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Outlier Detection Under Star-Contoured Errors

D. R. JENSEN1 AND D. E. RAMIREZ2

1Department of Statistics, Virginia Tech, Blacksburg, Virginia, USA
2University of Virginia, Charlottesville, Virginia, USA

Consider [Y1, . . . , Yn] as Gaussian observations with common mean μ and disper-
sion matrix �. Approaches for detecting outlying observations include the R–Student
statistics in regression diagnostics, as well as tests due to Grubbs, Dixon, and
Ferguson using order statistics. All are known to be valid under � = σ 2In; Grubbs’s
test also holds under an equicorrelated matrix �(ρ) and the more general structure
� (ξ) = σ 2[In + 1nξ

′ + ξ1′
n − ξ̄1n1′

n]. Dispersion mixtures of Gaussian errors having
�(ρ) and �(ξ ) are studied in detail; their densities have star-shaped contours as encoun-
tered on occasion in practice. Under these mixtures, the aforementioned diagnostics all
are shown to be exact in significance level and in power as for the case where � = σ 2In.
This expands considerably their range of applicability in practice. Case studies serve to
illustrate essentials of the findings.

AMS Subject Classification: 62E10; 62F04.

Keywords: Outlying data; Deletion diagnostics; Order statistics; Structured errors.

1. Introduction

Given observations Y′
0 = [Y1, ..., Yn] with common mean μ, a recurring question in sta-

tistical practice is to identify outlying data. Here the data are modeled as coming from
{Y0 = μ1n + ε0} with errors having mean E (ε0) = 0 and dispersion matrix V(ε0) = �.
An outlier in row i of Y0 is modeled as a shift {Yi → Yi + δ} in the response Yi. Standard
outlier diagnostics for testing H0: δ = 0 have been derived under Gaussian errors having
�= σ 2In. These include the R-Student deletion test of Snedecor and Cochran (1968) and
tests due to Grubbs (1950), Dixon (1950), and Ferguson (1961) based on the order statis-
tics. Grubbs’s (1950) test has been found to remain exact in level of significance and in
power, under the intraclass correlation model � = �(ρ), as shown in Srivastava (1980).
Young et al. (1989) show the more general structure � (ξ) = σ 2[In + 1nξ

′ + ξ1′
n − ξ̄1n1′

n]
to be sufficient for validity under Gaussian errors, while Baksalary and Puntanen (1990)
show it is also necessary. Accordingly, Grubbs’s test applies much more widely in prac-
tice, whereas the R-Student test and those of Dixon (1950) and Ferguson (1961) so far only
apply strictly under � = σ 2In.

In this study we show that the R-Student test and the tests of Dixon (1950) and
Ferguson (1961) apply also under �(ρ) and �(ξ ). In addition, the aforementioned tests
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2 D. R. Jensen and D. E. Ramirez

all are shown to apply under scale mixtures of Gaussian families, with each having the dis-
persion matrix �(ρ) or �(ξ ). Gaussian mixtures arise in practice, to include data collected
from subsamples as in Box and Tiao (1968) and Aitken and Wilson (1980). Their density
functions as studied here have star-shaped contours.

For motivation, DasGupta (2013) highlights Grubbs’s (1950) test as among 215 influ-
ential developments in statistics. Accordingly, users will value its substantially enhanced
capability. At the same time, our tools also support the wider applicability of the R–Student
diagnostic and those of Dixon (1950) and Ferguson (1961). An outline of the article follows.

Preliminaries in section 2 extend the conventional models to include mixture distribu-
tions. Section 3 develops nonstandard properties of the residuals under these models, and
of tests based on the order statistics and the R–Student diagnostic. Uses are illustrated in
section 4. Essential supporting topics are attached as an appendix, including distributions
of quadratic forms under dependent errors.

2. Preliminaries

2.1. Notation

Spaces include Euclidean n-space R
n, its positive orthant R

n+, and the real symmetric
(n×n) matrices Sn. Vectors and matrices are set in bold type; the transpose, inverse,
trace, and determinant of A are A′, A−1, tr(A), and |A|; In is the (n×n) identity; and
Diag(A1, . . . , Ak) is a block-diagonal array. If B = [b1, . . . , bk] is of order (n×k) and rank
Rk (B) = k < n, then Sp(B) designates the column span of B, that is, the k-dimensional sub-
space of R

n spanned by [b1, . . . , bk]. Throughout, we designate the idempotent matrices
Bn = (

In − 1
n 1n1′

n

)
and Br = (

Ir − 1
r 1r1′

r

)
.

A random Y ∈ R
n has distribution L (Y); mean vector E(Y); dispersion matrix V(Y) =

�, say, with variance Var(Y) = σ 2 on R
1; a density function (probability distribution func-

tion, pdf ) g(y); and a cumulative distribution function (cdf ) G(y). Specifically, L (Y) =
Nn (μ, �) is Gaussian on R

n with mean and dispersion matrix (μ, �). Distributions on R
1+

include χ2 (ν; λ) as chi-squared having ν degrees of freedom and noncentrality λ, and the
noncentral Student’s t2 distribution t2 (ν; λ1), with numerator noncentrality λ1. More gen-
erally, t2 (ν; λ1, λ2) is doubly noncentral, having ν degrees of freedom and numerator and
denominator noncentralities (λ1, λ2). Specifically, if t2

i = νU/V , such that (U, V) are inde-
pendent, where L (U) = χ2 (1, λ1) , and L(V) = χ2 (ν; λ2), then L (

t2
i

) = t2 (ν, λ1, λ2).
Moreover, t2 (ν; λ1, λ2) increases stochastically with increasing λ1, and decreases stochasti-
cally with increasing λ2, with other parameters held fixed. See Nandi and Choudhury (2002)
and references cited there in. Identify

{
t2
i > cα

}
as the conventional α-level rejection rule

based on t2 (ν; 0,0).

2.2. The Model

Taking {Y0 = μ1 n + ε0} as reference is a special case of {Y0 = X0β + ε0}. Several essen-
tial properties in the present study follow directly. The pivotal matrix Hn = X0

(
X′

0X0
)−1

X′
0

from linear inference here becomes Hn = 1
n 1n1′

n, so that diagonal leverages, and off-
diagonal coleverages, are all equal to

{
hij = 1

n ; ∀i, j
}
. Further designate by e′ = [e1, . . . , en]

the residual vector.
Deletion diagnostics follow on rearranging Y′

0 = [
Y′, Yi

]
and ε′ = [

ε′, εj
]
; on deleting

[Yi, 1, εi] from {Y0 = μ1n + ε0}; on retaining {Y = μ1r + ε} with Y ∈ R
r and r = n − 1;
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Tests for Outliers 3

and letting S2
i be the residual mean square from Y. Central to this study are the R–Student

statistics
{
t2
i = e2

i /S2
i (1 − hii)

}
of Snedecor and Cochran (1968, 157) for identifying a

single shift, as considered also in Beckman and Trussell (1974). These specialize here
to

{
t2
i = ne2

i /rS2
i

}
, known to have Student’s t2 distribution under Gaussian errors with

� = σ 2In as default. In addition, for arbitrary shifts {Y0 → Y0 + ω} corresponding to
Y0 = [

Y′, Yi
]′

, the shift vector ω is partitioned as ω = [
γ ′, δi

]′
, of order (n × 1), with

γ ∈ R
r and δi ∈ R

1. Gauss–Markov assumptions are extended here as follows, with matri-
ces � (θ) = σ 2

(
In + θ1n1′

n
)

and � (ξ) = σ 2
(
In + 1nξ

′ + ξ 1′
n − ξ̄1n1′

n
)

as in section
2.3, often standardized to σ 2 = 1.

