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Anomalies persist in the use of deletion diagnostics in regression. Tests for outliers
under subset deletions utilize the R–Fisher FI statistics, each having a noncentral
F-distribution with noncentrality parameter λ as a function of shifts only at deleted rows
in the index set I. Numerous studies examine empirical outcomes of these diagnostics
in random experiments. In contrast, studies here are probabilistic, examining distribu-
tions behind those empirical outcomes and tracking the effects of shifts at nondeleted
rows. By allowing shifts at nondeleted rows in a set J, in addition to traditional shifts at
deleted rows in I, FI is shown to have a doubly noncentral F-distribution. By removing
the unnecessary restriction that shifts occur only at deleted rows, these findings sup-
port constructs akin to power curves in tracking probabilities of masking or swamping
as shifts evolve. In addition, “regression effects” among outliers may have unforeseen
consequences. A dichotomy of shifts is discovered as projections into the “regressor”
and “error” spaces of a model. Hidden shifts at nondeleted rows can obfuscate not
only meanings ascribed to traditional outlier diagnostics, but also to subset influence
diagnostics corresponding one-to-one with FI . In short, despite wide usage abetted by
software support, deletion diagnostics in current vogue no longer can be recommended
to achieve objectives traditionally cited. Case studies illustrate the debilitating effects of
these anomalies in practice, together with conclusions misleading to prospective users.

AMS Subject Classification: 62J05; 62J20.

Keywords: Subset leverages; Coleverages; Vector outliers; Regression diagnostics.

1. Introduction

Begin with Y0 = X0β + ε0 of full rank having n observations, p regressors, and uncorre-
lated errors with variance σ 2, giving β̂ as Gauss–Markov solutions and S2 as the residual
mean square. Regression diagnostics seek leverages of regressors, outlying data, and obser-
vations deemed influential whose removal would alter essentials of the analysis. See Belsley
et al. (1980), Cook and Weisberg (1982), Barnett and Lewis (1984), Atkinson (1985),
Rousseeuw and Leroy (1987), Chatterjee and Hadi (1988), Myers (1990), Fox (1991), and
others. Subset deletions follow on eliminating s rows {YI , Z, εI} from {Y0, X0, ε0}, leaving
Y = Xβ + ε of full rank with r = n − s > p rows, giving (β̂I , S2

I ) from the reduced data.
Basic arrays include Hn = X0(X′

0X0)−1X′
0; its diagonal elements {hii ∈ (0, 1); 1 ≤ i ≤ n}

are leverages attributed to rows {x′
i; 1 ≤ i ≤ n} of X0; off-diagonal elements {hij; i �= j}

are coleverages; and elements of (In − Hn)Y0 = e0 = [e1, . . . , en]′ comprise the vector of
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142 D. R. Jensen and D. E. Ramirez

residuals in the full data, to be partitioned as e′
0 = [e′, e′

I]. Designs fully estimable after
deletions are studied in Ghosh (1978).

For s = 1 the R–Student statistics ti trace to Snedecor and Cochran (1968, 157) in
testing for a single shift at x′

i; see also Beckman and Trussell (1974). Similarly, for I a
subset of {1, 2, . . . , n}, the R–Fisher statistic FI serves to track a vector shift YI → YI + δ;
see Gentleman and Wilk (1975). Here, ti and FI are given by

ti = ei

Si
√

(1 − hii)
, FI = e′

I(Is − HII)−1eI

sS2
I

with HII = Z(X′
0X0)−1Z′. Powers of FI to detect a shift δ decrease with increasing

leverages under Gaussian errors, since FI then follows the noncentral Fisher distribution
F(s, n − p − s, λs) with noncentrality λs = δ′(Is − HII) δ/σ 2. It bears notice that if δ is
concentrated in a subspace of R

s of dimension t < s, and having the same λs, then the
power is greater for F(t, n − p − t, λs) than F(s, n − p − s, λs). This applies in context,
a result of Das Gupta and Perlman (1974).

These facts apply for single shifts at designated loci. However, as specific loci seldom
can be identified beforehand, all of {ti; 1 ≤ i ≤ n} are examined to isolate a suspected
shift somewhere among the n observations. For subsets, Gentleman and Wilk (1975) defined
the k most likely outliers as the subset of s = k observations giving the largest reduction
in the residual sum of squares when deleted, namely, e′

I(Is − HII)−1eI . In practice, for J
an ensemble of subsets I of {1, 2, . . . , n}, the Studentized diagnostics {FI ; I ∈ J }, adjusted
for scale, are examined for selected subsets. Numerous studies, some by simulation, have
examined empirical outcomes of these diagnostics based on observed Y0 in random exper-
iments, tracing back over many decades of use. Unanswered are their workings in actual
applications where shifts may occur in lieu of, or in addition to, the case Yi or subset YI of
current interest. These issues remain to be studied, as users deserve to know actual operating
characteristics of these procedures in such circumstances.

To fill these gaps, studies here are probabilistic, allowing for shifts at nondeleted rows
in J, in addition to traditional shifts at deleted rows in I, with FI then having a doubly
noncentral F-distribution. Specifically, we examine irregularities among distributions in
an ensemble {L(FI); I ∈ J }, where single and multiple shifts are shown to distribute as
numerator and denominator noncentralities across {L(FI); I ∈ J }, having structure intrin-
sic to and recovered from a given design. Effects on conventional useage are chaotic.
Intended p-values may be rendered meaningless; masking and swamping may misdirect
attention away from actual outlying observations; and users seldom are apprised that such
anomalies have occurred. These findings in turn obscure the operating characteristics of
outlier and influence diagnostics known to correspond one-to-one with FI . Examples are
given where nonoutliers are misidentified with the same likelihood that outliers are iden-
tified correctly, and similarly for ostensibly non–influential and influential observations.
In short, subset deletion diagnostics generally fail to achieve the intended objectives and no
longer can be recommended. An outline follows.

Section 2 surveys notation, distributions of note, models, and their error characteristics,
and selected influence diagnostics. The principal findings of section 3 encompass irregu-
larities in the workings of {FI ; I ∈ J } and related diagnostics, to include the masking and
swamping of outliers. These findings are illustrated in section 4 through small but infor-
mative elementary examples, together with more comprehensive data from the literature.
Specifically, for a data set held to be exemplary and studied since by various investigators,

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
V

ir
gi

ni
a,

 C
ha

rl
ot

te
sv

ill
e]

, [
D

. E
. R

am
ir

ez
] 

at
 0

6:
35

 2
0 

M
ay

 2
01

5 



Noncentralities Induced in Regression Diagnostics 143

observations alleged to be outlying instead appear to be so as artifacts of swamping by
shifts at other loci. These conclusions are supported by tools developed here. Essentials of
the study are summarized in section 5. Further supporting facts are widely scattered; these
are collected for reference in Appendix A.

2. Preliminaries

2.1. Notation

Spaces of interest include R
n as Euclidean n-space, R

n+ as its positive orthant, and Sn

as the real symmetric (n × n) matrices. Vectors and matrices are set in bold type; the
transpose, inverse, trace, and determinant of A are A′, A−1, tr(A), and |A|; In is the
(n × n) identity; and Diag(A1, . . . , Ak) is a block-diagonal array. If B = [b1, . . . , bk] is
of order (n × k) and rank k < n, then Sp(B) designates the column span of B, that
is, the k-dimensional subspace of R

n spanned by [b1, . . . , bk]. The ordered eigenvalues
of A ∈ Sn are {λi(A) = αi; 1 ≤ i ≤ n} with {α1 ≥ α2 ≥ . . . ≥ αn}, and its spectral
decomposition is A = PDαP′ = ∑n

i=1 αipip
′
i, where P = [p1, . . . , pn] is orthogonal and

Dα = Diag(α1, . . . , αn). Any g-inverse A− of A satisfies AA−A = A. The range and null
spaces of A are designated as R(A) and N (A). Specifically, if {α1 ≥ α2 ≥ . . . ≥ αr >

αr+1 = · · · = αn = 0} and if P = [P1, P2] with P1 = [p1, . . . , pr] and P2 = [pr+1, . . . , pn],
then R(A) = Sp(P1) and N (A) = Sp(P2).

Users long have focused on the masking and swamping of outliers: masking, when
outliers remain undetected because others are present; swamping, when nonoutliers are
wrongly identified owing to ambient outliers. Let I and J be subsets of observations, and λ

a scalar measure of the outlyingness of observations in J. Then βP(λ) is the power curve at
λ of a designated diagnostic to identify that J is outlying. Corresponding swamping curves
are visualized as follows.

Definition 2.1.1. Let λ measure the outlyingness of a subset J; let EJ	I be the event that sub-
set I is swamped by J, that is, YI is deemed to be outlying when it is not. Then a swamping
curve is βS(λ) = P(EJ	I) as λ evolves.

