perturb all elements of Y . On technical grounds ω is decomposed into orthogonal compo-
nents, the ‘‘Regressor’’ component ω1 accounting for shifts in the OLS solutions according to the rule βω = β + κ with
κ = (X ′X)−1X ′ω1, and the ‘‘Error’’ component ω2 accounting for inflated variation about the best-fitting line according
to the rule eω = e + ω2. The distributions of (βω, eω) are given in Theorem 2 under Gaussian errors, and anomalies in
conventional tests regarding (β, σ 2) are given in Corollary 1.

Specifically, when ω = ω2 ≠ 0, the test for Hβ0 : β = βo is conservative, akin to the concept ofMasking in deletion diag-
nostics. In contrast, for the case ω = ω1 ≠ 0, the test is anti-conservative, akin to Swamping in deletion diagnostics. Under
Gauss–Markov errormoments, Theorem 4 shows thatω1 = X(βω −βo) is unbiased forω1 = Hnω; for the case n = m,ω2 =

(eω − eo) is unbiased for ω2 = (In − Hn)ω. Moreover, bothω1 andω2 have normal distributions; for the case X = Xo, their
dispersion matrices are V(ω1) = 2σ 2Hn and V(ω2) = 2σ 2(In −Hn), respectively. The associated quadratic forms have non-
central chi-squared distributions, namely,L(ω′

1ω1/2σ 2) = χ2(p, ω′

1ω1/2σ 2) andL(ω′

2ω2/2σ 2) = χ2(n−p, ω′

2ω2/2σ 2).
Connections to other venues deserve note, to include deletion diagnostics as in Appendix A.2. On visualizing shifts instead

as contaminants in robust regression, even hereωwould be limited in scope, as themost resistant algorithmswould tolerate
at most 50% nonzero contaminants.

Our case studies arise in monitoring a linear profile as in [20], together with a reexamination of data from Hadi and
Simonoff [10]. To test that there are no shifts in the model, that is for H0 : ω = 0, we have given the distributions under the
null hypothesis for both H01 : ω1 = 0 and H02 : ω2 = 0. The critical value for the former is from a central F-distribution;
for the latter its critical value is from the distribution of the ratio of correlated chi-squared variables as derived afresh in
Appendix A.1 to follow. Moreover, moment estimators for shifts are given in the context of Hadi and Simonoff [10] based
on single-case deletion diagnostics.

Appendix

A.1. Distribution: ratio of correlated variables

For the case that X = Xo and Hn = Ho, recall that L(ω′

2ω2) is noncentral and L(e′
oeo) is central under Assumption A

and Ao. Their ratioω′

2ω2/2e′
oeo would be scale-invariant to the unknown σ 2, as done in Theorem 5(i) in testing H0 : ω1 = 0

against H1 : ω1 ≠ 0 at level α using F = (ω′

1ω1/2pS 2
o ). However, (ω2, eo) = [(eω − eo), eo] are dependent; this in turn

generates dependent quadratic forms having bivariate χ2-distributions, as well as a nonstandard F-distribution of their
ratio. These have been studied in the literature, but not for the case of singular joint and marginal distributions of (ω2, eo)
as encountered here. For completeness we proceed to undertake the required modifications.
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To these ends consider Z ′
= [e′

ω, e
′
o] ∈ R2n such that V(Z) = σ 2Diag(A, B). To adjust for scale let

√
2R = (eω −eo) = ω2

and S = eo, and eventually Q (R) = ω′

2ω2/2 and Q (S) = e′
oeo. Then their dispersion matrix is given by the following,

together with its value when A = B = (In − Hn), namely

V


R
S


=


c2(A + B) −cB

−cB B


=


(In − Hn) −c(In − Hn)

−c(In − Hn) (In − Hn)


(A.1)

with c2 = 1/2. Their joint distribution is singular since (In−Hn) is idempotent of order (n×n) and rank (n−p). Accordingly,
its spectral decomposition is (In − Hn) = QDQ ′ with D = Diag(Iν, 0), so let T = Q ′R and U = Q ′S . Their singular joint
dispersion matrix is

V


T
U


=


Diag(Iν, 0) −cDiag(Iν, 0)

−cDiag(Iν, 0) Diag(Iν, 0)


. (A.2)

To proceed, let ψ(x; g) = xg−1e−x/Γ (g) and identify {L(g−1)
h (x); h ∈ {0, 1, 2, . . .}} as the system of Laguerre polynomials

of degree h and orthogonal with respect to ψ(x; g). Take ρ = 1/
√
2 and ν∗

= (n − p)/2. Essentials are reported in the
following.

Lemma A.1. Let ω2 = (eω − eo) under Assumption A and Ao, for experiments having X = Xo and Hn = Ho. Let f (q1, q2) be the
joint density of Q1 = ω′

2ω2/2 and Q2 = e′
oeo, and identify L(ω′

2ω2/2e′
oeo) = Fρ(n − p, n − p, λ) as the distribution of their

ratio.