Assumptions A. The following hold:

A1. E(ε0) = ω; i.e. E(ε) = γ ∈ R
r and E(εi) = δi ∈ R

1.
A2. V(ε0) = � ∈ {� (θ) , � (ξ)}
A3. L (ε0) = Nn (ω, �) for � ∈ {� (θ) , � (ξ)}.
Conventional deletion diagnostics model an outlying entry in row i as a shift in the response
{Yi → Yi + δi} as noted, and allowing no other shifts, that is, γ = 0 with ω′ = [

0′, δi
]
. Our

procedures allow for shifts in any row with {Y → Y + γ } and γ �= 0. A key feature of this
study is to decompose γ into its fundamental components, as in the following.

Definition 1. (i) The decomposition γ = γ 1 + γ 2 entails projections γ 1 = 1
r 1r1′

rγ

and γ 2 = (
Ir − 1

r 1r1′
r
)
γ into the “Regressor” and “Error” spaces generated by

{Y = μ1r + ε}. (ii) Angles between γ and these projections are θ1 = θ (γ , γ 1) and θ2 =
θ (γ , γ 2).

2.3. The Matrices �

Structured dispersion matrices arise in studies of validity in linear inference. Three cases
are considered where, for ξ ′ = [ξ1, ..., ξn], we have τ1 = ξ1 + ... + ξn = nξ̄ and τ2 =∑n

i=1

(
ξi − ξ̄

)2
. Details follow, where

α1 = 1

2

[
τ1 + (

τ 2
1 + 4nτ2

) 1
2

]
and αn = 1

2

[
τ1 − (

τ 2
1 + 4nτ2

) 1
2

]
. (1)

Lemma 2.1. (i) Let � (θ) = σ 2
(
In + θ1n1′

n
)
; its eigenvalues are 1.0, with multiplicity n −

1, and l + nθ , so that �(θ ) is positive definite if and only if θ ∈ �1 = {
θ : θ > − 1

n

}
.

(ii) Let �(ξ ) = σ 2
(
In + 1nξ

′ + ξ1′
n − ξ̄1n1′

n
)

with 0 �= ξ �= θ1n; its ordered eigen-
values are {κ1 = 1 + α1, κ2 = . . . = κn−1 = 1, κn = 1 + αn} as in Eq. (1); then �(ξ ) is
positive definite if and only if ξ ∈ �2 = {ξ ∈ R

n : τ1 > nτ2 − 1}.
(iii) Let �(ρ) = σ 2

[
(1 − ρ) In + ρ1n1′

n
]
, the equicorrelated case; then �(ρ) is

positive definite if and only if ρ ∈ �3 = {
ρ : − 1

n−1 < ρ < 1
}
.

Proof. Details are given in Jensen (1996). �
Clearly �(θ ) and �(ρ) are equivalent. For if L(Z) = Nn

(
μ

k 1n, � (θ)
)
, make the

change of scale {Z → Y = kZ}; then V(Y) = k2
(
In + θ1n1′

n
)
. Next taking k2 = (1 − ρ)

and k2θ = ρ, infer that θ = ρ/ (1 − ρ), and �(θ ) = 1
1−ρ

�(ρ). We take �(θ ) for conve-
nience, despite the fact that �(θ ) occurs prominently in practice, to include calibrated
measurements as in Jensen and Ramirez (2009; 2012). Accordingly, the collections
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4 D. R. Jensen and D. E. Ramirez

�1 = {�(θ ); θ ∈ �1} and �2 = {�(ξ ); ξ ∈ �2} are ensembles of positive definite matrices,
and take � = �1 ∪ �2. For further details see Jensen (1996).

2.4. Mixture Distributions

Take Y ∈ R
n having some distribution L(Y) = D(μ, �); it suffices to center L(Y − μ) at

0 ∈ R
n. We have the following.

Definition 2. (i) A set A ⊂ R
n is said to be symmetric about 0 ∈ R

n if x ∈ A implies −x ∈
A for each x ∈ A.

(ii) A set S ⊂ R
n containing 0 is called star-shaped about 0 if, for every x ∈ S, the

line segment joining 0 to x is in S.
(iii) A distribution P(·) on R

n is called symmetric star-unimodal about 0 if it belongs to
the closed convex hull of probability measures uniform on sets symmetric and star-shaped
about 0; we designate by Pn(0) the class of these distributions.

Essential properties follow. If P(·) has a continuous density f (·) on R
n, then P(·) ∈

Pn(0) if and only if the level sets Bt = {x ∈ R
n : f (x) > t > 0} are either symmetric star-

shaped about 0 ∈ R
n, or are empty. Kanter’s (1977) class Kn(0) consists of mixtures on

R
n generated as the closed convex hull of measures uniform on convex bodies that are

symmetric about 0 ∈ R
n. See Dharmadhikari and Joag-Dev (1988, 38ff), who demonstrate

that the classes Pn(0) and Kn(0) coincide.
To continue, Gaussian densities gn = (x; μ, �) on R

n generate ensembles as � ranges
over �. These are

E1(�1) = {gn (x; μ, �(θ )) ; θ ∈ �1} (2)

E2(�2) = {gn (x; μ, �(ξ )) ; ξ ∈ �2} , (3)

both unimodal in the sense of Sherman (1955). Taking E1(�1) and E2(�2) to have mix-
ing parameters θ and ξ , mixtures fi(x, μ, Gi) = ∫

�i
gn (x; μ, �(i)) dGi(·) emerge with Gi ∈

{G1, G2} as a cdf on �i ∈ {�1, �2}, and with �(i) ∈ [
�(θ ), �(ξ )

]
. In particular, the densi-

ties f1(x; μ, G1) and f2(x; μ, G2) are dispersion mixtures of elliptical Gaussian distributions
on R

n centered at μ ∈ R
n. Let G1 and G2 comprise all cdf s on �1 and �2, respectively; these

in turn generate the collections

M1 = {f1 (x; μ, G1) ; G1 ∈ G1} (4)

M2 = {f2 (x; μ, G2) ; G2 ∈ G2} (5)

comprising all dispersion mixtures of the referenced types, and all belonging to the shifted
class Pn(μ).

