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Seeking outlying subsets under star-contoured errors
Donald R. Jensena and Donald E. Ramirez b

aDepartment of Statistics,Virginia Tech, Blacksburg, Virginia, USA; bDepartment of Mathematics, University of
Virginia, Charlottesville, Virginia, USA

ABSTRACT
Given observations Yi; 1 � i � nf g with dispersion matrix Σ, a per-
vading issue is whether shifts have occurred in designated subsets of
the observations. Early work on single shifts used order statistics or the
R–Student ti statistics as diagnostics, initially derived under i.i.d.
Gaussian assumptions. These diagnostics recently have been shown
to remain exact in level and power under equicorrelation and more
general dispersion structures, and under star-contoured mixtures sup-
planting Gaussian errors, with an accounting for irregularities engen-
dered by shifts at other than the designated cases. Extensions here
pertain to outlying subsets using the R-Fisher diagnostics FI; showing
invariance of its distribution and of related diagnostics under more
general dispersion structures and mixtures over these. Shifts occurring
at cases other than those designated induce doubly noncentral F
distributions. These elicit profound disturbances in operating charac-
teristics of the diagnostics, serving in turn to explain masking and
swamping, and the discovery of hidden “regression effects” among
outliers. Evidence for anomalies arising from denominator noncentral-
ities rests on two-sided rejection rules to be given. Numerical studies
serve to illuminate the essence of the findings in practice.
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1. Introduction

Given observations Y 0
0 ¼ ½Y1; . . . ;Yn� having a vector mean µ and dispersion matrix Σ,

much research has focused on a pervading issue: to assess whether a single shift,
Yi ! Yi þ δif g; or a subset shift, YI ! YI þ δIf g; has occurred. Consequences are

profound: whether to discard irregular observations as compromised or anomalous, or
to pursue heretofore unknown features that may have been revealed in explanation. It is
instructive to enumerate the typical assumptions from the literature as follow.

Assumptions A. A1, Σ ¼ σ2In; A2, Y0 has a Gaussian distribution; A3, the shifts
Yi ! Yi þ δif g or YI ! YI þ δIf g occur exclusively at the designated observations.

Against this background we survey precedents as well as objectives of the present study.
Looking ahead, assumptions A1 and A2 are unnecessarily limiting, while A3 largely has
been overlooked, to the detriment of the essential objectives of many studies.

Procedures to identify Yi ! Yi þ δif g trace to Dixon (1950), Grubbs (1950), and
Ferguson (1961) based on order statistics, and to the R-Student t2i of Snedecor and
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Cochran (1968, p. 157) and Beckman and Trussell (1974), all predicated on Assumptions
A. Nonetheless, these diagnostics remain exact in level and power under the equicorrela-
tion matrix ΣðρÞ and Σð�Þ to be identified, both in lieu of A1, and for star-contoured
Gaussian mixtures supplanting A2. Moreover, irregularities in the Student ti diagnostics
owing to the failure of A3 have been documented. See Jensen and Ramirez (2015). In
addition, those findings encompass both single-case influence and outlier diagnostics
corresponding one-to-one with ti or t2i :

Subset deletions are undertaken here when each of Assumptions A fails; these studies in
parallel with the preceding paragraph. Accordingly, partition Y 0

0 ¼ ½Y 0;Y 0
I�; and the

ordinary residuals conformably as e00 ¼ ½e0; e0I � of orders ð1 � rÞ and ð1 � sÞ; r þ s ¼
n: The means initially are taken to be constant through Yr but arbitrary thereafter, to be
modeled as YI ! YI þ δf g: The shift diagnostic of Gentleman and Wilk (1975) takes the
form

FI ¼
e0IðIs þ 1

r 1s1
0
sÞeI

sS2I
(1)

with S2I as the sample variance from Y. The distribution then is LðFIÞ ¼ Fðu; s; r � 1; λÞ in
Gaussian data such that λ ¼ δ0ðIs þ 1

r 1s1
0
sÞδ=σ2: Details and extensions are given subse-

quently, where specializing to s ¼ 1 gives t2i : Moreover, if δ is concentrated in a subspace
of R s of dimension k < s and having the same λ; then a result of Das Gupta and Perlman
(1974) shows the power to be greater for Fðu; k; n� k� 1; λÞ than for Fðu; s; r � 1; λÞ:
Designs fully estimable after deletions are reported in Ghosh (1978).

In perspective, regression diagnostics appear widely in the literature, applying as
needed for the model Y0 ¼ μþ �0f g featured here. Events referred to as the masking
and swamping of outliers serve to obfuscate meanings ascribed to outlier diagnostics,
where masking “is an important problem in influence analysis which deserves further
study” Hoaglin and Kempthorne (1986, p. 410). See also Bendre and Kale (1987). Our
technical tools offer further insight, as reported subsequently.

This study goes beyond the classical paradigm since Assumptions A often fail. In regard
to A1; correlated data arise in direct and inverse calibrations as in Jensen and Ramirez
(2009, 2012) and numerous other settings. In addition, Box and Tiao (1968) and Aitkin
and Wilson (1980) have modeled data from subsamples as Gaussian mixtures. In addition,
mixtures are central in clustering models as seen in Punzo, Browne, and McNicholas
(2016). These mixtures effectively stipulate that Assumption A2 be replaced in their
respective fields of application. In short, that dependent data and mixtures do emerge in
practice serves to motivate their inclusion here, whereas outliers continue to arise in the
expanded models. It follows that FI; traditionally viewed among normal-theory para-
metric procedures, is seen from this study to be genuinely nonparametric, holding exactly
for Gaussian mixture distributions. This expands substantially their ranges of applicability
beyond those known to date. An outline follows.

The developments of section 2 include notation and properties of the ensembles
ΣðρÞf g and Σð�Þf g together with essential properties of the residuals. Irregularities

in the use of FI are identified in section 3 for the case where Σ ¼ σ2In. Extensions to
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include Σ 2 ΣðρÞ;Σð�Þf g; and for mixture distributions over these ensembles, are
given in section 4. Some consequences are detailed through numerical studies in
section 5, and critical supporting topics are attached for completeness as an
appendix.

2. Preliminaries

2.1. Notation

Spaces of note include Euclidean n-space R
n; its positive orthant R

n
þ; and the real

symmetric ðn� nÞ matrices Sn. Vectors and matrices are set in bold type; the transpose,
inverse, trace, and determinant of A are A0; A�1; trðAÞ; and Aj j; In is the ðn � nÞ identity;
and DiagðA1; . . . ;AkÞ is a block-diagonal array. Throughout we designate An ¼ 1

n 1n1
0
n and

Bn ¼ ðIn � 1
n 1n1

0
nÞ as idempotent matrices of ranks 1 and n – 1, respectively.

A random Y 2 R
n has distribution L ðYÞ; mean EðYÞ; dispersion matrix VðYÞ ¼ Σ0

taking the value VarðYÞ ¼ σ2 on R
1; and a density function ðpdf Þ gðyÞ: Specifically,

LðYÞ ¼ Nnðμ;ΣÞ is Gaussian on R
n with mean μ and dispersion matrix Σ. Distributions

on R
1
þ of note include χ2ðν; λÞ as chi-squared having ν degrees of freedom and noncen-

trality λ; and the doubly noncentral Snedecor–Fisher Fðu; ν1; ν2; λ1; λ2Þ having ðν1; ν2Þ
degrees of freedom, and numerator and denominator noncentrality parameters ðλ1; λ2Þ.
Identify fFI > cαg as the conventional upper α-level rejection rule based on Fðu; ν1; ν2; 0; 0Þ:
Essential ordering properties of Fðu; ν1; ν2; λ1; λ2Þ are known as follow.