(i) Then the joint central pdf with arguments (q1, q2), ρ = 1/
√
2 and ν∗

= (n − p)/2, is

f (q1, q2) = ψ(q1; ν∗)ψ(q2; ν∗)

∞
k=0

ρ iL(ν
∗
−1)

k (q1)L
(ν∗−1)
k (q2). (A.3)

(ii) The pdf of Fρ(n − p, n − p, 0), as the null distribution of Z = (ω′

2ω2/2e′
oeo), is given by

f (z) =
(1 − ρ2)

ν
2 z

ν
2 −1

B

ν
2 ,

ν
2


(1 + z)ν


1 −

4ρ2z
(1 + z)2

−
ν+1
2

(A.4)

with ν = n − p and B(· , ·) as the beta function.
(iii) The pdf of Gρ(n − p, n − p, 0), as the null distribution of W = (ω′

2ω2/2e′
oeo)

1
2 , is given by

g(w) =
2(1 − ρ2)

ν
2wν−1

B

ν
2 ,

ν
2


(1 + w2)ν


1 −

4ρ2w2

(1 + w2)2

−
ν+1
2

. (A.5)

Proof. Partition T ′
= [T ′

1, T
′

2] and U ′
= [U ′

1,U
′

2] in (A.2), with (T1,U1) ∈ Rn−p. Their nonsingular joint dispersion

matrix is V


T1
U1


=


1 −c

−c 1


⊗ Iν with A ⊗ B as the Kronecker product. Clearly Q (R) = ω′

2ω2/2 = T ′

1T1 + T ′

2T2

and Q (S) = e′
oeo = U ′

1U1 + U ′

2U2 but, since the distribution L(T2,U2) is degenerate at (0, 0), stochastic properties of
(ω′

2ω2/2, e′
oeo) are determined completely by Q0(R) = T ′

1T1 and Q0(S) = U ′

1U1. Here L(T1,U1) is nonsingular such that
elements of T1 are mutually independent, as are elements of U1, whereas their pair-wise correlation is ρ = −1/

√
2. In this

setting the expansion (A.3) in Laguerre polynomials traces back to Kibble [19]; the expression (A.3) follows on specializing
Eq. (3.14) of Jensen [12] with ρ = 1/

√
2 as the common Hotelling [11] canonical correlation between elements of (T1,U1).

Expression (A.4), reported as Eq. (13) in [17, p. 222] (correcting their beta function B( 12 ,
ν
2 )), derives from this distribution.

Expression (A.5) derives in turn from (A.4) through the change of variables w2
= z, but was given earlier in [4,7] using

different methods. �

A.2. Deletion diagnostics: a critique

Deletion diagnostics follow on eliminating one or a subset of rows from {Yo = Xoβ + εo}. The remaining data give
solutions (β(i), S2(i)) on deleting [Yi, x′

i, εi], and (βI , S
2
I ) on deleting [YI , Z, εI ] comprising s rows indexed by I . Of interest is

either a single shift {Yi → Yi + δ}, or a vector shift {YI → YI + δ}. The observed residuals eo = (In − Hn)Yo are partitioned
as e′

o = [e′, ei] and e′
o = [e′, e′

I ] for these cases, respectively, where Hn = Xo(X ′
oXo)

−1X ′
o. Many deletion diagnostics, long

deemed to be staples of regression, are studied in [3,6,2,1,24,5,22,8], and others. Designs fully estimable after deletions are
studied in [9].

Remark 4. These shifts specialize those of Section 3.1, namely ω′
= [0′, δ] for single-case, and ω′

= [0′, δ′
] for subset

deletions. Connections to the present study follow.
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Various influence diagnostics seek to track changes in the regression output owing to deleted observations. The quantity
{DFBij = (βj − βj(i))/(S(i)

√
cjj)}, also called DFBETA, is a scaled divergence between (βj, βj(i)) as elements of (β, β(i)) with

and without Yi, with cjj from the diagonal of (X ′
oXo)

−1. Similarly {DFT i = (Yi − Yi(i))/(S(i)
√
hii)}, known also as DIFFIT, is a

scaled divergence between predictors at xi with and without Yi. Thus Yi is deemed to be influential for estimating βj, or for
predicting at x′

i , according as DFBij or DFT i relate to designated cutoff values. See especially Belsley et al. [3]. Unfortunately,
these concepts fail to grasp the actual changes, as demonstrated in the following.

Remark 5. In Case Study 1 of Section 5.1, the asserted difference in DFBij is (βj −βj(i)). Instead the actual difference induced
by the shift {Y1 → Y1 + 4} is (βωj − βj) = κj as elements of (βω − β) = κ from Table 1. On deleting the outlying Y1 we
compute β(1) = [12.0061, 2.4661]′ so that (βω − β(1)) = [1.8464, −1.1079] as components of [DFB11, DFB12]. These
clearly miss the mark in excess, if intended to gage the change inβ owing to deleting the shifted {Y1 → Y1 + 4}. The actual
difference inβ induced by {Y1 → Y1 + 4} is κ = [1.0, −0.6]′.

Remark 6. Similarly, the asserted difference in DFT 1 is (Y1 − Y1(1)) = x′

1(
βω − β(1)) = 12.5269 in Case Study 1, with

x′

1 = [13,−3]. This again misses the mark if intended to gage the change in the predictor at x1 owing to {Y1 → Y1 + 4}.
Instead the actual difference induced by {Y1 → Y1 + 4} is x′

1κ = 14.8000 from Table 1.
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