Note that nonstandard joint distributions arise in a variety of applications. For example,
see Verhoeven and McAleer (2004), with applications in the actuarial sciences.
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Tests for Outliers 5

3. The Principal Findings

3.1. Overview

In regard to the R–Student statistics, shifts are propagated as noncentrality parameters in
t2 (ν, λ1, λ2). This rests on distributions of quadratic forms as detailed in Appendix A.
We next establish essentials regarding outlier shifts themselves and their effects on various
diagnostics.

3.2. Properties of Residuals

We next show properties of the observed residuals under Assumptions A. It remains to
evaluate E (ei), Var (ei) and L (ei) as special cases. Details follow, where again Bn =
(In − Hn) = (

In − 1
n 1n1′

n
)
.

Lemma 3.1. Consider the ordinary residuals e′
0 = [

e′, ei
]

under Assumptions

A1 : E (ε0) = ω, with ω = [
γ ′, δi

]′
, and A2 : V (ε0) = � ∈ {� (θ) , � (ξ)}. As in

Definition 1 decompose ω = ω1 + ω2 with ω1 = 1
n 1n1′

nω and ω2 = Bnω; and let
T(e0) be a mapping to a linear space V . Then the following properties hold independently
of � ∈ {� (θ) , � (ξ)}:

i. E (e0) = ω2.
ii. V (e0) = σ 2Bn.

iii. E (ei) = r
n (−γ̄ + δi) and Var (ei) = r

nσ 2.
Moreover, under Assumption A3 : L (ε0) = Nn (ω, �), it follows for � ∈
{� (θ) , � (ξ)} that

iv. L (e0|�) = Nn
(
ω2, σ 2Bn

)
.

v. L (T (e0) |�) = L (
T (e0) |σ 2In

)
.

vi. In particular, L (ei|�) = L (
ei|σ 2In

) = N1
(

r
n (−γ̄ + δi) , r

nσ 2
)
.

Proof. Assumption A1 gives E (e0) = Bn (μ1n + ω) = Bnω = ω2 as in (i), since Bn1n =
0. Assumption A2 implies V (e0) = Bn� (·) Bn = Bn, since Bn� (·) Bn annihilates terms
beyond the first in � (θ) and � (ξ), and Bn is idempotent. This establishes conclusion (ii)
independently of � ∈ {� (θ) , � (ξ)}. Expressing E (e0) = (

In − 1
n 1n1′

n
)
ω in partitioned

form is

E

[
e
ei

]
= 1

n

[ (
nIr − 1r1′

r
) −1r

−1′
r r

] [
γ

δi

]
= 1

n

[ (
nIr − 1r1′

r
)
γ − 1rδi

−1′
rγ + rδi

]
. (6)

Thus E (ei) = 1
n

(−1′
rγ + rδi

) = r
n (−γ̄ + δi), and Var (ei) = r

nσ 2 as the (n, n) element of
σ 2

(
In − 1

n 1n1′
n
)
, giving conclusion (iii). Finally, conclusions (iv)–(vi) follow directly on

combining earlier results with Assumption A3, to complete our proof. �

3.3. Tests: Order Statistics

Consider shifts {Y0 → Y0 + δK} with K ∈ R
n consisting of n − 1 zeros and a one.

Begining with Y′
0 = [Y1, . . . , Yn]′, let Ȳ = 1

n

∑n
i=1 Yi and (n − 1) S2 = ∑n

i=1

(
Yi − Ȳ

)2
.

Corresponding to the ordered observations, let
{
e(1) ≤ e(2) ≤ . . . ≤ e(n)

}
be the ordered

residuals, with
{
e(i) = (

Y(i) − Ȳ
)

; 1 ≤ i ≤ n
}
. Further, let

{
Z(i) = e(i)/S; 1 ≤ i ≤ n

}
, and
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6 D. R. Jensen and D. E. Ramirez

Zmax = Z(n). If Y(n) is outlying, it behaves as L (
Y(n)

) = N1
(
μ + λσ , σ 2

)
with λ > 0; see

Bendre and Kale (1987, 893).
We next survey three classical approaches to tests for outliers based on the order

statistics as follow.

i. Grubbs’s (1950) test rejects H0: λ = 0 in favor of H1: λ > 0 when Zmax ≥ cα , its Type
I error at level α. Tables of critical values are reported in Grubbs (1950; 1969) and
Grubbs and Beck (1972). Grubbs’s test is highlighted in DasGupta (2013) as among
215 influential developments in statistics, as noted earlier.

ii. Dixon (1950) proposed the statistic D = (
Y(n) − Y(n−1)

)
/
(
Y(n) − Y(1)

)
, declaring Y(n)

to be outlying at level α if D > dn,α . Extensive tables of critical values were reported
recently in Verma and Quiroz-Ruiz (2006).

iii. Ferguson’s (1961) test takes F = ∑n
i=1 e3

(i)/
[∑n

i=1 e2
(i)

] 3
2

as a coefficient of skewness,

rejecting at level α for F > fn,α , and shown to be locally most powerful invariant against
outliers {μi → μi + λiσ ; λi > 0} unspecified in number.

That these diagnostics may be validated under star-contoured errors is the subject of
the following, where τ = μ1n + ω.

Theorem 3.1. Given the model {Y0 + τ + ε0} having a Gaussian mixture density
f1

(
y0; τ , G1

)
belonging to M1 as in Eq. (4), or a density f2

(
y0; τ , G2

)
belonging to M2

as in Eq. (5). Consider the following, all initially derived from L (Y0) = Nn
(
μ1n, σ 2In

)
:

i. Grubbs’s (1950) test rejecting for Zmax ≥ cα .
ii. Dixon’s (1950) test rejecting for D > dn,α .

iii. Ferguson’s (1961) test rejecting for F > fn,α .
iv. These tests remain exact in level and power for all mixtures in M1 and M2 in Eqs. (4)

and (5), the same as for L (Y0) = Nn
(
μ1n, σ 2In

)
.

Proof. Returning to section 2.4 and

fi
(
y0, τ , Gi

) =
∫

�i

gn
(
y0; τ , � (i)

)
dGi (·), (7)

we argue conditionally on fixing � ∈ {� (θ), � (ξ)}, then making the change of variables
behind the integral, so that the derived unconditional error density is

fi (e0, ω, Gi) =
∫

�i

gn
(
e0; ω, σ 2Bn

)
dGi (·) = gn

(
e0; ω, σ 2Bn

)
(8)

independently of Gi since
∫
�i

dGi = 1. For Grubbs’s (1950) test the residuals map into

e0 → {
e(1) ≤ e(2) ≤ . . . ≤ e(n), S2

} → T (e0) = {
Z(1) ≤ Z(2) ≤ . . . ≤ Z(n)

}
. (9)

Lemma 3.1(v) establishes that L (Zmax |� ) = L (
Zmax

∣∣σ 2In
)
, as asserted in conclusion

(i), independently of � ∈ {� (θ) , � (ξ)}. Invariance for conclusion (ii) follows, as D =[
e(n) − e(n−1)

]/[
e(n) − e(1)

]
is equivalent to Dixon’s (1950) statistic, and conclusion (iii)

follows along similar lines. �
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Tests for Outliers 7

It is noteworthy that these results are complementary to and extend considerably
beyond the findings of Srivastava (1980), Young et al. (1989), and Baksalary and Puntanen
(1990).