Proposition 2.1. Given LðFIÞ ¼ Fðu; ν1; ν2; λ1; λ2Þ: Then this distribution (i) increases
stochastically with increasing λ1; and (ii) decreases stochastically with increasing λ2; with
other parameters held fixed.

2.2. The model

The general linear model of reference is Y0 ¼ X0βþ �0f g where ðY0; �0Þ 2 R
n; X0 is of

order ðn � kÞ having rank k < n, and Hn ¼ X0ðX0
0X0Þ�1X0

0 ¼ ½hij� has leverages
hii; 1 � i � nf g on its diagonal. That model specializes here to

Y0 ¼ μ þ �0; Hn ¼ ½hij� ¼ 1
n
1n1n

0
� �

: (2)

To continue, partition Y0
0 ¼ ½Y0;Y0

I� and �00 ¼ �0; �0I½ � conformably, with Y 2 R
r and

Y I 2 R
s; r þ s ¼ n: This study deviates from convention, as noted, in allowing shifts

Y0 ! Y0 þ ωf g anywhere such that ω0 ¼ ½γ0; δ0� 2 R
n; with γ 2 R

r and δ 2 R
s; to

include but transcend the conventional shifts YI ! YI þ δf g:
Accordingly, Gauss–Markov assumptions are recast as follows, where VðY0Þ ¼ σ2In

often is standardized to σ2 ¼ 1:0:
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Assumptions B. The following hold with �00 ¼ ½�0; �0I� and ω0 ¼ ½γ0; δ0�:

B1: Eð�Þ ¼ γ 2 R
r and Eð�IÞ ¼ δ 2 R

s:

B2:Vð�0Þ ¼ σ2In:

B3:Lð�0Þ ¼ Nnðω; σ2InÞ:

Definition 2.1. Decompose ω as ω ¼ ω1 þ ω2 2 R
n with ω1 ¼ 1

n 1n1
0
nω and ω2 ¼

ðIn � 1
n 1n1

0
nÞω as projections into the “mean” and “error” spaces of Y0 ¼ μþ �0f g:

Similarly, take γ ¼ γ1 þ γ2 2 R
r; with γ1 ¼ 1

r 1r1
0
rγ and γ2 ¼ ðIr � 1

r 1r1
0
rÞγ:

In addition, users long have been cognizant of critical misdiagnoses of outliers, as in the
following.

Definition 2.2. Masking occurs when outliers remain undetected; swamping occurs
when non-outliers are mistakenly identified as outliers.

2.3. Properties of residuals

This section pertains to violating Assumption A3 of the Introduction, where shifts now
may occur at cases other than the designated Y I: For consistency arrange Y0 ¼ ½Y0;Y0

I�0 so
as to delete Y I in this configuration; other choices for deletion then will require reconfi-
guring. Recalling Bn ¼ ½In � 1

n 1n1
0
n�; take the residual vector e0 ¼ BnY0 to be parti-

tioned as

e
eI

� �
¼ ðIr � 1

n 1r1
0
rÞ � 1

n 1r1
0
s

� 1
n 1s1

0
r ðIs � 1

n 1s1
0
sÞ

� �
Y
Y I

� �
: (3)

First essentials regarding eI; S2I ; FI
� �

are assembled next, where the matrix of the quadratic

form in the numerator for FI ¼ e0IðIsþ1
r1s1

0
sÞeI

sS2I
follows from the iden-

tity ðIs � 1
n 1s1

0
sÞ�1 ¼ ðIs þ 1

r 1s1
0
sÞ:

Lemma 2.1. Properties of eI; S2I ; FI
� �

under Assumptions B, where Q1 ¼ e0IðIs þ
1
r 1s1

0
sÞeI and Q2 ¼ ðr � 1ÞS2I ; may be categorized as:

(i) EðeIÞ ¼ ðδ � �ω1sÞ = μeI ; where �ω is the mean of ω in Assumptions B;
(ii) VðeIÞ ¼ σ2ðIs � 1

n 1s1
0
sÞ;

(iii) LðeIÞ ¼ NsðμeI ; σ2ðIs � 1
n 1s1

0
sÞÞ;

(iv) Lðe0IðIs þ 1
r 1s1

0
sÞeIÞ ¼ χ2ðs; λ1Þ with λ1 ¼ μ0eIðIs þ 1

r 1s1
0
sÞμeI ;

(v) Lððr � 1ÞS2I Þ ¼ χ2ðr � 1; λ2Þ with λ2 ¼ γ0Brγ ¼ γ02γ2;
(vi) Q1 and Q2 are distributed independently;
(vii) LðFIÞ ¼ Fðu; s; r � 1; λ1; λ2Þ:
Proof. (i) Eðe0Þ is found on substituting EðYÞ ¼ γ and EðY IÞ ¼ δ on the right of

expression (3). Since Vðe0Þ ¼ σ2Bn; the marginal dispersion matrix follows as VðeIÞ ¼
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σ2ðIs � 1
n 1s1

0
sÞ as the lower right submatrix in Eq. (3), giving conclusion (ii). Conclusion

(iii) follows directly from Assumption B3: To continue, the theory of quadratic forms

asserts that e0IðIs � 1
n 1s1

0
sÞ�1eI has a noncentral χ2ðs; λ1Þ distribution with λ1 ¼

μ0eIðIs � 1
n 1s1

0
sÞ�1μeI ; giving conclusion (iv) on noting that ðIs � 1

n 1s1
0
sÞ�1 ¼ ðIs þ

1
r 1s1

0
sÞ: In a similar manner the quadratic form ðr � 1Þ S2I ¼ Y 0BrY is distributed as χ2ðr �

1; λ2Þ with λ2 ¼ γ0 Brγ ¼ γ02γ2 from Definition 1, to establish conclusion (v). Conclusion
(vi) follows on identifying Q1 ¼ Y 0

0A1Y0 and Q2 ¼ Y 0
0A2Y0 from Appendix expression (6)

and verifying that A1A2 ¼ 0: Conclusion (vii) follows since FI ¼ ðr � 1ÞQ1=sQ2; to
complete our proof.

3. Inferences based on FI

Two essential topics emerge: (i) to examine disturbances in the use of FI owing to λ2 > 0:, and
(ii) to garner sample evidence regarding λ2; historically taken to be zero without comment. A
first look in section 3.1 establishes that LðFIÞ is doubly noncentral under Σ ¼ σ2In, inducing
disturbances in the use of FI as in section 3.2. Topic (ii) is reexamined in section 3.3. Those
findings in turn are extended in section 4 for ensembles of type Σ 2 fΣðρÞ;Σð�Þg and for
mixtures over these ensembles.

3.1. Properties of FI : Σ ¼ σ2In

Outliers and their effects on FI are considered next, in continuation of violating
Assumption A3: Recall that γ1 ¼ 1

r 1r1
0
rγ and γ2 ¼ ðIr � 1

r 1r1
0
rÞγ are projections of the

shift Y ! Y þ γf g into the respective location and error spaces of the model
Y ¼ μ1r þ �f g: A principal finding is the following.