2.2. Special Distributions

The distribution of Y ∈ R
n, its characteristic function (chf ), its mean vector, its disper-

sion matrix, and its generalized variance are denoted by L(Y), φY (t), E(Y), V(Y) = �,
say, and GV (Y) = |�|, with variance Var(Y) = σ 2 on R

1. Specifically, L(Y) = Nn(μ, �)
is Gaussian on R

n with (μ, �) as its mean and dispersion matrix. Distributions on R
1+

include χ2(ν, λ) as chi-squared having ν degrees of freedom, noncentrality parameter λ, and
chf φ(t) = (1 − 2it)−ν/2 exp [iλ t/(1 − 2it)]; see Johnson and Kotz (1970, 132–133). In addi-
tion to F(s, n − p − s, λ), with numerator noncentrality λ, we designate by F(ν1, ν2, λ1, λ2)
a doubly noncentral F-distribution having (ν1, λ1) and (ν2, λ2) as degrees of freedom
and noncentralities in its numerator and denominator. This specializes at s = 1 to
F(1, ν2, λ1, λ2) = t2(ν2, λ1, λ2) for the square of Student’s ti. Recall that F(ν1, ν2, λ1, λ2)
increases stochastically with increasing λ1, and decreases stochastically with increasing λ,
with other parameters held fixed. Moreover, if L(U) = F(ν1, ν2, λ1, λ2), then L(U−1) =
F(ν2, ν1, λ2, λ1). Identify {FI > cα} as the conventional α–level rejection rule based on
F(s, n − p − s, 0, 0).
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144 D. R. Jensen and D. E. Ramirez

2.3. The Models

We next put in place standard models under nonstandard assumptions. Take {Yi = β0 +
β1Xi1 + · · · + βkXik + εi; 1 ≤ i ≤ n} to model response Yi to regressors {Xi1, . . . , Xik}
through parameters β ′ = [β0, β1, . . . , βk]. Arrayed as Y0 = X0β + ε0, estimators (β̂, S2)
and (β̂I , S2

I ) are from the full and reduced data, where solutions are displayed as β̂ = [β̂0,
β̂1, . . . , β̂k]′ and β̂I = [β̂I0, β̂I1, . . . , β̂Ik]′. Properties of these and related constructs are
scattered widely; essentials are assembled in Appendix A, to include conditions for
inverting (Is − HII) as required of FI .

To arrange elements of {Y, X, ε} contiguously on deleting {YI, Z, εI}, we proceed in
ordering {Y0, X0, ε0} so that {YI , Z, εI} appear as the final s rows. Alternative choices to
be deleted will require reordering. Accordingly, the residual vector e0 = GY0, with G =
(In − Hn), is now partitioned as

[
e
eI

]
=

[
(Ir − H00) − H0I

−HI0 (Is − HII)

] [
Y
YI

]
=

[
G11 G12

G21 G22

] [
Y
YI

]
(1)

where blocks are H00 = X(X′
0X0)−1X′, H′

I0 = H0I = X(X′
0X0)−1Z′, and HII =

Z(X′
0X0)−1Z′.
Gauss–Markov assumptions on error moments, then distributions, are modified here as

follows, where ε0 = [ε′, ε′
I]

′ ∈ R
n, ε ∈ R

r, εI ∈ R
s, and r + s = n.

Assumptions A.

A1. E(ε) = γ ∈ R
r and E(εI) = δ ∈ R

s;
A2. V(ε0) = σ 2In; and
A3. L([(ε − γ )′, (εI − δ)′]′) = Nn(0, σ 2In).

Conventional outlier models take YI → YI + δ at the deleted YI and γ = 0 elsewhere, a
restriction unnecessary in concept and often unrealized in practice. To the contrary, this
study allows unfettered additional, or alternative, shifts Y → Y + γ among the retained
observations. Critical insight is gained on decomposing any γ ∈ R

r as in the following.

Definition 2.3.1.

(i) The decomposition γ = γ1 + γ2, with γ1 = Hrγ , γ2 = (Ir − Hr)γ , and Hr =
X(X′X)−1X′, entails projections γ1 ∈ R(Hr) and γ2 ∈ R(Ir − Hr) into the
“Regressor” and “Error” spaces generated by Y = Xβ + ε.

(ii) Angles between γ and these projections are θ1 = θ (γ , γ1) and θ2 = θ (γ , γ2).

2.4. Deletion Diagnostics: A Survey

Observations whose removal would alter essentials of the analysis have been called influ-
ential. For example, on deleting {Yi, x′

i, εi} from {Y0, X0, ε0} and computing DIFFITi =
(Ŷi − Ŷi(i))/Si

√
hii as a scaled divergence between predictors at xi with and without Yi,

then Yi is deemed influential for prediction at xi provided that its removal alters DIFFITi

sufficiently; see Belsley et al. (1980). Many such diagnostics are deemed to be staples of
regression, as cited in the opening paragraph, but with the critical disclaimers of Chatterjee
and Hadi (1986) and discussants as in Appendix B.
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Noncentralities Induced in Regression Diagnostics 145

Table 1
Subset deletion diagnostics

Diagnostic Expression Rule Critical value

FI
e′

I(Is− HII )−1eI

sS2
I

> cα

OUTI 1 − S2
I

S2 > [s(cα−1)]
[scα+n−p−s]

API

[
1 − (n−p−s)S2

I | X′ X |
(n−p)S2| X′

0 X0|
]

>
[scα+(n−p−s)GLI ]

[scα+n−p−s]

CRI
|S2

I (X′X)−1|
|S2(X′

0X0)−1| <
[

(n−p)
(scα+n−p−s)

]p
1

|G22|

FVI
|S2

I Z(X′X)−1Z′|
|S2Z(X′

0X0)−1Z′| <
[

(n−p)
(scα+n−p−s)

]s
1

|G22|

DI
(β̂−β̂I )′V−(β̂−β̂I )

sS2
I

> cα

These and other diagnostics extend to encompass subset deletions, as given in part in
Table 1. Here, FI and OUTI are intended as outlier diagnostics, the remainder to assess
influence as the impact of subsets on essential features of the analysis. Rejection rules in
Table 1 are consistent with FI ; the factor GLI = 1 − | G22| is the leverage diagnostic of
Draper and John (1981); and V− is a reflexive g–inverse of V(β̂ − β̂I). Further details are
found in Jensen (2001) and Appendix B. The diagnostics of Table 1 are singled out here,
precisely because each corresponds one-to-one with FI and thus they comprise functionally
equivalent tests. This underscores the need for further research regarding FI : Anomalies in
its distribution carry over directly to include the diagnostics of Table 1. These matters are
undertaken next.

3. The Principal Findings

Our prime focus is FI = e′
I(Is − HII)−1eI/sS2

I , specializing at s = 1 to t2
i against two-

sided shifts. That L(FI) = F(s, n − p − s, λ, 0), with λ = δ′(Is − HII)δ, follows under
Assumptions A for E(εI) = δ ∈ R

s, but restricted to E(ε) = 0 ∈ R
r. A critical reappraisal,

to allow shifts anywhere, is undertaken next through the theory of quadratic forms, show-
ing generally that L(FI) = F(s, n − p − s, λ1, λ2), essentials then emerging via the null
and range spaces of designated matrices. This analysis identifies (i) nonzero shifts that
remain undetected; (ii) values γ �= 0 nonetheless preserving L(FI) = F(s, n − p − s, λ, 0)
for some λ > 0; (iii) unanticipated “regression effects” among shifted outliers; and (iv)
that FI may be depressed or inflated stochastically due to outliers. In short, the uses of t2

i
and FI for outliers, and corresponding influence diagnostics, are fraught with heretofore
unforeseen and debilitating consequences. Details follow, where both Hr = X(X′X)−1X′
and Hn = X0(X′

0X0)−1X′
0 are idempotent of rank p, and we standardize σ 2 = 1.0 since other

values may be reinstated as required.
To continue, technical details establishing the propagation of shifts as noncentrality

parameters rest on distributions of quadratic forms. Details are given in Appendix A cul-
minating in Lemma A.4. We next state the principal findings regarding outlier shifts and
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146 D. R. Jensen and D. E. Ramirez

their effects on the diagnostic FI . Recall from Eq. (1) that (In − Hn) = [Gij] has blocks
G11 = (Ir − H00), G′

21 = G12 = −H0I , and G22 = (Is − HII). It deserves emphasis that
γ1 = Hrγ and γ2 = (Ir − Hr)γ , i.e., γ1 ∈ R(Hr) and γ2 ∈ R(Ir − Hr) = N (Hr).