3.4. Tests: Deletion Diagnostics

Deletion diagnostics have a rich history, including not only the R-Student statistics, but
also numerous influence diagnostics intended to track changes in the regression out-
put as incurred on deleting observations. References include Belsley et al. (1980), Cook
and Weisberg (1982), Barnett and Lewis (1994), Atkinson (1985), Rousseeuw and Leroy
(1987), Chatterjee and Hadi (1988), Myers (1990), Fox (1991), and, more recently,
Woodward and Sain (2003), Ullah and Pasha (2009), and Martin et al. (2010).

The R–Student diagnostic t2
i historically ignores shifts in rows other than i. See

Snedecor and Cochran (1968, 157) for identifying a single shift, as considered also in
Beckman and Trussell (1974). When other shifts occur, these confound the true descriptive
level α, introducing masking and swamping of outliers as in Jensen and Ramirez (2014).
Indeed, masking “is an important problem in influence analysis which deserves further
study” (Hoaglin and Kempthorne 1986, 410).

Our tools offer further insight. That these diagnostics may be validated under star-
contoured errors, and thus that anomalies carry forward beyond Gaussian errors to include
mixtures, is the subject of the following, where τ = μ1n + ω.

Theorem 3.2. Given the model {Y0 = τ + ε0} having a Gaussian mixture density
f1

(
y0; τ , G1

)
belonging to M1 as in Eq. (4), or a density f2

(
y0; τ , G2

)
belonging to M2

as in Eq. (5). Then the distribution L (
t2
i

)
is the doubly noncentral L (

t2
i

) = t2 (ν; λ1, λ2)

with

i. λ1 = r
n (−γ̄ + δi)

2; λ2 = ∑ r
i=1 (γi − γ̄ )2; and other properties as in Theorem A.2.

ii. Diagnostics using t2
i remain exact in level and power for all mixtures in M1 and M2,

the same as for L (Y0) = Nn
(
μ1n, σ 2In

)
.

Proof. As in the proof for Theorem 3.1, begin with the mixture of Eq. (7). We proceed
conditionally on fixing � ∈ {� (θ) , � (ξ)} as before, then making the change of variables
behind the integral, so that the derived unconditional density is

fi
(
t2
i ; λ1, λ2, Gi

) =
∫

�i

g
(
t2
i ; λ1, λ2

∣∣σ 2In
)

dGi (·) = t2 (ν; λ1, λ2) (10)

from Appendix Theorem A.2(vi), since
∫
�i

dGi = 1. Accordingly, its properties carry for-
ward unconditionally as in Theorem A.2, independently of the mixing distributions G1 ∈ G1

and G2 ∈ G2 of Eqs. (4) and (5), and thus for all such mixtures. �
It is noteworthy that these results extend considerably beyond the classical model for

deletion diagnostics, where � = σ 2In. An immediate consequence is that for Yi not out-
lying, L (

t2
i

)
nonetheless may be doubly noncentral whenever γ �= 0. That is, for δi = 0,

it may happen that L (
t2
i |γ ) = t2 (ν, λ1, λ2). Moreover, our mixture distributions extend

beyond t2
i to include every influence and deletion diagnostic in Table 1 of Jensen (2000).

This follows since these are known to correspond one-to-one with ti or t2
i ; their doubly

noncentral distributions then derive from t2 (ν, λ1, λ2) as if � = σ 2In, despite the fact that
� ∈ [

� (ρ) , � (ξ)
]
.
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8 D. R. Jensen and D. E. Ramirez

Table 1
Tabulated cα from Grubbs (1969) and empirical values for Zmax ≥ cα with

� = �(ρ), n = 5, σ 2 = 1, N = 40,000 runs, and ρ ∈ [0.0, 0.5, 0.8]

α 10% 5% 2.5% 1%

Tabulated cα 1.620 1.672 1.715 1.749
ρ = 0.0 1.603 1.672 1.715 1.748
ρ = 0.5 1.600 1.671 1.716 1.750
ρ = 0.8 1.605 1.675 1.716 1.750

3.5. Related Studies

Normal-theory tests for location and scale often are exact in level, and sometimes power, for
joint distributions having spherical or elliptical contours. Examples are given in early work
of Jensen (1985), Kariya and Sinha (1989), Fang et al. (1990), Fang and Zhang (1990),
and subsequently. Such distributions fill a conspicuous void in practice, especially for data
having excessive tails, even without first or second moments. Table 1 of Jensen (1985) lists
a variety of such distributions on R

n, to include Gaussian, Pearson Type II and Type VII,
the Student’s t family, spherical Cauchy distributions, scale mixtures, and the symmetric
stable laws on R

n. Inferences for these often have the same critical values as for Gaussian
models. Nor are problems with outliers restricted to Gaussian data.

Tests for outliers due to Dixon (1950), Grubbs (1950), and Ferguson (1961) figure
prominently as noted. That these tests remain exact at level α for every spherical error dis-
tribution, with or without moments, is a consequence of Theorem 1 of Jensen and Good
(1981), and therefore these are genuinely nonparametric. On the other hand, non-null dis-
tributions in tests for location typically depend on the particular spherical distribution at
hand. Power properties accordingly remain obscure, to be considered case-by-case along
the lines of Jensen (1981) for topics in linear inference. Similar comments apply for the
doubly noncentral L (

t2
i

) = t2 (ν, λ1, λ2) of the present study. These further complications
are preempted here on taking conditionally Gaussian models.

4. Case Studies

4.1. Darwin Example

As noted earlier, Gaussian mixtures have modeled data collected from subsamples. For
example, Box and Tiao (1968) and Aitken and Wilson (1980) used a two-component
Gaussian mixture, with common mean and unequal variances, to model Darwin’s data com-
prising 15 differences of heights of cross-fertilized and self-fertilized plants as discussed in
Fisher (1960). The data are:

−67 −48 6 8 14 16 23 24
28 29 41 49 56 60 75.

The first two negative observations appear to differ from the other values, and Fisher (1960)
was concerned that the heights of the plants were affected by selection of seeds, soil fertility,
sun light, evaporation, and so on.
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Tests for Outliers 9

In view of latent correlations among contiguous plots, we model the data instead
as a Gaussian mixture with subsamples satisfying Assumption A2 in the equivalent form
A2 : V(ε0) = �(ρ) as in Lemma 2.1. The importance of Theorem 3.1 is that we may pro-
ceed with the standard outlier tests (Grubbs, Dixon, Ferguson) invoking the critical values
as would be appropriate for independent normal data. For example, with Grubbs’s test,
|Zmin| = |(−67 −20.93)/37.74| = 2.32, which is less than the 5% critical value 2.41 from
Grubbs (1969), to conclude that Y(1) = −67 is not an outlier. Similarly, with Dixon’s gap-
over-range test, D = |(−67 + 48)/(75 + 67)| = 0.134 is less than the one-sided α = 5%
critical value cα = 0.338 with a one-sided p-value greater than 20% from tables in Dixon
(1951) and Rorabacher (1991).