Theorem 3.1. Given Assumptions B with Eð�0Þ ¼ ω ¼ ½γ0; δ0�0; together with γ ¼ γ1 þ
γ2: Then the distribution of FI is LðFIÞ ¼ Fðs; r � 1; λ1; λ2Þ such that

(i) λ1 ¼ ðδ � �ω1sÞ0ðIs þ 1
r 1s1

0
sÞðδ � �ω1sÞ; where �ω ¼ r�γþs�δ

n .
(ii) λ2 ¼ γ0Brγ =

Pr
i¼1 ðγi � γÞ2 = γ02γ2:

(iii) For γ ¼ γ1; then LðFIÞ ¼ Fðs; r � 1; λ1; 0Þ with λ1 as in (i); and at δ ¼ 0; then
LðFIÞ ¼ Fðs; r � 1; λ1; 0Þ with λ1 ¼ rsγ2=n:

(iv) For γ ¼ γ2; then LðFIÞ ¼ Fðs; r � 1; λ1; λ2Þ with λ1 ¼ ðδ � s δ
n 1sÞ0ðIs þ 1

r 1s1
0
sÞ

ðδ � s δ
n 1sÞ and λ2 as in (ii); and at δ ¼ 0; then LðFIÞ ¼ Fðs; r � 1; 0; λ2Þ:

Proof. Conclusion (i) follows from Lemma 1(i),(iv), and conclusion (ii) from Lemma 1
(v). Taking γ ¼ γ1 assigns γ2 ¼ 0 and λ2 ¼ 0 from (ii); at δ ¼ 0; then ω ¼ rγ=n to give

conclusion (iii). On the other hand, taking γ ¼ γ2 implies γ ¼ 0 and ω ¼ sδ=n; to
establish conclusion (iv).

JOURNAL OF STATISTICAL THEORY AND PRACTICE 761



3.2. Anomalies in the use of FI

As in expression (1), conventional usage takes LðFIÞ ¼ Fðu; s; r � 1; λ1Þ; rejecting for
fFI > cαg as an α-level unbiased test for H0 : δ ¼ 0 against H1 : δ� 0; with cα from
Fðu; ν1; ν2; 0Þ and with power increasing in λ1: This is contra-indicated as follows for
LðFIÞ ¼ Fðu; s; r � 1; λ1; λ2Þ as in Theorem 3.1, where γ ¼ γ1 þ γ2 as before. Departures
from convention include the following properties of FI owing exclusively to the violation
of Assumption A3:

P1: (i) For LðFIÞ as in Theorem 3.1(iii), tests using fFI > cαg are anticonservative,
rejecting with probability greater than α:
(ii) For LðFIÞ as in Theorem 3.1(iv), tests using fFI > cαg are conservative, rejecting
with probability less than α:

P2: The rule fFI > cαg serves instead to test the “regression effect” H0 : δ ¼ �ω1s vs
H1 : δ� �ω1s as in Theorem 3.1(i). This serves to mask that δ� 0 through ω 1s� 0:

P3: The test intended for H0 : δ ¼ 0 is achieved at γ ¼ γ2; in the sense that �γ ¼ 0
and λ1 ¼ 0 under H0; but at the expense of λ2 > 0 as in Theorem 3.1(iv)
and P1ðiiÞ:

P4: An outcome fFI > cαg; misattributed to δ� 0 when in fact δ ¼ 0; accounts for δ ¼
0 to be swamped by γ: For the case γ2 ¼ 0; the swamping probability is PðFI > cαjλ1Þ
as determined from Fðu; s; r � 1; λ1; 0Þ with λ1 ¼ rsγ2=n as in Theorem 3.1(iii).

P5: The event γ ¼ γ2� 0 serves to mask δ� 0 since Fðu; s; r � 1; 0; λ2Þ is stochastically
smaller than Fðu; s; r � 1; 0; 0Þ by Proposition 2.1(ii). Accordingly, the value λ

y
1

such that PðFI > cαÞ ¼ α exactly, under Fðu; s; r � 1; λy1 ; λ2Þ; serves to gauge the

“minimal” element λy1 to be discerned at level α; as the power increases mono-

tonically from the value α for λ1 > λ
y
1 : In particular, all parameters on the boundary

and interior of the ellipsoid fδy
0
ðIs þ 1

r 1s1
0
sÞδy � λ

y
1g fail to be rejected with

probability 1 � α; and thus comprise the parameters masked by γ2 � 0: For

example, for Fðu; 4; 20; λy1 ; 2Þ; the value at α ¼ 0:05 is λy1 ¼ 0:4152:
P6: Subset diagnostics entrenched in the genre include those of Appendix A.2 as they

pertain to models of the present study. Unfortunately, these are thrown into disarray,
altered irrevocably by anomalies in FI: In particular, if subsets are ascribed to be
outlying or influential, or not, using the diagnostics of Table A.1, these may have
been misidentified owing to unexamined outliers in the nondeleted elements of Y0:

3.3. Two-sided rejection rules

That the intended properties of FI are thwarted for λ2 > 0 is evident. Empirical evidence to
this effect may be garnered through two-sided rejection rules. Indeed, large FI is classical
evidence against H0 : δ ¼ 0: If instead FI is deemed to be small, then from Proposition
2.1(ii) this would be consistent with a stochastically smaller distribution, specifically
Fðu; ν1; ν2; 0; λ2Þ with λ2 > 0: Accordingly, two-sided rejection rules for FI appear to
offer plausible evidence in regard to ½λ1; λ2�: Since FI ¼ ðQ1=ν1Þ=ðQ2=ν2Þ is the ratio of
scaled and independent chi-squared variables, further insight is gained from the equiva-
lence of LðFIÞ ¼ Fðu; ν1; ν2; λ1; λ2Þ and LðF�1

I Þ ¼ Fðu; ν2; ν1; λ2; λ1Þ: This in turn
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prompts the following heuristic approach for testing H0 : ½λ1; λ2� ¼ ½0; 0 � against desig-
nated alternatives.

Algorithm 3.1. Consider LðFIÞ ¼ Fðu; ν1; ν2; λ1; λ2Þ as alternative to Fðu; ν1; ν2; 0; 0Þ:
Take c1 and c2 as the upper ðα=2Þ-fractiles of Fðu; ν2; ν1; 0; 0Þ and Fðu; ν1; ν2; 0; 0Þ;
respectively. Then:

(i) The interval ½1=c1 � FI � c2� serves as a ð1 � αÞ-level acceptance region for H0:
(ii) FI > c2 is taken as evidence against H0 in favor of λ1 > 0:
(iii) FI < 1=c1; is taken as evidence against H0 in favor of λ2 > 0:

To illustrate, lower and upper acceptance limits are given in Table 3.1 for α ¼ 0:05 in
selected cases.

Remark 3.1. As the reader will note, this algorithm itself departs from convention,
where tests for H0 : ½λ1; λ2� ¼ ½0; 0 � would rest on sample estimates for ½λ1; λ2�; not
undertaken here, with rejection rules from their joint distribution. But this would entail
concepts of isotonic regression as in Barlow et al. (1972), since alternatives to H0 are
necessarily the one-sided H1 : fλ1 > 0 and=or λ2 > 0g:

4. Extended models

This section outlines dispersion matrices Σ 2 ΣðθÞ;Σð�Þ;ΣðρÞf g as alternatives to
Assumption A1 : Σ ¼ σ2In in the Introduction.