Theorem 3.1. Given Assumptions A, such that E(ε0) = ω = [γ ′, δ′]′; decompose γ = γ1 +
γ2 with γ1 = Hrγ and γ2 = (Ir − Hr)γ . Then the distribution of FI is the doubly noncentral
L(FI) = F(s, n − p − s, λ1, λ2) with

i. λ1 = (G21γ1 + G22δ)′G−1
22 (G21γ1 + G22δ);

ii. λ2 = γ ′
2(Ir − Hr)γ2.

Proof. The proof is given in Appendix A for Lemma A.4.

Under shifts γ �= 0, an innovation of the present study, distributions of FI emerge as
doubly noncentral, or as singly noncentral in either the numerator or denominator, depend-
ing on γ . Generally speaking, the occurrence γ ∈ R(Hr) gives F(s, ν, λ1, 0), whereas
γ ∈ R(Ir − Hr) gives F(s, ν, λ1, λ2), for various values of λ1. Details follow as in Lemma
A.4, where we subsequently identify G121 = G21G−1

22 G21.

Theorem 3.2. Consider L(FI) = F(s, n − p − s, λ1, λ2) as in Theorem 3.1 under
Assumptions A. Essential properties emerge under further structures as follows:

i. If γ ∈ R(Hr), then L(FI) = F(s, ν, λ1, 0) with λ1 as in Theorem 3.1, and at δ = 0, then
λ1 = γ ′G121γ .

ii. If γ ∈ R(Ir − Hr), then L(FI) = F(s, ν, λ1, λ2) with λ1 = δ′(Is − HII)δ and λ2 =
γ ′(Ir − Hr)γ > 0; and at δ = 0, L(FI) = F(s, ν, 0, λ2).

iii. If s < r, δ = 0, and γ ∈ R(G121), then L(FI) = F(s, ν, λ1, 0) with λ1 = γ ′G121γ > 0;
and

iv. If s < r, δ = 0, and γ ∈ N (G121), then L(FI) = F(s, ν, 0, λ2) with λ2 = γ ′(Ir −
Hr)γ > 0.

v. For γ ∈ R(Hr), the “Regression effect,” δ = R′γ with R′ = −G−1
22 G21, yields λ1 = 0.

Proof. As before, r + s = n and r > p. Take λ1 and λ2 as in Theorem 3.1; then
γ ∈ N (Ir − Hr) implies (Ir − Hr)γ = 0 and λ2 = 0 as in conclusion (i); otherwise,
γ ∈ R(Ir − Hr) implies λ2 > 0 as in (ii). Because (Ir − Hr) is (r × r) idempotent of
rank t = (r − p), its spectral decomposition is (Ir − Hr) = P1 P′

1 with P1 = [p1, . . . , pt]
as eigenvectors corresponding to its t unit eigenvalues, such that P1P′

1 is idempotent and
P′

1 P1 = It. From (A.5) it follows that HI0P1P′
1 = 0, so that HI0P1P′

1P1 = HI0P1 = 0.
This in turn implies that −HI0γ = G21γ = 0 for any γ = ∑t

i=1 aipi ∈ Sp(P1) = R(Ir −
Hr), to give λ1 as in conclusion (ii). In terms of G = [Gij], (A.5) further implies that
(G121)(Ir − Hr) = 0, and, since the factors commute, infer that R(G121) ⊂ N (Ir − Hr)
and R(Ir − Hr) ⊂ N (G121). That N (G121) is nonempty follows since G121 is (r × r)
of rank s < r, to establish conclusion (iv). Conclusion (v) follows directly from (i), to
complete our proof.

An immediate consequence is that, for YI not outlying, then L(FI) nonetheless may be
doubly noncentral whenever γ �= 0; i.e. for δ = 0, L(FI|γ ) = F(s, ν, λ1, λ2). Despite such
irregularities, stochastic bounds may be constructed independently of the particular value
of γ , depending only on its length and the structure of the design. To these ends, recall that
cdf s F(·) and G(·) on R

1 are ordered stochastically as F	stG if and only if F(u) ≥ G(u)
for every u ∈ R

1. A stochastic envelope for L(FI |γ ) may be constructed as follows.
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Noncentralities Induced in Regression Diagnostics 147

Theorem 3.3. Consider L(FI|γ ) = F(s, ν, λ1, λ2) under Assumptions A with ν = n − p −
s, δ = 0, λ1 = γ ′G121γ and λ2 = γ ′(Ir − Hr)γ . Let G121 = ∑s

i=1 ξiqiq
′
i be its spectral

decomposition of rank s, with {ξ1 ≥ ξ2 ≥ . . . ≥ ξs > 0}. Then

F(s, ν,λm, γ ′γ )≺stF(s, ν, λm, λ2)≺stF(s, ν, λ1, λ2)

≺stF(s, ν, λM , λ2)≺stF(s, ν, λM , 0),

where λm = γ ′γ ξs and λM = γ ′γ ξ1.

Proof. Variational properties of the Rayleigh quotient ξs ≤ γ ′G121γ /γ ′γ ≤ ξ1, give
γ ′γ ξs ≤ λ1 ≤ γ ′γ ξ1. Moreover, since (Ir − Hr) is (r × r) idempotent of rank t = (r − p)
with spectral decomposition P1P′

1 having eigenvalues in {0, 1}, the Rayleigh quotient again
ensures that {0 ≤ γ ′(Ir − Hr)γ ≤ γ ′γ }. The string of inequalities now follows since
F(s, ν, λ1, λ2) is stochastically increasing in λ1 and stochastically decreasing in λ2.

Irreparable defects are wrought in the actual workings of {FI ; I ∈ J } when there are
shifts at nondeleted rows with γ �= 0. Confounding effects on outlier detection are the
masking and swamping of outliers as in section 2.1. Indeed, masking “is an important
problem in influence analysis which deserves further study” (Hoaglin and Kempthorne
1986, 410). Our tools offer further insight. A survey follows, where elements of G = [Gij],
as in Eq. (1) and Theorems 3.1 and 3.2, often are reexpressed in terms of (In − Hn).

Properties of FI.

P1. Convention claims to test H0 : δ = 0 vs. H1 : δ �= 0 at level α using {FI > cα} with
cα as the upper critical value from F(s, n − p − s, 0, 0).

a. For γ ∈ N (Ir − Hr), this executes a factual test for the “Regression effect” H0 :
δ = R′γ vs. H1 : δ �= R′γ , from Theorem 3.2(v), with λ1 = (−R′γ + δ)′(Is −
HII)(−R′γ + δ) and “coefficient matrix” R′ = (Is − HII)−1HI0.

b. In the event that (i) δ ≈ R′γ holds approximately, (ii) λ1 is small, and (iii) FI < cα ,
then the conventional but mistaken inference that δ = 0 would serve to mask δ �= 0
through γ �= 0.

c. A test for H0 : δ = 0 vs. H1 : δ �= 0, as usually intended, is afforded by
Theorem 3.2(ii) at γ ∈ R(Ir − Hr), but at the expense of λ2 > 0. The result-
ing test is conservative, with P(FI > cα|H0) < α since the actual null distribution
F(s, n − p − s, 0, λ2) is stochastically smaller than the nominal F(s, n − p − s, 0, 0),
as appropriate for γ = 0.

d. A “significant” outcome FI > cα may be misattributed to H1 : δ �= 0, when in fact
δ = 0 but γ ∈ R(H0I(Is − HII)−1HI0), as seen from Theorem 3.2(iii). This in turn
effects a venue for the swamping of δ = 0 by γ �= 0.

P2. With δ = 0, Theorem 3.2(i) shows that FI can have large values with L(FI) = F(s, n −
p − s, λ1, 0) skewed to the right of the null distribution F(s, n − p − s, 0, 0), supporting
the false conclusion that δ �= 0. Similarly, with δ = 0, Theorem 3.2(iv) shows that
FI can have small values with L(FI) = F(s, n − p − s, 0, λ2) skewed to the left of the
null distribution. Additionally, with δ �= 0, intermediate values of λ1 and λ2 can have
L(FI) approximating the null distribution.

P3. Several influence diagnostics are seen to decrease with increasing FI through S2
I /S2 =

(n − p)/[sFI + (n − p − s)]; see Table 1, for example. Whatever the cutoff rules, these
are altered irrevocably by anomalies in FI owing to outliers. Accordingly, influence
ascribed to subsets of observations YI in I, using diagnostics in Table 1, may actually
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148 D. R. Jensen and D. E. Ramirez

be the result of unexamined outliers in the nondeleted rows J, rather than of some
vaguely posed notion of “influence” from the literature.

P4. Conversely, data points having outliers but deemed noninfluential might have been
declared influential had there been no outliers. That outliers and influence, in its
many guises, are irrevocably entangled clearly thwarts much of the meaning ascribed
historically to influence diagnostics.