4.2. Grubbs and Dixon Tests

To demonstrate Lemma 2.1, N = 40, 000 random samples with sample size n = 5 were
generated from a multivariate normal distribution with mean μ = 0 and dispersion matrix
�(ρ), with σ 2 = 1 and varying ρ as in Lemma 2.1. Minitab was used for the simulations.
Table 1 reports the empirical critical values for Grubbs’s (1950) test using Zmax for ρ ∈
[0.0, 0.5, 0.8], with the corresponding tabulated values from Grubbs (1969). Lemma 3.1(v)
assures that the empirical values and the tabular values will be the same for varying ρ, as
confirmed in the table apart from simulation errors.

Similarly, Table 2 reports the empirical critical values for Dixon’s (1950) test using
D = (Y(n) − Y(n−1))/(Y(n) − Y(1)) for ρ ∈ [0.0, 0.5, 0.8], with the corresponding tabulated
values from Dixon (1951) or Rorabacher (1991), who report critical values for α ∈
[1%, 2%, 5%, 10%].

More importantly, a similar result in Table 3 reports the empirical critical values for
Grubbs’s test using a two-component Gaussian mixture with (50%, 50%) weights and
equicorrelated dispersion matrices �(0.5), �(0.8). We set σ 2 = 1, the sample size n = 5
for each mixture component, to encompass N = 40, 000 repetitions. The empirical criti-
cal values for the mixture agree with the Grubbs (1969) tabular values as supported by
Theorem 3.1(i).

Additionally, Theorem 3.1(i) assures, for distributions satisfying Assumptions A, that
the power of the standard tests (Grubbs, Dixon, Ferguson) will be the same as the power
for independent normal data. This is demonstrated in Table 4 for Grubbs’s test invoking
Zmax with N = 40,000 repetitions, sample size n = 10, and σ 2 = 1. Nominal pow-
ers at α = 5% are compared empirically by perturbing {Y10 → Y10 + δ10}, with varying
δ10 ∈ [0.0, 0.5, 1.0, 1.5, 2.0, 2.5] for equicorrelated Gaussian models with �(0) and �(0.8).

Table 2
Tabulated cα from Dixon (1951) or Rorabacher (1991) and empirical values for D ≥ cα

with � = �(ρ), n = 5, σ 2 = 1, N = 40,000 runs, and ρ ∈ [0.0, 0.5, 0.8]

α 10% 5% 2.5% 1%

Tabulated cα 0.557 0.642 0.729 0.780
ρ = 0.0 0.560 0.644 0.734 0.774
ρ = 0.5 0.557 0.638 0.727 0.779
ρ = 0.8 0.558 0.640 0.726 0.774
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10 D. R. Jensen and D. E. Ramirez

Table 3
Tabulated cα from Grubbs (1969) and Empirical Values for Zmax ≥ cα in a 50%–50%

Gaussian Mixture having (�(ρ1), �(ρ1)), with n = 5, σ 2 = 1, and N = 40,000

α 10% 5% 2.5% 1%

Tabulated cα 2.036 2.176 2.290 2.410
ρ1 = 0, ρ2 = 0 2.038 2.172 2.286 2.409
ρ1 = 0.5, ρ2 = 0.8 2.012 2.163 2.281 2.417

Table 4
Empirical power for Zmax at level 5% and varying δ10, N = 40,000 runs, n = 10, σ 2 = 1

for �(ρ) evaluated at ρ ∈ (0.0, 0.8)

δ10 �(0.0) �(0.8)

0.0 0.049 0.051
0.5 0.067 0.069
1.0 0.197 0.197
1.5 0.483 0.490
2.0 0.778 0.780
2.5 0.991 0.942

For each of 40,000 runs of n = 10 observations, Zmax was computed, and the fraction of
cases having Zmax ≥ cα is the reported empirical power. Assumptions A allow for shifts
ω = [γ ′, δi]′ with δi �= 0. The empirical powers for Grubbs’s test, under both the indepen-
dent and correlated data, are seen empirically to coincide up to simulation errors as in
Lemma 3.1(iv).

To visualize the mixture of normal distributions, we display in Figure 1 a cross-
sectional level surface for the 50%–50% mixture of bivariate normal distributions with
correlations ρ ∈ {0.0, 0.8} which is “lemon-shaped,” and with ρ ∈ {−0.95, 0.95}, which is
“star-shaped.”

4.3. Doubly Noncentral t2 (ν, λ1, λ2) Test

Tests invoking the doubly noncentral t2 (ν, λ1, λ2) serve to generalize conventional outlier
tests, to include nonzero shifts at arbitrary positions in the shift vector ω = [

γ ′, δi
]′

of
section 3.4. By convention the R–Student t2

i test for H0 : δi = 0 is restricted in allowing
no additional shifts elsewhere, that is, γ = 0. Theorem A.2 using t2 (ν, λ1, λ2) circumvents
this restriction, enabling studies where γ �= 0. This is essential for examining the swamping
and masking of outliers, and these findings carry forward where � �= σ 2In, and mixtures
of these as in section 3.4.

To illustrate, consider a data set from Barnett and Lewis (1994, 109) with Y′
0 as

Y′
0 = [

3, 4, 7, 8, 10, y6, 951
]
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Tests for Outliers 11

Figure 1. Level surfaces for mixtures with ρ = 0.0, 0.8, and −0.95, 0.95.

and assigning y6 to have varying values. For the case that y6 = 13, y(n) = y7 = 951 is a
clear outlier, while with y6 = 949, the maximum value y7 = 951 will now fail the Grubbs
and Dixon outlier tests. We expand the range to include y6 ∈ {13, ±733, ±949} and show
how to apply Theorem A.2 as y6 is varied.

The notation for the full model is {Y0 = μ1n + ε0} with n = 7, giving
(
Ȳ , S2

)
. The

reduced model on eliminating y7 has r = n − 1 = 6 entries, and values
(
Ȳ6, S2

6

)
. The shift

under consideration supports H0 : δ7 = 0, allowing for an additional shift of γ6 �= 0. Thus,
ω = [

γ ′, δ7
]′

with γ ′ = [
0, 0, 0, 0, 0, γ6

]
such that both (γ6, δ7) are nonzero. The vector γ

may contain multiple nonzero entries, but for this example we have restricted to only one
such entry.