4.1. Properties of FI : Σ 2 ΣðθÞ;Σð�Þ;ΣðρÞf g
Structured dispersion matrices alternative to Σ ¼ σ2In arise on occasion in practice, while
nonetheless supporting validity in linear inference. Three ensembles of such matrices are
considered next, together with conditions that these be positive definite.

Lemma 4.1. (i) ΞðθÞ :¼ fΣðθÞ ¼ σ2ðIn þ θ1n10nÞ; θ 2 Γ1g; where Γ1 ¼ fθ > � 1
ng:

(ii) Ξð�Þ :¼ Σ �ð Þ :¼ σ2ðIn þ 1n�0 þ �10n � ��1n1n0Þ; � 2 Γ2
� �

; where Γ2 ¼ f� 2
R

n : τ1 > nτ2 � 1g with τ1 ¼ �1 þ . . .þ �n ¼ n� and τ2 ¼
Pn
i¼1

ð�i � ��Þ2:

(iii) ΞðρÞ :¼ fΣðρÞ ¼ σ2½ð1� ρÞIn þ ρ1n10n�; ρ 2 Γ3g; where Γ3 ¼ f� 1
n�1 < ρ < 1g:

(iv) ΞðθÞ and ΞðρÞ are equivalent; take k2θ ¼ ρ; then Σ θð Þ ¼ 1
1�ρΣ ρð Þ:

Proof. See Jensen (1996).

Table 3.1. Lower and upper ð1 � αÞ ¼ 0:95-level acceptance limits for FI in selected cases.
ðν1; ν2Þ 1=c1 c2 ðν1; ν2Þ 1=c1 c2
(2, 2) 0.0256 39.0000 (3, 8) 0.0688 5.4160
(2, 3) 0.0255 16.0040 (10, 10) 0.0269 3.7169
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To continue, Assumptions B are revised next in keeping with Σ 2 ΣðθÞ;Σð�Þ;ΣðρÞf g:

Assumptions B†. The following hold:

B1
y: Eð�0Þ ¼ ω ¼ ½γ0; δ0�0; i.e., Eð�Þ ¼ γ 2 R

r and Eð�IÞ ¼ δ 2 R
s;

B2
y: Vð�0Þ ¼ Σ 2 ΣðθÞ;Σð�Þ;ΣðρÞf g;

B3
y: Lð�0Þ ¼ Nnðω;ΣÞ for Σ 2 ΣðθÞ;Σð�Þ;ΣðρÞf g:

These in turn support invariance properties of LðFIÞ for dispersion matrices in the
larger class.

Theorem 4.1. Given Assumptions B† with Eð�0Þ ¼ ω0 ¼ ½γ0; δ0�; such that γ ¼ γ1 þ
γ2; and with Σ 2 fΞðθÞ; Ξð�Þ; ΞðρÞg as in Lemma 4.1:

(i) Then the distribution of FI is LðFIÞ ¼ Fðs; r � 1; λ1; λ2Þ precisely as in Theorem 3.1,
independently of Σ 2 fΞðθÞ; Ξð�Þ; ΞðρÞg

(ii) Anomalies for FI listed as P1 through P6 in section 3.2 continue to hold.
Proof. As in the proof for Lemma 2.1 write Q1 ¼ Y

0
0A1Y0 and Q2 ¼ Y

0
0A2Y0: Theorem

5.1.4 of Mathai and Provost (1992, 201) identifies the conditions (a) AiΣAi ¼ Ai; i ¼ 1; 2f g
to be necessary and sufficient for (b) LðQiÞ ¼ χ2ðνi; λiÞ; i ¼ 1; 2

� �
with νi ¼ trðAiΣÞ and

λi ¼ τ0Aiτ; where τ ¼ EðY0Þ: Moreover, A1ΣA2 ¼ 0f g is necessary and sufficient so that
Q1 and Q2 are independent. Verifying these for Σ 2 ΣðθÞ;Σð�Þf g; and for ΣðρÞ by
equivalence, is carried out in Theorem A.1 of Appendix A.1.

4.2. Properties of FI under mixtues

In keeping with our goal to replace each of Assumptions A; we finally determine that A2 is
sufficient but not necessary for our principal findings. Accordingly, consider mixtures over
Gaussian dispersion ensembles as in Lemma 4.1, taking gnðy; μ;ΣÞ as the Gaussian density
corresponding to Nnðμ;ΣÞ:

Definition 4.1. Take Ξ :¼ ΣðψÞ;ψ 2 Γf g as a typical ensemble of Lemma 4.1,
considered to have mixing parameters ψ 2 Γ with mixing cdf G on Γ; for each ψ 2
θ; �; ρf g: Further consider the dispersion mixtures

MðψÞ ¼ ff ðy; μ;GÞ ¼
ð
Γ
gnðy; μ;ΣðψÞÞdG; G 2 Gg (4)

where G consists of all cdf s on Γ:

Remark 4.1. In particular, f ðy; μ;GÞ;G 2 Gf g are dispersion mixtures of elliptical
Gaussian densities on R

n centered at μ 2 R
n: These are symmetric star-unimodal densities as
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identified in Jensen ansd Ramirez (2015). In particular, if Σ ¼ σ2 Σ
q

1¼1
wiRi with Ri ¼ ½ð1�

ρiÞIn þ ρi1n1
0
n� and wi � 0f g such that

Pq
1¼1

wi ¼ 1; then this is a finite mixture.

A result of Jensen (1989) has established invariance of the R-Student distribution Lðt2i Þ
under Gaussian mixtures of the types considered here. A principal finding next extends
that result to encompass LðFIÞ for each of the ensembles of Lemma 4.1.

Theorem 4.2. Given Assumptions B† with Eð�0Þ ¼ ω ¼ ½γ0; δ0�0; such that γ ¼ γ1 þ
γ2; and with LðYÞ as a mixture in the class MðψÞ of Definition 4.1 for each ψ 2 θ; �; ρf g:

(i) Then the distribution of FI is LðFIÞ ¼ Fðs; r � 1; λ1; λ2Þ precisely as in Theorem 3.1
for the case Σ ¼ σ2In; independently of the collection G of mixing distributions on Γ:

(ii) Anomalies regarding FI listed as P1 through P6 of section 3.2 continue to hold for
these mixtures.

(iii) Distributtions of the diagnostics fOUTI;API;CRI; FVIg of Table A.1 are identical to
those under Assumption B3: Lð�0Þ ¼ Nnðω; σ2InÞ; independently of the collection G of
mixing distributions.

Proof. Begin with a density in MðψÞ; namely, f ðy0; μ;GÞ ¼
ð
Γ
gnðy0; μ;ΣðψÞÞdG; where

y0 is the argument for Y0 ¼ ½Y 0;Y I
0�0: Making the change of variables to FI ¼ eI 0ðIsþ1

r1s1s
0Þ eI

sS2I

behind the integral gives LðFIjΣðψÞÞ ¼ �ΓFðu; s; r � 1; λ1; λ2ÞdG: But this is independent
of ΣðψÞ by Theorem 4.1, so that LðFIÞ ¼ f ðu; s; r � 1; λ1; λ2Þ unconditionally since �Γ dG ¼
1: Parallel arguments apply for each ψ 2 θ; �; ρf g: Conclusion (iii) follows since these
diagnostics correspond one-to-one with FI as seen in Appendix A.2, to complete the
proof.