P5. The condition γ ∈ N (Ir − Hr) asserts that γ is invariant under projection PX(γ ) =
X(X′X)−1X′γ = γ onto the space of the regressors X. Since −G21 = Z(X′

0X0)−1X′ and
Z(X′

0X0)−1X′PX(γ ) = Z(X′
0X0)−1X′γ , it follows that λ1 of Theorem 3.2(i), together

with the implied tests, are invariant under γ → PX(γ ).

These issues are best exemplified numerically. Case studies to these ends are under-
taken next.

4. Case Studies

Properties of L(FI), culminating in section 3, are characteristic of X0 independently of
Y0, and often may be accessed before undertaking an experiment. To identify subsets
of outlying or influential observations, users typically examine FI statistics, or influence
diagnostics, for all or portions of subsets of size s comprising an ensemble {FI ; I ∈ J }.
Numerous studies, some by simulation, have examined empirical outcomes of these diag-
nostics based on Y0 in random experiments. To the contrary, our studies are probabilistic as
noted, examining the driving forces behind those outcomes, namely, their doubly noncentral
distributions themselves. To enable a full but concise accounting, to include manageable
intermediate displays, we first consider a small data set in a single regressor. A more com-
prehensive example from the literature then suppresses cumbersome intermediate details.
Computations utilize the Minitab and Maple software packages, and without comment we
report noncentrality parameters in units of σ 2, as if σ 2 = 1.0, but reinstating other values
on occasion as needed.

4.1. Case Study 1

Take {Yi = 10 + 3Xi − 2X2
i + εi; 1 ≤ i ≤ 7}, with design points augmenting a Central

Composite Design (CCD) of Box and Wilson (1951). The first two rows of Table 2 com-
prise {(Yi, Xi); 1 ≤ i ≤ 7}, where {εi; 1 ≤ i ≤ 7} are generated as L(εi) = N(0, 0.5).
Here, [1, Xi, X2

i ] comprise the rows of X0(7 × 3), and leverages, as diagonals of H7 =
X0(X′

0X0)−1X′
0, are listed as {hii; 1 ≤ i ≤ 7} in Table 2.

We reiterate conventional properties. Given an excluded subset I having YI → YI + δ,
and no outliers elsewhere, the R–Fisher statistic FI = e′

I(Is − HII)−1eI/sS2
I , together with

Table 2
Values {(Yi, Xi, hii); 1 ≤ i ≤ 7} comprising responses, design points, and corresponding

leverages for a modified single regressor CCD

i 1 2 3 4 5 6 7

Yi −2.00020 0.50754 6.13322 10.86978 10.15305 9.91780 9.48890
Xi −1.73205 −1.50000 −1.00000 0.00000 1.00000 1.50000 1.73205
hii 0.57051 0.35138 0.30237 0.55149 0.30237 0.35138 0.57051
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Noncentralities Induced in Regression Diagnostics 149

the rejection rule FI > cα , tests H0 : δ = 0 against H1 : δ �= 0 at level α. For the sin-
gle shift δ at YI and subsets of dimension s = 2, we have L(FI | δ) = F(2, 2, λ1, 0), since
n − p − s = 7 − 3 − 2 = 2 and λ1 = δ′(Is − HII)δ. Accordingly, under Gaussian errors
the critical value at α = 0.05 is cα = 19.00 from F(2, 2, 0, 0), and the power at δ �= 0
is βP(λ1) = P(FI > 19.00) under L(FI) = F(2, 2, λ1, 0).

Remark 4.1. Recall that F(ν1, ν2, λ1, λ2) increases stochastically with increasing λ1, and
decreases stochastically with increasing λ2. Nonetheless, a given F(ν1, ν2, λ1, λ2) may be
compared against F(ν1, ν2, 0, 0) as reference. This follows on computing β = P(FI > cα)
where L(FI) = F(ν1, ν2, λ1, λ2). Then β < α identifies L(FI) as skewed to the left of
F(ν1, ν2, 0, 0), whereas β > α identifies L(FI) as skewed to its right. Further usage is
explained later in context.

For subsequent reference we list the matrix

I7 − H7 =⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.42949 −0.42290 −0.15913 0.13501 0.11794 −0.00730 −0.09311
−0.42290 0.64862 −0.21671 −0.03661 0.02449 0.01042 −0.00730
−0.15913 −0.21671 0.69763 −0.32265 −0.14157 0.02449 0.11794

0.13501 −0.03661 −0.32265 0.44851 −0.32265 −0.03661 0.13501
0.11794 0.02449 −0.14157 −0.32265 0.69763 −0.21671 −0.15913

−0.00730 0.01042 0.02449 −0.03661 −0.21671 0.64862 −0.42290
−0.09311 −0.00730 0.11794 0.13501 −0.15913 −0.42290 0.42949

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Example 1. To fix ideas and to illustrate the computations explicitly, we delete rows
I = (6, 7) from [Y0, X0, ε0], retaining other elements in their natural order, to be iden-
tified as ID(12345 · 67). The shift vector ω is given by E(Y0) = X0β + ω, partitioned
as ω′ = [γ ′, δ′]. If there are no shifts other than δ′ = [δ6, δ7], then F(6,7) has distribution
L(F(6,7)|δ6, δ7) = F(2, 2, λ1, 0) as noted in Theorem 3.1, with λ1 = [δ6, δ7]G22[δ6, δ7]′ and
G22 as the lower right (2 × 2) principal block of (I7 − H7).

However, if shifts γ occur at nondeleted rows, the curious fact from section 3 is that
L(F(6,7)) is doubly noncentral, even if (Y6, Y7) are not outlying with [δ6, δ7] = [0, 0]. For
case (i) ω′ = [0′, δ′] with L(F(6,7)) as a singly noncentral F-distribution, or case (ii) ω′ =
[γ ′, δ′] with L(F(6,7)) as doubly noncentral; in either case F(6,7) is compared to F(2, 2, 0, 0)
with critical value cα = 19.00.

To examine this further, as in section 3 we require the matrix G121 = G21G−1
22 G21 as

G121 =

⎡
⎢⎢⎢⎣

0.06238 0.00021 −0.08551 −0.07033 0.19367
0.00021 0.00017 −0.00005 −0.00096 −0.00249

−0.08551 −0.00005 0.11754 0.09541 −0.26982
−0.07033 −0.00096 0.09541 0.08240 −0.20492

0.19367 −0.00249 −0.26982 −0.20492 0.65940

⎤
⎥⎥⎥⎦ (2)

together with H5 = X(X′X)−1X′ and

I5 − H5 =

⎡
⎢⎢⎢⎣

0.36711 −0.42311 −0.07362 0.20534 −0.07573
−0.42311 0.64845 −0.21666 −0.03566 0.02698
−0.07362 −0.21666 0.58009 −0.41806 0.12825

0.20534 −0.03566 −0.41806 0.36611 −0.11773
−0.07573 0.02698 0.12825 −0.11773 0.03823

⎤
⎥⎥⎥⎦ (3)
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150 D. R. Jensen and D. E. Ramirez

To continue, we next examine how pairs of shifts (γi, γj) at nondeleted rows J = (i, j)
serve to induce noncentralities in L(F(6,7) | γi, γj) = F(2, 2, λ1, λ2), even when (Y6, Y7)
remain unshifted and [δ6, δ7] = [0, 0]. Recall from section 3 that ω′ = [γ ′, δ′] ∈ R

7 with
γ ∈ R

5 and δ ∈ R
2. First consider {Y1 → Y1 + γ1, Y2 → Y2 + γ2}. Then Theorem 3.1(i)

applies to give λ1 with γ ′ = [γ1, γ2, 0, 0, 0] and δ′ = [0, 0]. Similarly, Theorem 3.1(ii)
applies to give λ2. Both are quadratic forms in principal blocks G[12] of G121 and E[12] of
E = (I5 − H5), namely, λ1 = [γ1, γ2] G[12][γ1, γ2]′ and λ2 = [γ1, γ2] E[12][γ1, γ2]′. These
matrix pairs are listed explicitly in Table 3, corresponding to outlier pairs {(γ1, γ2), (γ3, γ4)},
found as principal blocks G[ij] of G121 and E[ij] of E = (I5 − H5).

Remark 4.2. It is noteworthy that all submatrices in Table 3 are positive definite.
Accordingly, apart from [γi, γj] = [0, 0], all noncentralities in L(F(6,7) | γi, γj), as induced
through {Yi → Yi + γi, Yj → Yj + γj; (i, j) /∈ {6, 7}}, will be positive.