The resolution γ = γ 1 + γ 2 of Definition 1 serves here to decompose the shift vector
γ = [

0, 0, 0, 0, γ6
]′

into orthogonal vectors γ 1 and γ 2 lying in the “Regressor” and “Error”
spaces, respectively, with γ6 > 0. The angles between γ and its components are given by
θ1 = θ (γ , γ1) = 65.9◦ and θ2 = θ

(
γ , γ 2

) = 24.1◦.
For the doubly noncentral L (

t2
i

) = t2 (ν, λ1, λ2) we have ν = n − 2 = 5. We proceed
to estimate the noncentrality parameters (λ1, λ2) using the moment estimators from Lemma
A3 of Jensen and Ramirez (2014) under Assumptions A. For our example, the more general
moment equations from that reference reduce to

γ6 = [
y6 − (y1 + y2 + y3 + y4 + y5 + y7)

/
6
] + δ7

/
6

δ7 = [
y7 − (y1 + y2 + y3 + y4 + y5 + y6)

/
6
] + γ6

/
6

with solutions
{
γ̃6, δ̃7

}
. The moment estimators are scaled in standard σ units on dividing

by S6, and the noncentrality parameters in standard units as

λ1 = r

n

(
−γ̄ + δ̃7

)2
/

S2
6, λ2 =

r∑
i=1

(γi − γ̄ )2

/
S2

6. (11)
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12 D. R. Jensen and D. E. Ramirez

Table 5
In testing H0 : δ7 = 0, p values p(·) using D, Zmax, t2

ν t2 (ν, λ1, λ2) for cases
Y′

0 = [
3, 4, 7, 8, 10, y6, 951

]
as y6 is varied, together with other supporting quantities

y6 13 −733 733 −949 949

Zmax 2.27 1.87 1.71 1.72 1.47
p(G) 0.0094 0.1497 0.2515 0.2446 0.4999
D 0.989 0.559 0.230 0.495 0.002
p(D) (0, 0.005) (0.02, 0.05) (0.30, 0.40) (0.05, 0.10) (0.95, 1.00)
t2
7 54893.66 10.73 6.61 6.86 3.59

p(t) 0.0000 0.0221 0.0500 0.0471 0.1167
γ̃6

/
Sr 1.77 −2.45 2.45 −2.45 2.45

δ7
/

Sr 253.36 3.13 3.18 2.42 2.45
λ1

/
S2

r 54893.66 10.73 6.61 6.86 3.59
λ2

/
S2

r 2.61 5.00 5.00 5.00 5.00
λ3

/
S2

r 54896.27 15.73 11.61 11.86 8.59
p(λ) 0.0000 0.2348 0.2577 0.2557 0.2924

For varying y6 ∈ {13, ±733, ±949}, Table 5 shows the p values for testing against H0 :
δ7 = 0 that Y(7) = 951 is outlying. The tests under consideration are (1) Grubbs’s test;
(2) Dixon’s test; (3) the R-Student test t2

7, which assumes no nonzero entries for ω other than
δ7; and (4) the noncentral t2 (ν, λ1, λ2) test from Theorem A.2, which allows for nonzero
entries in γ .

In the notation of Theorem A.2 with L (Y0 − μ1n) centered at 0 ∈ R
n, then λ3 =

ω′Bnω, so with ω = [
0, 0, 0, 0, 0, γr, δn

]′
, we have λ3 = λ1 + λ2, with λ1 = r

n (−γ̄+δi)
2

and λ2 = �r
i=1 (γi − γ̄ )2 from Theorem A.2. On standardizing these parameters to{

λi → λi
/

S2
r ; , 1 ≤ i ≤ 3

}
as in Eq. (11), their values are reported in Table 5.

This empirical standardization results in the curious fact that the R-Student statistics
t2
7 for H0 : δ7 = 0 are identical to the standardized first noncentral parameter λ1/S2

r for the
corresponding doubly noncentral t2 (ν, λ1, λ2) as reported in Table 5. This follows from

λ1
/

S2
r = r

n

(−γ̄+δ̃n
)2

/
S2

r = 1

nr

[−γ̃n + r
(
yn − Ȳr

) + γ̃r
]2

/
S2

r

= (
yn − Ȳr

)2
/(

nS2
r

/
r
) = re2

n

/(
nS2

r

) = t2
n

from standard results for Studentized deleted residuals.
Grubbs’s and Dixon’s tests are one-sided, whereas tests based on t2 (ν, λ1, λ2) are nec-

essarily two-sided. For Grubbs’s test the 5% critical value for Zmax with n = 7 is 1.94 with
upper bound Zmax ≤ (n − 1)

/√
n = 2.267 (Shiffler 1988). For Dixon’s test with n = 7 the

5% critical value for D is 0.507. It is important to note that all reported p values are valid
when L (Y0) = Nn (τ , �) with τ = μ1n + ω and � ∈ {� (θ) , � (γ ) , � (ρ)}, and for dis-
persion mixtures over these. For notational convenience, the p values are denoted by p(G)

for Grubbs’s test; p(D) for Dixon’s test; p(t) for the R–Student test based on t2 (ν); and p(λ)

from Theorem A.2 based on the noncentral t2 (ν, λ1, λ2), with (λ1, λ2) as functions of the
moment estimators

(
γ̃6, δ̃7

)
shown in rows 8 and 9 of Table 5.
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Tests for Outliers 13

In Appendix A.2, we outline our computations for the p-values
{
p(G), p(t), p(λ)

}
as listed

in Table 5, to include ranges of values for p(D). For example, for y6 = −733, the observed
D = 0.559 is between the critical values cα for n = 7 from Dixon (1951) of 0.586, and
0.507, which correspond to the one-sided levels for α = 2% and 5%.

As expected, for the case y6 = 13 all tests identify y7 = 951 as an outlier, with Zmax

nearly achieving the Shiffler (1988) bound; when y6 = 949, none of the tests flag y7 = 951
as an outlier. However, with y6 = −949, the R–Student test reverses the conclusion and
flags y7 = 951 as an outlier, while the test invoking the noncentral t2 (ν, λ1, λ2) exhibits
little change in the p value. The value y6 = 733 has been chosen so that the p value for the
R–Student test will be the nominal value of 0.05. Switching the sign so that y6 = −733,
the p value drops to 0.0221 for the R–Student test. The test based on t2 (ν, λ1, λ2) shows no
outliers for y7 = 951 when y6 = ±733, having respective p values 0.2348 and 0.2577.

It is essential to note that the R-Student test has flagged y7 = 951 as an outlier for the
values for y6 in columns 2, 3, 4, and 5 of Table 5. The test based on the doubly noncentral
t2 (ν, λ1, λ2) from Theorem A.2, which allows for shifts in the nondeleted rows, is in agree-
ment with Grubbs test in flagging y7 = 951 only as an outlier when y6 = 13, as shown in
column 2 of Table 5. In regard to H0 : δ7 = 0 |δ6 = 0 , that is, y7 = 951 is not outlying, with
no other outlying values, a reviewer notes that the p values for the R–Student t2 test have
the range (0.0500, 0.1167) as y6 has the range (733, 949). Thus, extreme values for y6 can
mask the extreme value of y7 = 951. The doubly noncentral t2 (ν, λ1, λ2) test that allows for
y6 to be outlying (i.e., H0 : δ7 = 0 |δ6 �= 0) has p values ranging between (0.2577, 0.2924).