It is noteworthy that these findings extend substantially beyond the classical venues for
deletion diagnostics, to include nonstandard dispersion matrices and mixtures. Moreover, our
findings are complementary to and extend considerably beyond the work of Srivastava (1980),
Young, Pavur, and Marco (1989), and Baksalary et al. (1992).

5. Numerical studies

Case studies follow in which dimensions are kept small in the interest of brevity. Note that
if γ ¼ γ1 in R

r with γ2 ¼ 0; then γ ¼ c1r holds necessarily, so that fY ! Y þ c1rg now
comprises their common shift. Moreover, if γ ¼ γ2 with γ1 ¼ 0; then �γ ¼ 0:

5.1. Overview

Irregularities tracing to Fðu; ν1; ν2; λ1; λ2Þ include β ¼ PðFI > cαÞ as common reference points.

Small sample sizes are considered, beginning with ðr ¼ 3; s ¼ 2Þ such that ðIs þ 1
r 1s1

0
sÞ ¼

1
3

4 1
1 4

� �
; together with numerator noncentralities of the type
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λ1 ¼ ϕ0ðIs þ 1
r
1s1

0
sÞϕ ¼ 1

3
ϕ1 ϕ2½ � 4 1

1 4

� �
ϕ1
ϕ2

� �
¼ 1

3
½4ϕ2

1 þ 2ϕ1ϕ2 þ 4ϕ22�

with ϕ ¼ ðδ � �ω1sÞ from Theorem 3.1(i). Accordingly, for fixed λ1 ¼ λ
y
1 ; the collection

Rðλy1 Þ ¼ fðϕ1;ϕ2Þj 13 ½4ϕ21 þ 2ϕ1ϕ2 þ 4ϕ22� ¼ λ
y
1g is the boundary of an ellipse comprising

an equivalence class of two-dimensional parameters having the same probability β: For

example, if ½ϕ1;ϕ2� ¼ ½ϕ1; 0�; then Rðλy1 Þ ¼ fðϕ1j 4ϕ
2
1

3 ¼ λ
y
1g; an even function of ϕ1; with

a corresponding expression for ½ϕ1;ϕ2� ¼ ½0; ϕ2�:

5.2. Masking

The critical masking of the shift YI ! YI þ δf g conveys erroneously that δ ¼ 0. One
venue is property P5 of section 3.2, attributing this to λ2 > 0 since Fðu; ν1; ν2; λ1; λ2Þ is
then stochastically smaller than Fðu; ν1; ν2; λ1; 0Þ. To these ends probabilities
βðλ1; λ2Þ ¼ PðFI > cαÞ are reported in Table 5.1 for the case Fðu; 3; 2; λ1; λ2Þ with λ2
zero or not.

In particular, the left portion where λ2 ¼ 0 gives points on the power curve from
Fðu; 3; 2; λ1; 0Þ with α ¼ 0:05: In contrast, entries on the right of Table 5.1 encompass (i)
actual probabilities βðλ1; λ2Þ from the doubly noncentral Fðu; 3; 2; λ1; λ2Þ; together with
(ii) βðλ1; 0Þ from the singly noncentral Fðu; 3; 2; λ1; 0Þ; were the experiment instead to
have been carried out so as to ensure that γ2 ¼ 0: Accordingly, the difference βðλ1; λ2Þ �
βðλ1; 0Þ serves to quantify the extent to which these upper tail probabilities are suppressed
owing to λ2 > 0:

5.3. Swamping

Dual to the problem that δ� 0 may be masked is that δ ¼ 0 may be swamped by outliers
γ1 � 0 at nondeleted cases, leading to the erroneous and often critical misstatement that δ� 0:
Property P4 of section 3.2 identifies these probabilities as PðFI > cαjλ1Þ:

To illustrate, the swamping probabilities PðFI > cαjλ1Þ; as attributed to λ1 through γ1; are
listed in Table 5.2 for the case ðr ¼ 4; s ¼ 3Þ as �γ varies, with cα ¼ 9:2766 at α ¼ 0:05: In
particular, the case �γ2 ¼ 0 reflects correctly that δ ¼ 0 is not swamped by γ ¼ 0. On the
other hand, Table 5.2 indicates that the propensity for swamping slightly exceeds α ¼ 0:05 for
�γ2 ¼ 1; but escalates to the problematic value 0:25 over the course of the table.

5.4. Outliers: the Darwin data

Darwin’s data comprise 15 differences in heights from cross-fertilized and self-fertilized
plants, as discussed in Fisher (1960), who expressed concern that the heights may have

Table 5.1. Noncentrality parameters ðλ1; λ2Þ for the case Fðu; 3; 2; λ1; λ2Þ; together with probabilities
β ¼ PðFI > cαÞ with cα ¼ 19:164 at α ¼ 0:05; and similarly for Fð3; 2; λ1; 0Þ:
λ1 λ2 βðλ1; 0Þ λ1 λ2 βðλ1; λ2Þ βðλ1; 0Þ
3:01240 0:00000 0.09691 2:42879 3:36966 0.01831 0.08800
5:17828 0:00000 0.12919 2:57004 3:22841 0.02008 0.09017
7:22944 0:00000 0.15871 2:11697 0:89544 0.05476 0.08321
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been affected by latent variables such as seed selection, soil fertility, moisture, and sun-
light. The data are

to be denoted in order as ½x1; . . . ; x15 �. Jensen and Ramirez (2015) have studied single-case
outlier diagnostics, namely, the R-Student t2i and tests based on order statistics due to
Grubbs (1950), Dixon (1950), and Ferguson (1961). The first two negative entries in the
Darwin data appear to differ from the other values and are possible outliers, but neither
the parametric Student t2i nor the nonparametric tests detected that the minimum value
x1 ¼ �67 was an outlier, with all tests failing with α ¼ 5%.

Tests for joint outliers clearly may proceed using FI, say for I ¼ ½xu; xv �. First consider
I ¼ ½x1; x2 �; other cases follow subsequently. The full and reduced models are
Y0 ¼ β0In þ �0

� �
and Y ¼ βIr þ �f g: Core numerical values for Theorem 3.1 are

fn ¼ 15; r ¼ 13; s ¼ 2; bβ ¼ 33:0000, bβ0 ¼ 20:9333g with Q3 ¼ e00e0; Q2 ¼ e0e; S2I ¼
Q2=ðr � 1Þ; and related values as listed in the first row of the body of Table 5.3. Thus,
from Theorem A.1 we have that FI ¼ ðr � 1ÞQ1=sQ2 ¼ 15:49 is greater than the critical
value c0:05 ¼ 3:885, where Q1 ¼ Q3 � Q2: The one-sided p value for testing that ½x1; x2 � are
outliers is p ¼ 0:0004737 from the null distribution LðFIÞ ¼ Fðu; 2; 12; 0; 0Þ: This offers
exceptionally strong evidence that ½x1; x2 � in fact differ from the remaining data. Moreover,
this example demonstrates that subset diagnostics may uncover pairs of outliers not found
through any of several single-case diagnostics as cited in Jensen and Ramirez (2015).