For fixed pairs (γi, γj) the computations proceed from Eqs. (2) and (3) as in

λ1(γ1, γ2) = 0.06238γ 2
1 + 2(0.00021)γ1γ2 + 0.00017γ 2

2 (4)

λ2(γ1, γ2) = 0.36711γ 2
1 − 2(0.42311)γ1γ2 + 0.64845γ 2

2 . (5)

These noncentrality parameters deserve further study. For example, with γ1 = −γ2 we have
L(F(6,7)|γ1 = −γ2) = F(2, 2, 0.06213γ 2

1 , 1.86178γ 2
1 ); further computations proceed simi-

larly. Table 3 reports the special case γi = γj for nondeleted rows J = (i, j). We set the
common shifts by [γi, γj] = γij[1, 1] ∈ R

2. For varying J = (i, j), the noncentrality param-
eters for the distributions L(F(6,7)|[δ6, δ7] = [0, 0]) are shown in Table 3. Since (λ1, λ2)
depend on γ 2

ij , λ1 and λ2 are both symmetric under reflection of γij about zero. The β val-
ues have been computed for γij = ±2, and although there are no shifts at the deleted rows
I = (6, 7) as [δ6, δ7] = [0, 0], the values of β = Pr(F(6,7) > 19.00) are shown to vary from
0.01370 to 0.07055, demonstrating skewness of L(F(6,7)|[δ6, δ7] = [0, 0]) in both the left
and right directions in comparison with F(2, 2, 0, 0).

Table 3
Principal blocks G[ij] of G121 and blocks E[ij] of E = (I5 − H5), as matrices of quadratic

forms determining noncentralities for L (
F(6,7) | γi, γj

) = F (2, 2, λ1 (i, j) , λ2 (i, j)),
with

[
γ6, γ7

] = [0, 0] , together with noncentralities of type F(6,7)

(
2, 2, a γ 2

ij , b γ 2
ij

)
when

[
γi, γj

] = γij [1, 1], and β values for γij = ±2 and cα = 19.00

ID G[ij] E[ij][
γ1

γ2

] [
0.06238 0.00021
0.00021 0.00017

] [
0.36711 −0.42311

−0.42311 0.64845

]
F(6,7)(2, 2, 0.0630 γ 2

12, 0.1693 γ 2
12); β = 0.04065[

γ3

γ4

] [
0.11754 0.09541
0.09541 0.08240

] [
0.58009 −0.41806

−0.41806 0.36611

]
F(6,7)(2, 2, 0.3908 γ 2

34, 0.1101 γ 2
34); β = 0.07055
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Noncentralities Induced in Regression Diagnostics 151

Table 4
Shifts {γA, γB, γC} from (6); their projections γ = γ1 + γ2; distributions

L (
F(6,7)|γ

) = F (2, 2, λ1, λ2) under Y → Y + γ for ID = (12345·67) with δ6 = δ7 = 0;
and corresponding β’s at cα = 19.00

Case A Case B Case C

γA1 γA2 γB1 γB2 γC1 γC2

0.632886 0.367114 0.078054 0.921946 0.564463 0.435537
0.423110 −0.423110 0.323877 −1.323877 0.225587 −1.225587
0.073619 −0.073619 0.694931 0.305069 −0.269444 1.269444

−0.205341 0.205341 0.810952 0.189048 −0.339090 −0.660910
0.075727 −0.075727 0.092186 −0.092186 0.818484 0.181516

F(2, 2, 0.0624, 0.3671) F(2, 2, 0.1432, 2.7399) F(2, 2, 0.9610, 3.7730)
β = 0.04325 β = 0.01460 β = 0.01253

θ1 = 37.3◦, θ2 = 52.7◦ θ1 = 55.9◦, θ2 = 31.1◦ θ1 = 60.3◦, θ2 = 29.7◦

Decompostion of γ . Definition 2.3.1 has introduced the decomposition of γ ∈ R
r as γ1 =

Hrγ in the “regressor” space and γ2 = (Ir − Hr)γ in the “error” space of Y = Xβ + ε.
To illustrate, consider

γ ′
A = [1, 0, 0, 0, 0], γ ′

B = [1, −1, 1, 1, 0], γ ′
C = [1, −1, 1, −1, 1] (6)

which determine the three cases A, B, and C in Table 4. Details, as listed in Table 4, include
projections (γ1, γ2) for each γ , together with L(F(6,7)|γ ) = F(2, 2, λ1, λ2) under Y → Y +
γ , and corresponding β’s. Recall from section 3 for δ = 0 that λ1 and λ2 are quadratic
forms in γ1 and γ2, namely λ1 = γ ′

1G121γ1 and λ2 = γ ′
2(I5 − H5)γ2 with the matrices from

Eqs. (2) and (3).
The angles (θ1, θ2) between each vector γ and its projections (γ1, γ2), as in

Definition 2.3.1(ii), give a measure of the propensity for the shift vector γ ∈ R
r to be in the

“regressor” space when θ1 is small, or in the “error” space when θ1 is large, equivalently
when θ2 is small. Table 4 reports for Case C that θ2 = 29.7◦ favoring the “error” space,
together with β = 0.0125, less than the nominal value of 5%. Here, F(2, 2, 0.9610, 3.7730)
is skewed to the left of F(2, 2, 0, 0).

Remark 4.3. Theorem 3.1(i) gives λ1 = γ ′G121γ + 2δ′G21γ + δ′G22δ. To control the num-
ber of parameters, (γ , δ) may be varied along the equiangular lines γ = c1r ∈ R

r and
δ = d 1s ∈ R

s. In this case, the restricted λ1 is λ1(c, d) = c21′
rG1211r + 2cd 1′

sG211r +
d21′

sG221s.

We continue Case A of Table 4. on adding shifts {Y6 → Y6 + δ, Y7 → Y7 +
δ} and scaling cγA → γ . In keeping with Remark 4.3, on varying δ′ = d [1, 1], λ1

becomes λ1(c, d) = 0.062378c2 − 0.200822cd + 0.232305d2. Accordingly, for Case A
in the final row of Table 4, the listed distribution instead becomes L(F(6,7) | γ , δ) =
F(2, 2, λ1(c, d), 0.36711c2), where the denominator remains unchanged apart from scaling
by c2.
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152 D. R. Jensen and D. E. Ramirez

To continue, Theorem 3.2(v) acknowledges possible “regression effects” relating δ to
γ = cγA; in particular, δ = R′γ with R′ = −G−1

22 G21. Here we have

R′ =
[

0.42627 −0.01391 −0.60558 −0.41484 1.60806
0.63652 0.00331 −0.87089 −0.72282 1.95389

]
,

so that R′γ = c [0.426274, 0.636521]′. Substituting this for δ gives L(F(6,7)| δ = R′γ ) =
F(2, 2, 0, 0.36711c2). An outcome F(6,7) from this distribution would be likely to mask that
both γ and δ are outlying.

Example 2. Let δ denote a generic shift in ω′ = [γ ′, δ′] for either deleted rows in I
or nondeleted rows in J. Consider outlier shifts {Y1 → Y1 + δ, Y2 → Y2 + δ} exclusively
at I = {1, 2} and ID(34567 · 12). The distribution L(F(1,2)|δ) is F(2, 2, λ1, 0) with λ1 =
0.23231δ2 and with power βP(δ) = 0.07182 at δ = ±2 in testing {H0 : [δ1, δ2] = [0, 0]}
against {H1 : [δ1, δ2] = δ [1, 1]; δ �= 0}.

To seek outlying subsets, users typically examine values {FI ; I ∈ J } for selected sub-
sets of size s. In keeping with our probabilistic focus, Table 5. exhibits for s = 2 the
driving forces behind empirical outcomes that the user might “see:” Specifically, dou-
bly noncentral distributions L(F(i,j)) for the deleted pair I = (i, j) under ID(abcde · ij), as
induced by {Y1 → Y1 + δ, Y2 → Y2 + δ}. These deleted pairs are varied systematically; no
pairs other than (Y1, Y2) have been shifted. Noncentralities are reported in Table 5, together
with probabilities β(δ) at δ = ±2, where the left-hand side of the table has J = (1, 2) and
I varying over {I(i, j); {i, j} /∈ {1, 2}}, whereas the right-hand side of the table has one shift
from (1, 2) in J, and the other in I.

The reader is reminded that ID(12567 · 34) entails reordering X0 in keeping with
Eq. (1), and recomputing G121 and (I5 − H5) anew, and similarly for each case as listed.
Moreover, ω of section 3 is the same for each row in Table 5, so that λ3 = λ1 + λ2 is fixed;
and the cells are shown in descending order of λ1 and of β. These distributions in turn
generate empirical outcomes as observed values of {F(i,j)}.