5. Conclusions

Given Gaussian observations Y0 = [Y1, . . . Yn]′, normal-theory tests for location and scale
often have critical values exact at level α, as derived under classical assumptions such as
V (Y0) = σ 2In. Exact normal-theory tests on occasion hold also for spherical error distri-
butions, thus enabling the researcher to apply standard outlier tests in heavy-tailed data not
necessarily having first or second moments. We explore such results for Gaussian obser-
vations with dispersion matrix � taken from

[
� (θ) , � (ξ) , � (ρ)

]
, and extend these to

include dispersion mixtures of such distributions, where the matrices are positive defi-
nite in well-defined regions given in Lemma 2.1. For such data the ordinary residuals
e0 = (

Y0 − Ȳ1n
)

have dispersion matrix V (e0) = σ 2
(
In − 1n1′

n
)

independently of � ∈[
� (θ) , � (ξ) , � (ρ)

]
for the data in hand. Accordingly, the outlier tests of Grubbs, Dixon,

and Ferguson, as functions of these residuals, will remain exact in level and power for
such data, and for mixtures over these as in Theorem 3.1. In consequence, these tests
have been updated here for use in data having structures substantially beyond the classical
assumptions, as required in some contemporary experiments.

Case studies are reported demonstrating for � (ρ) that the critical values for the tests
of Grubbs and Dixon are independent of the value of ρ. Moreover, the critical values for
Grubbs’s test are seen to be independent of values for the pair (ρ1, ρ2) in a two-component
mixture using {� (ρ1) , � (ρ2)}. Figure 1 shows that a bivariate normal distribution can have
“star-shaped” contours for its level surfaces, and hence the title for this work.

The R-Student deletion diagnostic t2
i supports conventional tests for outliers and for

shifts in linear models in continuing wide usage. Under the standard model where � =
σ 2In, Jensen and Ramirez (2014) have shown that the R-Student t2 distribution extends to
include shifts in nondeleted rows, resulting in doubly noncentral distributions t2 (ν, λ1, λ2)

of note in the masking and swamping of outliers. Here we extend those results to include

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
V

ir
gi

ni
a,

 C
ha

rl
ot

te
sv

ill
e]

, [
D

. E
. R

am
ir

ez
] 

at
 0

6:
43

 0
1 

Ju
ne

 2
01

5 



14 D. R. Jensen and D. E. Ramirez

data having a dispersion matrix from
[
� (θ) , � (ξ) , � (ρ)

]
, and for mixtures over these.

Supporting work, referred to an appendix, verifies the chi-squared character of quadratic
forms, and their independence, under the highly irregular � ∈ [

� (θ) , � (ξ) , � (ρ)
]
. This

in turn validates the use of t2
i in data going substantially beyond the classical assumptions.

A case study is given showing that the doubly noncentral t2 (ν, λ1, λ2) is in agreement with
the popular Grubbs’s test, and since it allows for shifts in nondeleted rows, t2

i will have
protection against masking effects arising through nondeleted shifts, in contrast to Grubbs’s
test.
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Appendix

A.1. Foundations

We draw on and extend the work of Jensen and Ramirez (2014), on specializing their
model {Y0 = X0β + ε0} to {Y0 = μ1n + ε0}, to be partitioned as Y′

0 = [
Y′, Yi

]
and deleting

[Yi, 1, εi] yet retaining {Y = μ1r + ε}. The matrix Bn is partitioned subsequently as

Bn =
(

In − 1

n
1n1′

n

)
= 1

n

[ (
nIr − 1r1′

r

) −1r

−1′
r r

]
(A.1)

and � (θ) and �(ξ ) are partitioned conformably as

� (θ) =
[ (

Ir + θ1r1′
r

)
θ1r

θ1′
r (1 + θ)

]
(A.2)

� (ξ) =
[

Ir 0
0′ 1

]
+

[
1r

1

]
ξ ′ + ξ

[
1′

r, 1
] − ξ̄

[
1r1′

r 1r

1′
r 1

]
. (A.3)

A critical step entails quadratic forms in Gaussian vectors, now having dispersion matrix
� ∈ {� (θ) , � (ξ)}. Let Ȳr = 1

r

∑r
i=1 Yi; with (1 − hii) = r/n, take

ne2
i

r
+

r∑
i=1

(
Yi − Ȳr

)2 = e′
0e0 (A.4)

as the requisite Fisher–Cochran expansion; see Lemma A.1(iii) of Jensen (2001).
As quadratic forms in Y0, Eq. (A.4) becomes Y′

0A1Y0 + Y′
0A2Y0 = Y′

0A3Y0, with A3 =
Bn, A2 = Diag (Br, 0) with Br = (

Ir − 1
r 1r1′

r
)
, and A1 = A3 − A2 = 1

n

[
1
r 1r1′

r −1r

−1′
r r

]
in

partitioned form.
Properties of these quadratic forms are essential. Under the conventional assumption

that � = σ 2In, this would amount to demonstrating that the matrices are idempotent and
evaluating their ranks. A principal result is the following, instead drawing heavily on the
work of Mathai and Provost (1992, 201), taking into account the special structure of � �=
σ 2In. To continue, recall that Bn1n = 0 and Br1r = 0.

Theorem A.1. Suppose that L (Y0) = Nn (τ , �) for � ∈ {� (θ) , � (ξ)}; take e0 = BnY0;
consider the quadratic forms {Q1, Q2, Q3} such that Q1 + Q2 = Q3; and let t2

i =
(n − 2) Q1/Q2. Then for each � ∈ {� (θ) , � (ξ)} we have:

i. Ai�Ai = Ai for i ∈ {1, 2, 3}.
ii. A1�A2 = 0.

iii. L (Qi) = χ2 (νi, λi) with νi = tr (Ai�) and λi = τ ′Aiτ for i ∈ {1, 2, 3}.
iv. Degrees of freedom for {Q1, Q2, Q3} are νi ∈ {1, n − 2, n − 1}, respectively.
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v. Q1 and Q2 are distributed independently.
vi. L (

t2
i

) = t2 (n − 2, λ1, λ2).
vii. Properties (iii)–(vi) hold independently of � ∈ {� (θ) , � (ξ)}, and are identical to the

case that � = σ 2In.

Proof. Theorem 5.1.4 of Mathai and Provost (1992, 201) identifies (i) to be necessary and
sufficient for (iii), and similarly (ii) for (v).