To continue, we next examine the pair I ¼ ½x14; x15 � in the full data; details are given
in Table 5.3. Specifically, FI ¼ 2:07 with p value p ¼ 0:1689 fails to flag these as outlying.
On the other hand, we have just seen pervading evidence that ½x1; x2 � are outlying, that is,
that there are nonzero shifts ½x1; x2 � ! ½x1 þ γ1; x2 þ γ2 � that indeed may have served to
mask shifts in ½x14; x15 �: Accordingly, we next remove ½x1; x2 � from the data and proceed
as in the third row of Table 5.3. The evidence, with p value p ¼ 0:0240; now strongly
supports that these are outlying, in keeping with the conjecture that the shifted values
½x1 þ γ1; x2 þ γ2 � indeed have masked a prospective shift in ½x14; x15 � in the full data.
Clearly the finding “½x1; x2 � are outliers” is robust in the following sense: The swamping
probability is PðFI > cαjλ1Þ as determined from Fðu; s; r � 1; λ1; 0Þ with λ1 ¼ r sγ2=n as in

Table 5.2. Swamping probabilities PðFI > cαjλ1Þ attributed to γ1� 0 with λ1 ¼ rsγ2=ðr þ sÞ; for the case
ðr ¼ 4; s ¼ 3Þ as �γ varies, with cα ¼ 9:2766 from Fðu; 3; 3; 0; 0Þ at α ¼ 0:05.
�γ2 0 1 2 3 4 5

PðFI > cαjλ1Þ 0.0500 0.0890 0.1296 0.1709 0.2122 0.2531

Table 5.3. Values for selected subset cases I ¼ ½xu; xv� in the Darwin data.

Item Q2 Q3 S2I FI c0:05 p Value

f½x1; x2 �jx1; . . . ; x15g 5,568.0 19,944.9 464.0 15.49 3.885 0.0004737
f½x14; x15; �jx1; . . . ; x15g 14,828.3 19,944.9 1,235.7 2.07 3.885 0.1689
f½x14; x15 �jx3; . . . ; x15g 2,642.2 5,568.0 264.2 5.54 4.103 0.0240

-67 -48 6 8 14 16 23 24

28 29 41 49 56 60 75
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Theorem 3.1(iii). This from property P4 of section 3.2. Accordingly, here λ
y
1 ¼ 8:226 is

found to satisfy PððFIλy1 ; λ2 ¼ 0Þ> 15:49Þ ¼ 0:05; and then λ
y
1 ¼ 8:226 ¼ rs�γ2=n is

solved for �γ2 ¼ 4:746: Since the outlier test is based on the assumption that λ1 ¼ 0,
that is, the reduced model is specified correctly, then our conclusion will be correct even
under a misspecified reduced model with �γ2 � 4:746; thus assuring that the FI statistic
has not been swamped.

5.5. Outliers in mixtures: the baseball data

Woodward (1970) studied the times for running the bases for n ¼ 22 baseball players.
Each player ran the bases three times and their average times are

to be denoted as ½x1; . . . ; x22 �. These data have been reported by Morrison (2005) to test
for outliers. The times that appear abnormal are those for Player 14 and Player 22 with
times of 5:00 and 6:28, respectively. Beckett (1977) has identified the n ¼ 22 data points as
consisting of two clusters, namely, [2, 4, 5, 7–15, 17, 19–22] and [1, 3, 6, 16, 18], where
each cluster consists of correlated data. We postulate that this in turn may be approxi-
mated by a mixture ΣðαÞ ¼ αΣðρÞ þ ð1� αÞΣð�Þ with α 2 ½0; 1 �: As the classical test for
outliers among i.i.d. observations fails to apply, Theorems 4.1 and 4.2 would extend the
outlier test using FI to the extent that the mixture ΣðαÞ approximates the actual dispersion
matrix. As with the Darwin data, the full and reduced models are Y0 ¼ β0In þ �0

� �
and

Y ¼ βIr þ �f g: Core numerical values for Theorems 4.1 and 4.2 are fn ¼ 22, s ¼ 2,

r ¼ 20, bβ0 ¼ 5:511, β̂ ¼ 5:498g with Q2; Q3, and other quantities as listed in Table 5.4.
Thus, FI ¼ 14:32 is greater than the critical value c0:05 ¼ 3:522 with p value p ¼
0:0001612; strongly supporting that the pair ½x14; x22 � differs from the remaining data.

To examine the operating characteristics further, apply property P4 with γ2 ¼ 0;

compute λ
y
1 ¼ 8:925 to satisfy PðFIðu; s; r � 1; λ

y
1 ; 0Þ> 14:32Þ ¼ 0:05: Then λ

y
1 ¼ rs�γ2=n

and �γ2 ¼ 4:909; so H0 will be rejected for any reduced model with fγ2 ¼ 0, �γ2 � 4:909g
with swamping probability PðFI > 3:522jλ1 ¼ 8:925; λ2 ¼ 0Þ ¼ 0:6937.

5.48 5.77 5.43 5.48 5.82 5.53 5.38 5.43
5.10 5.78 5.18 5.55 5.47 5.00 5.47 5.50
5.48 5.50 5.40 5.55 5.63 6.28

Table 5.4. Values for selected subset cases I ¼ ½x14; x22� in the baseball data.

Item Q2 Q3 S2I FI c0:05 p Value

f½x14; x22 �jx1; . . . ; x22g 0.5713 1.4325 0.03007 14.32 3.522 0.0001612
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5.6. Mixtures: the salinity data

Theorem 4.2 asserts that the distributions of FI and related diagnostics, and thus their
essential properties, are invariant under Gaussian mixtures as stipulated. A reviewer notes
parallel work under spherical linear regression models on R

n with densities of type

fYðyÞ ¼ gððy � XβÞ0ðy� XβÞÞ; (5)

namely, the work of Galea, Riquelme, and Paula (2000) and others cited there. Those
studies include a variety of single-case deletion diagnostics, shown to be invariant under
spherical symmetry, and illustrated with the salinity data of Ruppert and Carroll (1980).
The model (5) clearly includes the mean shift outlier model with X β ¼ μ together with FI
as considered here. Note the following:

Disclaimer. Invariance as reported in Galea, Riquelme, and Paula (2000) for single-case
deletions applies for null distributions exclusively. Although not noted by those authors,
this constraint follows on examining the cited invariance theorem from the literature. In
contrast, the invariance properties for FI as in Theorem 4.2 for Gaussian mixtures apply
for nonnull distributions as well.

Proposition 5.1. Let LðY0Þ of section 2.2 instead have the density fY0ðy0Þ ¼ gðy0 �
μÞ0ðy0 � μÞÞ: Then the null distribution of FI; namely, LðFIÞ ¼ Fðs; r � 1; 0; 0Þ; holds
precisely as in Theorem 3.1 for every spherical linear regression model independently of
gð�Þ: In particular, this applies on specializing to the Student t2i in single-case deletions.

Proof. The conclusions follows directly from Theorem 1 of Jensen and Good (1981).
To complement earlier studies of the salinity data under single-case deletions as cited, we

next undertake subset deletions, specifically, their normal-theory values, as these are invariant
under both our mixture models and the linear spherical regression models. The salinity of
water in Pamlico Sound, North Carolina, as reported in Ruppert and Caroll (1980), pertains
to the linear model Y ¼ β0 þ β1x1 þ β2x2 þ β3x3 þ �

� �
with n ¼ 28 runs, taking Y as the

measured salinity, and explanatory variables x1 as the salinity lagged by 2 weeks, x2 as the
river flow, and x3 as a time trend variable. Specifically, we consider subsets of size s ¼ 2 from
x1; . . . ; x15; x17; . . . ; x28f g; having removed case 16 as reported consistently in the cited

studies as outlying to excess. Specifically, t216 ¼ 14:36 with p value p ¼ 0:0009: Table 5.5

Table 5.5. Values for selected pairs from the salinity data x1; :::; x15; x17; :::; x28f g with Q2 ¼ 26:1516
and c0:05 ¼ 3:47.