Table 5
Outliers {Y1 → Y1 + δ, Y2 → Y2 + δ} exclusively; their propagation as noncentralities

across distributions L(F(i,j)) given I = (i, j) under ID(abcde · ij); and probability
β = P(FI > 19.00) at δ = ±2

ID λ1/δ
2 λ2/δ

2 β ID λ1/δ
2 λ2/δ

2 β

(12567·34) 0.22057 0.01124 0.06926 (14567·23) 0.22266 0.00915 0.06972
(12467·35) 0.20817 0.02365 0.06657 (24567·13) 0.21821 0.01360 0.06874
(12456 · 37) 0.20486 0.02695 0.06586 (13567·24) 0.10672 0.12510 0.04748
(12457·36) 0.20210 0.02971 0.06528 (13467·25) 0.10461 0.12720 0.04714
(12367·45) 0.11864 0.11317 0.04948 (13456·27) 0.10080 0.13101 0.04652
(12356·47) 0.06432 0.16750 0.04088 (13457·26) 0.07904 0.15278 0.04309
(12345·67) 0.06235 0.16947 0.04059 (23467·15) 0.02969 0.20212 0.03601
(12346·57) 0.04019 0.19162 0.03744 (23456·17) 0.02355 0.20827 0.03520
(12347·56) 0.03249 0.19932 0.03639 (23567·14) 0.02312 0.20869 0.03514
(12357·46) 0.02175 0.21006 0.03496 (23457·16) 0.00007 0.23174 0.03220
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Noncentralities Induced in Regression Diagnostics 153

Each of the 10 rows in the left half of Table 5 has γ ′ = [2, 2, 0, 0, 0]. The decomposition
γ = γ1 + γ2, with varying I, allows for the angle θ1 between the vectors (γ , γ1). As before,
this measures the propensity for the shift vector γ to be in either the “regressor” space when
θ1 is small, or in the “error” space when θ1 is large. The values in degrees for the angles θ1

for these ten rows on the left in Table 5 are

{4.3, 6.2, 6.7, 7.0, 13.8, 16.8, 16.9, 18.0, 18.4, 18.9},

in agreement with the probabilities β, showing θ1 to increase with decreasing β.

Remark 4.4. Definition 2.1.1 anticipates a swamping curve βS(·) as the evolution of
the probability that (Yi, Yj) are deemed to be outlying when they are not, that is,
P(F(i,j)| δu, δv) > cα); {i, j} /∈ {u, v}, with this in correspondence with a power curve.

Some Properties. The left half of Table 5, having no outliers, supports the following:

• For I = (3, 4), the probability that (δ1, δ2) swamps (δ3, δ4) is βS(δ) = P(F(3,4) > cα);
its value at δ = ±2 is βS(δ) = 0.06926 from Table 5. This point on our Swamping
curve is the probability P(EJ	I) of Definition 2.1.1, that is, that I(3, 4) are deemed
incorrectly to be outlying owing to J(1, 2).

• For I ∈ {(3, 4), (3, 5), (3, 6), (3, 7)}, the swamping probabilities range over the set
{0.06528 ≤ βS ≤ 0.06926}. Of the probabilities that nonzero (δ1, δ2) will swamp
{δ3, δ4, δ5, δ6, δ7} when zero, these probabilities approximate from below the power
βP(δ) = 0.07182 of F(1,2) at δ = ±2.

• In short, the likelihoods that (Y3, Y4, Y5, Y6, Y7) are deemed to be outlying when
they are not, are essentially the likelihood that (Y1, Y2) are correctly identified to
be outlying. This in turn abrogates realistic prospects for correctly partitioning
{Y1, Y2, Y3, Y4, Y5, Y6, Y7} into outlying and non-outlying subsets.

In the right half of Table 5 either Y1 or Y2 is outlying, not both, to the following
effects:

• Deletions {(1, 4), (1, 5), (1, 6), (1, 7)} have β’s in {0.03220 ≤ β ≤ 0.03601}, all
skewed to the left of F(2, 2, 0, 0).

• These appear to support that {Y2 → Y2 + δ} serves to mask {Y1 → Y1 + δ} when the
latter is coupled on deletion with {Y4, Y5, Y6, Y7}.

• On the other hand, for deletions {(1, 3), (2, 3)}, their β’s of {0.06874, 0.06972} at
δ = ±2 are approximately the power βP(δ) = 0.07182 that F(1,2) correctly identifies
(Y1, Y2) as outlying. At the same time, this is evidence that (δ1, δ2) separately swamp
δ3 = 0.

Variational Results. In keeping with Remark 4.3, we have varied multiple shifts along
equiangular lines. In contrast, we next demonstrate directions that outliers may take so as
to maximize the FI statistic. We consider FI for I(3, 4) when {δ3 = δ4 = 0}, but J(1, 2) has
nonzero (γ1, γ2). Accordingly, rearrange rows of X0 in the order ID(12567 · 34), and com-
pute the corresponding matrices G12G−1

22 G21 and I5 − H5. The upper left (2 × 2) blocks of
these are matrices of quadratic forms, H determining λ1 and E determining λ2, as follows:

H =
[

0.048899 0.021351
0.021351 0.129885

]
, E =

[
0.380953 −0.444253

−0.444253 0.518734

]
.
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154 D. R. Jensen and D. E. Ramirez

Accordingly, we seek a direction u′ = [u1, u2] in the (γ1, γ2)-plane so as to maximize
the ratio of noncentrality parameters, namely, λ1/λ2 = u′Hu/u′Eu. Variational properties
of the Rayleigh quotient give

ξ2 ≤ u′Hu
u′Eu

= v′E− 1
2 HE− 1

2 v
v′v

≤ ξ1 (7)

with v = E
1
2 u, where E− 1

2 is the inverse spectral square root of E, and (ξ2 < ξ1) are roots
of the determinantal equation | H − ξ E | = 0. The maximizing vector v0 in the (γ1, γ2)–
plane is proportional to the eigenvector q′

1 = [0.757044, 0.653363] corresponding to ξ1,
i.e., v0 = γ q1. Substituting in λ1 = u′Hu and λ2 = u′Eu gives λ1 = 0.104592γ 2 and λ2 =
0.000086γ 2. Accordingly, L(FI(3, 4) |[γ1, γ2] = γ q′

1) = F(2, 2, 0.1046γ 2, 0.0001γ 2).
This example serves two purposes: not only extremal properties, but to show that

{[γ1, γ2] = γ q′
1} swamps {δ3 = δ4 = 0} with probability βS essentially the power βP of

FI(1, 2) | γ1, γ2) to reject H0 : [γ1, γ2] = [0, 0] against H1 : [γ1, γ2] = γ q′
1. This is because

L(FI(1, 2) |[γ1, γ2] = γ q′
1) = F(2, 2, 0.104677γ 2, 0) from ID(34567 · 12) is nearly the

same distribution as F(2, 2, 0.1046γ 2, 0.0001γ 2). In short, (Y3, Y4) will be labeled incor-
rectly as outlying using F(3,4), with essentially the power of F(1,2) to correctly identify
(Y1, Y2) as outlying. Such prospects again are troublesome to users seeking to isolate
outlying from non-outlying subsets.

4.2. Case Study 2

To illustrate subsets of size s = 3, we expand Table 2 to encompass the case n = 8, retaining
quadratic responses with p = 3, and having design points and leverages as in the following
display:

[ Xi : −1.00000 −0.75000 −0.50000 −0.25000 0.25000 0.50000 0.75000 1.00000
hii : 0.67171 0.28372 0.23915 0.30543 0.30543 0.23915 0.28372 0.67171

]
.

To proceed, we adopt the shorthand Jj1j2j3 as loci subject to outliers {(Yj1 , Yj2 , Yj3 ) →
(Yj1 , Yj2 , Yj3 ) + (δj1 , δj2 , δj3 )}, whereas Ii1i2i3 indicates the deleted set I(i1i2i3). Details are
summarized in Table 6, where, in keeping with Remark 4.3, outlying shifts are varied along
the equiangular line as [δj1 , δj2 , δj3 ] = c [1, 1, 1] in R

3. For reference, note that cα = 19.164
from F(3, 2, 0, 0).

If {(Y4, Y5, Y6) → (Y4, Y5, Y6) + (c, c, c)} comprise the only shifts, then Table 6.
demonstrates the manner in which these are distributed across diagnostics for subsets
{I123, I237, I378}. Specifically, the probability that (Y2, Y3, Y7) are incorrectly deemed to be
outlying, that is, that (δ4, δ5, δ6) will swamp the zero values (δ2, δ3, δ7), is found from
L(F237 | J456) as listed in Table 6. Swamping probabilities βS(c) are given in Table 7
for c ∈ {±1, ±2, ±4}. Corresponding values for the power βP(c) of F456 to reject H0 :
[δ4, δ5, δ6] = [0, 0, 0] against H1 : [δ4, δ5, δ6] = c [1, 1, 1] are listed in Table 7. This illus-
trates Definition 2.1.1 on taking EJ	I with J = (4, 5, 6) and I = (2, 3, 7). In short, these
findings demonstrate a pitfall for users screening outcomes using FI for subsets of size
s = 3. Specifically, the non-outlying (Y2, Y3, Y7) are about as likely to be decreed to be
outlying, as are (Y4, Y5, Y6) to be so decreed correctly.
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Noncentralities Induced in Regression Diagnostics 155