Case 1: First consider A3 = Bn. Then A3� (θ) = Bn
(
In + θ1n1′

n

) = Bn, so that
tr(A3� (θ)) = n − 1 as in conclusion (iv). Moreover, A3� (θ) A3 = A2

3
= A3 as in con-

clusion (i) for {i = 3} since A3 is idempotent. Similarly,

A3� (ξ) = Bn
(
In + 1nξ

′ + ξ1′
n − ξ̄1n1′

n

) = Bn + Bnξ1′
n (A.5)

So that tr (A3� (ξ)) = n − 1 follows as in conclusion (iv) since tr
(
Bnξ1′

n

) = tr
(
ξ1′

nBn
) =

0. Moreover, A3� (ξ) A3 = A3 as in conclusion (i).
Case 2: For A2 = Diag (Br, 0), the partitioned form (A.2) gives

A2� (θ) =
[

Br 0
0′ 0

] [ (
Ir + θ1r1′

r

)
θ1r1′

s
θ1s1′

r

(
Is + θ1s1′

s

) ]
=

[
Br 0
0′ 0

]
= A2 (A.6)

and tr(A2� (θ)) = n − 2 as in conclusion (iv). In parallel with Case 1, A2� (θ) A2 = A2 to
give conclusion (i) for (i = 2). To continue, in the partitioned form (A.3) we have

A2� (ξ) =
[

Br 0
0′ 0

] {[
Ir 0
0′ 1

]
+

[
1r

1

]
ξ ′ + ξ [ 1′

r 1 ] − ξ̄

[
1r1′

r 1r

1′
r 1

]}
= A2 + A2ξ1′

n

(A.7)

and tr(A2� (ξ)) = n − 2 as in conclusion (iv). Moreover, A2� (ξ) A2 = A2 to give conclu-
sion (i) for (i = 2).

Case 3: Next consider A1 = As − A2. From the foregoing developments infer that
tr (A1� (θ)) = (n − 1) − (n − 2) = 1 as in conclusion (iv), whereas A1� (θ) A1 = A1 to
verify conclusion (i) for � = � (θ). Similarly, tr (A1� (ξ)) = (n − 1) − (n − 2) = 1 as in
conclusion (iv), and A1� (ξ) A1 = A1 as in conclusion (i) for (i=1) and � = � (ξ).

Case 4: To verify conclusion (ii) separately for �(θ ) and � (ξ), take A3� (θ) = A3

from Case 1 and A2� (θ) = A2 from (A.7), so that A1� (θ) A2 = (A3 − A2) A2, namely,

A2� (θ) A2 = (A3 − In) A2 = −1

n

[
1r1′

r 1r

1′
r 1

] [
Br 0
0 0)

]
=

[
0 0
0 0

]
. (A.8)

To continue, write A3� (ξ) = Bn + Bnξ1′
n from Eq. (A.6), and A2� (ξ) = A2 + A2ξ1′

n
from Eq. (A.8), so that A1� (ξ) A2 = (A3 − A2) A2 + (A3 − A2) ξ [ 1′

r 1 ] A2. But
[ 1′

r 1 ] A2 = 0, and (A3 − A2) A2 = 0 from Eq. (A.8). Conclusion (v) follows as a
consequence of (ii) and Craig’s Theorem, as in Mathai and Provost (1992, 209).

Case 5: The noncentralities in (iii) use that L (Qi) = χ2 (νi, λi) independently of � ∈
{� (θ) , � (ξ)} and, if Y0 ∈ R

n is random having E (Y0) = τ , the noncentrality parameter
for Y′

0AY0 is the quadratic form λ = τ ′Aτ in its expectation. �
Under shifts γ �= 0, an innovation of the present study, distributions of t2

i emerge
as doubly noncentral, or as singly noncentral in either the numerator or denominator,
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18 D. R. Jensen and D. E. Ramirez

depending on γ. We next specialize Theorem A.1 for the case of reference models
{Y0 = μ1n + ε0} for which shifts are allowed in both deleted and nondeleted rows; that
is, γ �= 0 with ω′ = [

γ ′, δi
]
. By decomposing γ into its canonical components, formulas

for the parameters of t2 (ν, λ1, λ2) are derived. Details follow.

Theorem A.2. Given L (Y0) = Nn (τ , �) with τ = μ1n + ω and � ∈ {� (θ) , � (ξ)}, with
ω = [

γ ′, δi
]′

. Decompose γ = γ 1 + γ 2 with γ 1 = 1
r 1r1′

rγ and γ 2 = (
Ir − 1

r 1r1′
r
)
γ as

in Definition 1; andlet ν = n − 2. Then the distribution L (
t2
i

)
is the doubly noncentral

L (
t2
i

) = t2 (ν; λ1, λ2) with:

i. λ1 = r
n (−γ̄ + δi)

2.
ii. λ2 = γ ′

2γ 2 = ∑r
i=1 (γi − γ̄ )2.

iii. If γ ∈ R(1r1′
r), then L (

t2
i

) = t2 (ν, λ1, 0) with λ1 as in (i); and at δi = 0, then λ1 =
r
n γ̄ 2

1 .
iv. If γ ∈ R (

Ir − 1r1′
r
)
, then L (

t2
i

) = t2 (ν, λ1, λ2) with λ1 = r
n (−γ̄2 + δi)

2 and λ2 =
γ ′

2γ 2 > 0.
v. The “regression effect,” δi = γ̄ , yields λ1 = 0.

vi. The foregoing properties hold for L (
t2
i |�

) = L (
t2
i |σ 2In

)
, independently of � ∈

{� (θ) , � (ξ)}.
Proof. In keeping with Theorem A.1(iii), identify τ = E (Y0) = μ1n + ω with ω =[
γ ′, δi

]′
. A direct evaluation from A1 = (A3 − A2), as displayed earlier in partitioned form

following Eq. (A.4), gives λ1 = τ ′A1τ = r
n (−γ̄ + δi)

2 as in conclusion (i). Similarly,
λ2 = τ ′A2τ = τ ′ Diag (Br, 0) τ = γ ′Brγ as in conclusion (ii). Conclusion (iii) follows
since γ ∈ R (

1r1′
r
)

implies that γ 2 = 0, and conclusion (iv) since γ ∈ R (
Ir − 1r1′

r
)

implies γ 1 = 0. Conclusion (v) follows from (i), and (vi) from Theorem A.1(vii). �

A.2. Calculations of p values

Building on the earlier work of Imhof (1961), Ennis and Johnson (1993) have expressed the
cdf for the doubly noncentral F (ν1, ν2, λ1, λ2) as a one-dimensional integral using trigono-
metric functions. This result is easy to code, for example, in Maple, and the Ennis and
Johnson representation for the cdf was used to compute the probabilities shown in Table 5.

For the p values p(G) of Grubbs’s test, we follow Eq. (7) of Nair (1948) and use the
Thompson (1935) procedure that relates the probability for a deviate Zi to the probability
from the Student tν distribution with degrees of freedom ν = n − 2 as

Pr (Zi = (yi − ȳ) /S < τ) = Pr (t < t∗|L (t) = tv)

τ = (n − 1) t∗/
√

nt2∗ + n (n − 2);

and thus Pr (Zmax = (ymax − ȳ) /S < τ) = [Pr (t < t∗|L (t) = tv)]
n .

Regarding p values p(D) for Dixon’s test, we use the tabulated critical values from
Dixon (1951) and Rorabacher (1991), who report cα values for α in

[0.5%, 1%, 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%] .
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