Subset Q3 S2I FI p Value

x15; x17f g 14.5364 0.6922 8.39 0.0021
fx5; x15g 15.3016 0.7286 7.45 0.0036
fx9; x15g 17.5506 0.8357 5.15 0.0152
x13; x15f g 17.8042 0.8478 4.92 0.0176
fx9; x17g 17.8053 0.8479 4.92 0.0177
fx1; x15g 17.9354 0.8541 4.81 0.0191
fx8; x15g 17.9397 0.8543 4.81 0.0191
fx5; x17g 18.1208 0.8629 4.65 0.0212
fx8; x17g 18.6558 0.8842 4.22 0.0288
x15; x28f g 18.7657 0.8936 4.13 0.0307
fx1; x17g 18.7929 0.8949 4.11 0.0311
f x5; x8 g 19.0217 0.9058 3.94 0.0354
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reports the twelve most influential pairs of data from the 351 possible pairs. Eleven of the 12
pairs contain either case 15 or case 17, both flagged under single-case deletions. An additional
pair is x5; x8f g, although neither was detected using single-case deletions.

Remark 5.1. Proposition 5.1 extends to include a variety of single-case outlier and
influence diagnostics that correspond one-to-one with t2i : These are established in Jensen
(2000), and include many diagnostics set forth in Belsley, Kuh, and Welsch (1980) and
related references.

In summary, the importance of the current findings rests heavily on invariance proper-
ties of diagnostics for outlying and influential observations. These apply for underlying
distributions having correlated errors, for mixtures of these distributions, and for a large
class of spherical regression models containing such heavy-tailed distributions as
n-dimensional Cauchy errors.

5.7. Further examples

Additional cases are provided in Table 5.6. These include ðλ1; λ2; βÞ over a range of values of
the parameters, where βðλ1; λ2Þ ¼ PðFI > cαÞ as before with α ¼ 0:05: These are arranged so
that λ1 decreases and λ2 increases in both the left and right portions of Table 5.6.

It is seen that Fðu; ν1; ν2; λ1; λ2Þ increases stochastically with increasing λ1; and
decreases stochastically with increasing λ2; with other parameters held fixed, in keeping
with Proposition 2.1.

6. Conclusions

Gaussian observations Y0 ¼ ½Y 0;Y
0
I �0 subject to shifts Y ! Y þ γf g and

YI ! YI þ δf g are considered. The use of the diagnostic FI is reexamined in regard to
H0 : δ ¼ 0 against H1 : δ� 0: In addition, dispersion matrices VðY0Þ of types
ΣðθÞ;ΣðρÞ;Σð�Þf g are taken in lieu of σ2 In; as are mixtures having star-shaped contours.

These innovations substantially transcend the classical setting in which γ ¼ 0 and Σ ¼
σ2In; including the use of the R-Student diagnostic t2i under single shifts Yi ! Yi þ δif g
as in Jensen and Ramirez (2015).

Table 5.6. Noncentrality parameters ðλ1; λ2Þ together with βðλ1; λ2Þ ¼ PðFI > cαÞ where λ1 is decreasing
and λ2 increasing in each half of the table, and α ¼ 0:05:
λ1 λ2 β λ1 λ2 β

Case Fð2; 2; λ1; λ2Þ; cα ¼ 19:000
0.88228 0.04496 0.06926 0.89064 0.03660 0.06972
0.83268 0.09460 0.06657 0.87284 0.05440 0.06874
0.81944 0.10780 0.06586 0.42688 0.50040 0.04748
0.80840 0.11884 0.06528 0.41844 0.50880 0.04714
0.47456 0.45268 0.04948 0.40320 0.52404 0.04652
0.25728 0.67000 0.04088 0.31616 0.61112 0.04309
0.24940 0.67788 0.04059 0.11876 0.80848 0.03601
0.16076 0.76648 0.03744 0.09420 0.83308 0.03520
0.12996 0.79728 0.03639 0.09248 0.83476 0.03514
0.08700 0.84024 0.03496 0.00028 0.92696 0.03220
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The diagnostics FI are shown to be genuinely distribution-free, whereas irregularities
trace to denominator noncentrality parameters stemming from Y ! Y þ γf g: Our
models have been shown to explain the masking and swamping of outliers, and numerical
studies serve to illustrate the essential findings. In short, FI now has been updated for use
in data having structure substantially beyond the classical venue, as required on occasion
in contemporary experimental settings under patently nonstandard conditions.

Structured dispersion matrices of earlier vintage include Σðλ; αÞ ¼ ðλIn þ 1nα0 þ α10nÞ
of Baldessari (1966) in certain analysis-of-variance problems. In addition, Huynh and
Feldt (1970) and Rouanet and Lepine (1970) characterized as ΣðλÞ ¼ ½λi þ λj þ δijλ � the
class of all within-subject dispersion matrices preserving validity of conventional F-tests in
the analysis of k repeated measurements on each of n experimental subjects, with δij as
Kronecker’s symbol. It is clear that the structures Σðλ; αÞ; ΣðλÞ; and our Σð�Þ are
equivalent. Moreover, the Euclidean distance matrices of Gower (1982) have the structure
ðD þ 1nγ0 þ γ10nÞ, with applications to linear inference as in Farebrother (1985).
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Appendix A

A.1. Foundations

As noted, the general model Y0 ¼ X0βþ �0f g is specialized here to Y0 ¼ μ1n þ �0f g; to be
partitioned as Y

0
0 ¼ ½Y 0

;Y
0
I�; then deleting ½YI ; 1s; �I � while retaining Y ¼ μ1r þ �f g: Recall that

Bn ¼ ðIn � 1
n 1n1

0
nÞ; then partition Bn; ΣðθÞ; and Σð�Þ conformably as

Bn ¼ ðIr � 1
n 1r1r

0Þ � 1
n 1r1s

0

� 1
n 1s1r

0 ðIs � 1
n IsIs

0Þ
� �

; (6)

ΣðθÞ ¼ ðIr þ θ1r1r 0Þ θ1r1s0

θ1s1r 0 ðIs þ θIsIs0Þ
� �

; (7)

Σð�Þ ¼ Ir 0
00 Is

� �
þ 1r

1s

� �
�0 þ � 10r; 10s½ � � �

1r10r 1r10s
1s10r 1s10s

� �
: (8)

A critical step is the Fisher–Cochran expansion Y 0
0A1Y0 þ Y 0

0A2Y0 ¼ Y 0
0A3Y0 for quadratic forms

in Y0; specifically Q1 þ Q2 ¼ Q3; such that A3 ¼ Bn; A2 ¼ DiagðBr; 0Þ and

A1 ¼ A3 � A2 ¼
s
rn 1r1

0
r � 1

n 1r1
0
s

� 1
n 1s1

0
r ðIs � 1

n 1s1
0
sÞ

� �
; (9)

see Lemma A.1(iii) of Jensen (2001). We draw from the work of Mathai and Provost (1992, 201),
taking into account the special structure of Σ 2 ΣðθÞ;Σð�Þf g; where ΣðρÞ follows by equivalence
with ΣðθÞ: Essentials follow.