Table 6
Noncentrality parameters for diagnostics L(Fi1i2i3 |Jj1j2j3 ), given outliers

(Yj1 , Yj2 , Yj3 ) + (c, c, c) at Jj1j2j3 , for varying deleted subsets Ii1i2i3 and values for β with
c = ±2, c = ±4 for the case cα = 19.164

Ii1i2i3 Jj1j2j3 λ1/c2 λ2/c2 β (c = ±2) β (c = ±4)

I456 J456 0.753101 0.000000 0.09691 0.22418
I123 J123 0.361240 0.000000 0.07280 0.13796

J456 0.529242 0.223859 0.05476 0.03627
J468 0.607197 0.842415 0.01831 0.00052

I237 J237 1.807360 0.000000 0.15871 0.41572
J456 0.725659 0.027442 0.09051 0.18102
J468 0.642510 0.807103 0.02008 0.00071

I378 J378 1.294570 0.000000 0.12919 0.32932
J456 0.629605 0.123496 0.07102 0.08392
J146 0.614238 1.102040 0.01134 0.00008

Table 7
Probabilities βS(c) that (δ4, δ5, δ6) will swamp the zero values (δ2, δ3, δ7), from

L(F237|J456), and powers βP(c) from L(F456|J456), giving points on the swamping and
power curves at c ∈ {±1, ±2, ±4}

Distribution β(c) c = ±1 c = ±2 c = ±4

F(3, 2, 0.725659c2, 0.0274415c2) βS(c) 0.06072 0.09051 0.18102
F(3, 2, 0.753101c2, 0.000000) βP(c) 0.06195 0.09691 0.22418

4.3. Case Study 3: Drill Data From Cook and Weisberg

We revisit the classical Drill Data set from Cook and Weisberg (1982, 149), long held to be
instructive and studied on various occasions since. Specifically, we show that observations
traditionally alleged to be outlying may, in fact, not be outlying when shifts in nondeleted
rows are taken into account.

The Drill Data are modeled as a second-order response surface in three regressors
(speed of rotation, feed rate, and diameter of the drill bit) having intercept, three linear, and
six second-order terms with response variable logY , where Y is the axial load on the drill
bit during the drilling process. The sample size is n = 31, and the number of regressors is
p = 10.

Using standard software such as Minitab, the single-case deletion diagnostic t2
i

identifies three rows as potential outliers with p-values less than 0.025, namely, rows
(9, 28, 31) with p-values (0.00312, 0.01100, 0.01900), respectively. Cook and Weisberg
(1982, 152) noted, “Cases 9 and 31 have the largest potential and the largest influence.”
We consider these two cases in detail. The reader is reminded that the listed p-values
have been computed under the assumption that there are no shifts in the non-deleted
rows.

The Drill Data set was studied in Jensen and Ramirez (1996) using the subset deletion
diagnostic DI of Table 1, which is functionally equivalent to FI as noted. They found that
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156 D. R. Jensen and D. E. Ramirez

DI identified 16 pairs of potential outliers, all containing at least one row from (9, 28, 31)
except the pair (5, 26). Although neither row 5 nor 26 was detected as outlying using t2

i ,
their joint outlier diagnostic is F5,26 = 14.32 having p-value 0.000161 from L(F5,26) =
F(2, 19, 0, 0), offering compelling evidence that (Y5, Y26) are outlying. Moreover, on delet-
ing I = (9, 31) from X0 instead, the R–Fisher diagnostic is F9,31 = 7.564 with p-value
0.0040, ostensible evidence that the subset (Y9, Y31) is outlying, in further support of the
Cook and Weisberg assertion.

We continue our earlier investigation into the role of the outlying pair (5, 26) using
tools developed here. This in turn leads to some unprecedented conclusions.

Since rows (9, 31) have been screened as outlying using t2
i , the removal of rows (5, 26)

would appear not to alter the status of (9, 31) as prospective outliers. In short, actual shifts
in (Y9, Y31), having occurred during the course of the experiment, would remain embedded
in the data, whether or not rows (5, 26) are excluded in subsequent analyses. However, from
the p-values reported in Table 8, this is not the case. Indeed, in the reduced model X[5,26],
t2
i now reports that rows (9, 31) offer negligible evidence as outlying, their p-values now

being (0.3820, 0.2560), respectively. From this the claim that rows (9, 31) are outlying at
best is dubious.

Developments reported here help to explain this anomaly. To properly determine
whether (Y9, Y31) are outlying, we must take into account that rows (5, 26), nondeleted from
X0 in traditional diagnostics for (9, 31), have been identified as outlying. Possible conse-
quences are twofold. First, shifts in (Y5, Y26) generally effect disturbances in all residuals
serving as building blocks for t2

i and FI . Second, the apparent significance of F9,31 may
owe instead to swamping by outliers at (Y5, Y26), effectively transforming the distribution
L(F9,31) = F(2, 19, 0, 0), assumed to be central under no shifts at (9, 31), into a doubly
noncentral F(2, 19, λ1, λ2) to be determined. We follow these two leads in subsequent para-
graphs. To these ends consider shift vectors ω = [γ ′, δ′]′ ∈ R

n as in section 2.3, where
elements of γ now take common values {γ5 = γ26 ≡ γ5,26} in keeping with Remark 4.3,
with γi = 0 otherwise.

Effects of Shifts on Expected Residuals. Both t2
i and FI tend to grow stochastically as

elements of e′
0 = [e1, . . . , en] themselves grow stochastically in magnitude. Accordingly,

it is instructive to examine disturbances in properties of the observed residuals exerted by
shifts at (Y5, Y26), specifically, through their altered expectations, in contrast to non–shifted
data where these expectations are all zero.

To these ends consider E(ε0) = ω = [γ ′, δ′]′ ∈ R
31 as in Assumptions A on reordering

X0 to have the former (9, 31) as its final rows. As in Definition 2.3.1 decompose ω = ω1 +
ω2 with ω1 = Hnω and ω2 = (In − Hn)ω, the “regressor” and “error” spaces for Y0 =
X0β + ε0. That E(e0) = ω2 is shown in Lemma A.2(i). Accordingly, all 31 elements of

Table 8
Selected p-values from L(t2

i ) for single row deletions for the full model X0 and for the
reduced model X[5,26] with I = [5, 26] as the deleted rows

I = (i) X0 X[5,26]

(9) 0.003120 0.382000
(28) 0.011000 0.000253
(31) 0.019000 0.256000
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Noncentralities Induced in Regression Diagnostics 157

Table 9
Elements {ω(i) = ω1(i) + ω2(i)} scaled by γ5,26 with ω2(i) as expected residuals from

nonzero shifts of γ5,26 at (5, 26), and the proportion ‖ω2(i)‖2 / ‖ω2‖2 with ‖ω‖2 = 2γ 2
5,26,

‖ω1‖2 = 1.3089γ 2
5,26, and ‖ω2‖2 = 0.6911γ 2

5,26

i ω(i)/γ5,26 ω1(i)/γ5,26 ω2(i)/γ5,26 ‖ω2(i)‖2 / ‖ω2‖2

5 1 0.654459 0.345541 17.28%
26 1 0.654459 0.345541 17.28%
6 0 0.135180 −0.135180 2.64%
9 0 0.415088 −0.415088 24.93%
12 0 0.248480 −0.248480 8.93%
28 0 0.068783 −0.068783 0.68%
31 0 0.248480 −0.248480 8.93%

E(e0) = ω2 are computed in terms of γ5,26 as the shift common to (Y5, Y26), and {γi =
0, δi = 0} otherwise, thereby identifying nonzero shifts only for rows (5, 26) in the original
array.

A partial list of the 31 cases is given in Table 9, to include {ω(i), ω1(i), ω2(i)} as ele-
ments of {ω, ω1, ω2}, respectively, so that ‖ω‖2 = 2γ 2

5,26. The row indicators in the table
revert back to those of the original data. Also listed are the values ‖ω2(i)‖2 / ‖ω2‖2, namely,
portions of the squared length of the disturbed expected vector ω2 that can be attributed to
individual rows. These ratios are free of the scale parameter γ5,26 and thus hold for any such
shifts; they sum to unity over the 31 cases; and for cases in Table 9 these sum to 80.67%.
The maximal percentage in column 5 for cases not listed is 1.56%. The table shows that
shifts in rows (5, 26) affect the expectation of the residual in the non-shifted row 9 even
more than expectations of the residuals in either of the shifted rows (5, 26). Owing to this
induced and excessive shift in E(e9), this in turn suggests potential swamping at row 9 by
shifts at rows (5, 26), with lesser effect at row 31. This is considered next in some detail.