Theorem A.1. Suppose that LðY0Þ ¼ Nnðτ;ΣÞ; consider the quadratic forms
Q1;Q2;Q3f g such that Q1 þ Q2 ¼ Q3 and FI ¼ ðr � 1ÞQ1=sQ2: Then for each Σ 2
ΣðθÞ;Σð�Þf g we have

(i) AiΣAi ¼ Ai for i 2 1; 2; 3f g;
(ii) A1ΣA2 ¼ 0;
(iii) LðQiÞ ¼ χ2ðνi; λiÞ with νi ¼ trðAiΣÞ and λi ¼ τ0Aiτ for i 2 1; 2; 3f g;
(iv) Degrees of freedom for Q1;Q2;Q3f g are νi 2 s; r � 1; n� 1f g; respectively;
(v) Q1 and Q2 are distributed independently;
(vi) LðFIÞ ¼ Fðu; s; r � 1; λ1; λ2Þ; with λ1 and λ2 as in Theorem 1;
(vii) Properties (iii)–(vi) hold independently of Σ 2 ΣðθÞ;Σð�Þf g; and are identical to the case thatP ¼ σ2In:
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Proof. Theorem 5.1.4 of Mathai and Provost (1992, 201) identifies (i) to be necessary and
sufficient for (iii), and similarly (ii) for (v).

Case 1: First consider A3 ¼ Bn: Then A3ΣðθÞ ¼ BnðIn þ θ1n1n0Þ ¼ Bn; so that trðA3ΣðθÞÞ ¼
n� 1 as in conclusion (iv). Moreover, A3ΣðθÞA3 ¼ A3

2 ¼ A3 as in conclusion (i) for i ¼ 3f g since
A3 is idempotent. Similarly,

A3Σð�Þ ¼ BnðIn þ 1n�
0 þ �1n

0 � ��1n1n
0Þ ¼ Bn þ Bn�1n

0 (10)

so that trðA3Σð�ÞÞ ¼ n� 1 follows as in conclusion (iv) since trðBn�10nÞ ¼ trð�10nBnÞ ¼ 0.
Moreover, A3Σð�ÞA3 ¼ A3 as in conclusion (i).

Case 2: For A2 ¼ DiagðBr; 0Þ; the partitioned form (7) gives

A2ΣðθÞ ¼ Br 0
00 0

� � ðIr þ θ1r1r 0Þ θ1r10s
θ1s1r 0 ðIs þ θ1s10sÞ

� �
¼ Br 0

00 0

� �
¼ A2 (11)

and trðA2ΣðθÞÞ ¼ r � 1 as in conclusion (iv). In parallel with Case 1, A2ΣðθÞA2 ¼ A2 to give
conclusion (i) for ði ¼ 2Þ: To continue, in the partitioned form (8) we have

A2Σð�Þ ¼ Br 0
00 0

� �
Ir 0
00 Is

� �
þ 1r

1s

� �
�0 þ � 10r 10s½ � � ��

1r10r 1r10s
1s10r 1s10s1

� �� �

¼ A2 þ A2�1n
0 (12)

and trðA2Σð�ÞÞ ¼ r � 1 as in conclusion (iv). Moreover, A2Σð�ÞA2 ¼ A2 to give conclusion (i) for
ði ¼ 2Þ:

Case 3: Next consider A1 ¼ A3 � A2: From the foregoing developments infer that A1ΣðθÞ ¼
ðA3 � A2ÞΣðθÞ ¼ A3 � A2 so that trðA1ΣðθÞÞ ¼ ðn� 1Þ � ðr � 1Þ ¼ n� r ¼ s as in conclusion (iv),
whereas A1ΣðθÞA1 ¼ A1 to verify conclusion (i) for Σ ¼ ΣðθÞ: Similarly trðA1Σð�ÞÞ ¼ ðn� 1Þ �
ðr � 1Þ ¼ s as in conclusion (iv), and A1Σð�ÞA1 ¼ A1 as in conclusion (i) for ði ¼ 1Þ and Σ ¼ Σð�Þ:

Case 4: To verify conclusion (ii) separately for ΣðθÞ and Σð�Þ; take A3ΣðθÞ ¼ A3 from Case 1
and A2ΣðθÞ ¼ A2 from Eq. (11), so that A1ΣðθÞA2 ¼ ðA3 � A2ÞA2; namely,

ðA3 � InÞA2 ¼ � 1
n

1r1r 0 1r
1r 0 1

� �
Br 0
0 0Þ

� �
¼ 0 0

0 0

� �
: (13)

To continue, from Eq. (12) write A2Σð�ÞA1 ¼ ðA2 þ A2�1n 0ÞA1 ¼ A2A1 ¼ 0 since 1n0A1 ¼ 0 and
A2A1 ¼ 0 from Eq. (13). Conclusion (v) follows as a consequence of (ii) and Craig’s Theorem, as in
Mathai and Provost (1992, 209).

Table A.1. Subset deletion diagnostics pertaining to the model Y0 ¼ μþ �0f g, where Y00 ¼ ½Y 0; YI 0� are
of orders ½ð1� nÞ; ð1� rÞ; ð1� sÞ�; respectively.
Diagnostic Expression Rule Critical value Range

FI eI 0 ðIsþ1
r1s1s

0 ÞeI
sS2I

> cα ½0;1Þ
OUTI 1� S2I

S2
> ½sðcα�1Þ�

½scαþn�s�1� ½ �s
n�s�1 ; 1�

API 1� rðn�s�1ÞS2I
nðn�1ÞS2

h i
> ½scαþðn�s�1Þs=n�

½scαþn�s�1� ½ s
n ; 1�

CRI nS2I
rS2

< nðn�1Þ
rðscαþn�s�1Þ
h i ½0; nκ

r �
FVI n

r
S2I
S2

h is < n
r

ðn�1Þ
ðscαþn�s�1Þ
h is ½0; nκs

r �
κ ¼ ðn�1Þ

ðscαþn�s�1Þ
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A.2. Deletion diagnostics: a survey

Regression diagnostics for the model Y0 ¼ μþ �0f g are surveyed next for completeness. In addition
to outliers, observations whose removal would alter essentials of the analysis are designated as
influential. In particular, points with large OUTI of Barnett and Lewis (1994) are tagged as outlying,
and with large API of Andrews and Pregibon (1978) as influential. Of further interest here are the
influence diagnostics CRI (also COVRATIOIÞ and FVI (also HVARATIOI) of Belsley, Kuh, and
Welsch (1980). These are listed in Table A.1 together with rejection rules and their critical values, as
well as the range for each diagnostic. These entries are found on specializing from Table 2 of Jensen
(2001) so as to apply to the model at hand. A significant finding is that these are intimately
interlaced: Each corresponds one-to-one with FI; as shown in Jensen (2001).

A.3. Calculations of p values

Building on the earlier work of Imhof (1961), Ennis and Johnson (1993) have expressed the cdf for
Fðu; ν1; ν2; λ1; λ2Þ as a one-dimensional integral using trigonometric functions. This result is
straightforward to code, for example, in Maple, and the Ennis and Johnson representation for the
cdf was used to compute the doubly noncentral probabilities as reported. In addition, probabilities
for the singly noncentral Fðu; ν1; ν2; λ1; 0Þ made use of the following online source: Dr. Daniel
Soper, Free Statistical Calculator, Version 4.0, � 2006–2016, at http://www.danielsoper.com.
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