Evidence for Swamping. To study prospects for swamping, we proceed as in section 3
with n = 31 and r = 29, retaining ω = [γ ′, δ′]′ ∈ R

31 such that γ ∈ R
29 has the common

values {γ5 = γ26 ≡ γ5,26} as before, and γi = 0 otherwise, so that ‖γ ‖2 = 2γ 2
5,26. The vec-

tors γ 1 = Hrγ and γ 2 = (Ir − Hr)γ are projections into the “regressor” and “error” spaces
of the reduced model Y = Xβ + ε, as used throughout section 3. From Definition 2.3.1(ii),
the angle θ2 = arcsin (‖γ2‖ / ‖γ ‖) between (γ , γ2) is θ2 = 16.9 degrees, showing that γ

tends to skew L(F9,31) to the right of F(2, 19, 0, 0). Accordingly, the swamping of rows
I = (9, 31) by J = (5, 26) would help to explain that (Y9, Y31) are not outlying, but instead
appear to be so through swamping.

To confirm that shifts at the nondeleted rows (5, 26) have skewed L(F9,31) to the
right of F(2, 19, 0, 0) on deleting I = (9, 31), we use Theorem 3.1 to compute the swamp-
ing probabilities for the doubly noncentral F having λ1 = ‖γ1‖2 = 1.8315γ 2

5,26 and λ2 =
‖γ2‖2 = 0.16851γ 2

5,26, for γ5,26 varying over {0, 1, 2, 3, 4}. The α = 5% critical value for
F(2, 19, 0, 0) is cα = 3.5219. Table 10 reports the corresponding α = 5% values dα solv-
ing Pr(F > dα) = 0.05, together with the swamping probabilities βS = Pr(F > 3.5219).
Both probabilities are computed for the case L(F9,31) = F(2, 19, 1.8315γ 2

5,26, 0.16851γ 2
5,26).

For example, with γ5,26 = 2, the value for the doubly noncentral F(2, 19, 7.3259, 0.6741)
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158 D. R. Jensen and D. E. Ramirez

Table 10
Values dα solving Pr(F > dα) = 0.05, and the swamping probabilities

βS = Pr(F > 3.5219), are tabulated for the case L(F) = F(2, 19, λ1, λ2) with
λ1 = 1.8315γ 2

5,26, λ2 = 0.16851γ 2
5,26, as γ5,26 varies over {0, 1, 2, 3, 4}

γ5,26 dα βS

0 3.5219 0.0500
1 6.2096 0.1818
2 12.1889 0.5851
3 20.3684 0.9124
4 30.1703 0.9934

is dα = 12.1889, and the swamping probability is βS = Pr(F > 3.5219) = 0.5851 as
reported in Table 10, that is, the probability of declaring (Y9, Y31) to be outlying when
they are not.

In short, the conventional deletion diagnostics ignore the critical role of shifts at nonex-
cluded rows. When these are taken into account, the resulting swamping probabilities
support the view that observations (Y9, Y31) are not true outliers but instead, contrary to
convention, appear so as artifacts of shifts at (5, 26). These in turn are abetted by obscure
relationships among rows (9, 31) and (5, 26) as imbedded in X0. These findings serve to
update, but run contrary to, the Cook and Weisberg (1982, 152) assertion that “Cases 9 and
31 have the largest potential and the largest influence.”

4.4. Case Study 3 Continued: Estimating Shifts in the Drill Data

Our findings support the further discovery of linear relations among the shifts themselves.
Specifically, for ω = [γ ′, δ′]′ ∈ R

n with γ fixed, Lemma A.3 under Assumptions A gives
δ̃(γ ) = (YI − Zβ̂I) + Z(X′X)−1X′γ as unbiased for δ at fixed γ , with dispersion matrix
V(δ̃) = σ 2[Is + Z(X′X)−1Z′] not depending on γ .As an example, we again set the rows
to be deleted as I = (9, 31) and the nondeleted rows as J = (5, 26), with the only nonzero
shifts occurring in these four rows, namely, {γ5, γ26, δ9, δ31}. From these we get the linear
equations

δ̃9 = 0.6274 − 0.5792γ5 − 0.5792γ26

δ̃31 = 0.3509 − 0.0840γ5 − 0.0840γ26

as estimates for (δ9, δ31) in terms of (γ5, γ26), with solutions in Table 11 for varying values
of the shifts (γ5, γ26). These in turn reflect the interdependence between the pairs (5, 26)
and (9, 31).

Earlier we considered possible shifts at rows (5, 9, 26, 28, 31). To continue, we next
suppose that shifts occur only at those loci, all others having zero shifts. Designate these
shifts as the generic quantities {ξ5, ξ9, ξ26, ξ28, ξ31}; in what follows these will identify in
turn with the (γi, δj) of earlier usage. For each of these cases we set I = (i) in Lemma A3(iv)
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Noncentralities Induced in Regression Diagnostics 159

Table 11
The moment estimators (̃δ9, δ̃31) for the shifts (δ9, δ31) for varying values of shifts (γ5, γ26)

γ5 γ26 δ̃9 δ̃31

−2 −2 2.9442 0.6867
−2 0 1.7858 0.5188
−2 2 0.6274 0.3509

0 −2 1.7858 0.5188
0 0 0.6274 0.3509
0 2 −0.5310 0.1829
2 −2 0.6274 0.3509
2 0 −0.5310 0.1829
2 2 −0.6894 0.0150

to compute a moment estimator for its shift as a function of the other shifts using ξ̃i = (Yi −
z′

iβ̂i) + z′
i(X

′X)−1X′ξ . Here, z′
i is the row deleted from X0; β̂ i is from the nondeleted data;

and ξ , of order (30 × 1), consists of zeros together with elements of {ξ5, ξ9, ξ26, ξ28, ξ31}
excluding the test case ξi. Letting i ∈ {5, 9, 26, 28, 31} and ξi range over {ξ5, ξ9, ξ26, ξ28, ξ31}
in succession gives five linear equations in five unknowns, namely,

ξ5 = 0.4507 − 0.3679ξ9 + 0.3875ξ26 + 0.2244ξ28 − 0.2202ξ31

ξ9 = 0.7829 − 0.6164ξ5 − 0.6164ξ26 + 0.0578ξ28 − 0.4433ξ31

ξ26 = 0.4126 + 0.3875ξ5 − 0.3679ξ9 − 0.1025ξ28 − 0.2202ξ31

ξ28 = 0.5080 + 0.2028ξ5 + 0.0312ξ9 − 0.0926ξ26 + 0.2001ξ31

ξ31 = 0.5584 − 0.2760ξ5 − 0.3316ξ9 − 0.2760ξ26 + 0.2776ξ28

with solutions ξ̃5 = 0.7284, ξ̃9 = −0.2255, ξ̃26 = 0.8005, ξ̃28 = −0.4226, ξ̃31 = 0.0938,
showing that the dominant outliers occur at rows (5, 26) and not at rows (9, 31). Here, ξ̃i

serves to remind that all such quantities are determined empirically from the data. To con-
vert the moment estimators of the shifts into standard units, we use the estimator for σ 2

from the full model, namely, S2 = 0.0272 with S = 0.1649. The moment estimators in
standard units are thus ξ̃5 = 4.4162, ξ̃9 = −1.3674S, ξ̃26 = 4.8534, ξ̃28 = −2.5625, and
ξ̃31 = 0.5689.

As noted earlier, with p-value 0.0040 from the presumed L(F9,31) = F(2, 19, 0, 0), the
conventional R-Fisher diagnostic F9,31 = 7.564 is taken as evidence that (Y9, Y31) are out-
lying. Using the foregoing moment estimates, we combine these with developments in
Section 3 to gauge the probability that unshifted observations at I = (9, 31) are swamped
by outliers at J = (5, 26).

Throughout section 3, noncentrality parameters are reported in standard units as if
σ 2 = 1.0, other values to be reinstated in context. Specifically, take F(ν1, ν2, λ∗

1, λ∗
2) with

λ∗
1 = λ1/σ

2 and λ∗
2 = λ2/σ

2 to adjust for scale. Accordingly, on relegating rows (9,31) to
the last of X0, we have ω = [γ ′, δ′]′ ∈ R

31 such that δ = 0 ∈ R
2 and γ ∈ R

29 has
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160 D. R. Jensen and D. E. Ramirez

shifts (ξ5, ξ26) at J = (5, 26), with zero elements otherwise. Given shifts estimated as
ξ̃5 = 4.4162 and ξ̃26 = 4.8534 in standard units, and γi = 0 otherwise, we proceed as in
Theorem 3.1 to compute γ ′γ = 4.41622 + 4.85342 = 43.0583; λ∗

1 = γ ′Hrγ = 39.3637;
and λ∗

2 = 43.0583 − 39.3637 = 3.6946. Using these values, we now approximate the prob-
ability that unshifted observations at I = (9, 31) are swamped by outliers at J = (5, 26).
The result is βS ≈− Pr(F9,31 > 3.5219) = 0.9630 from the approximating distribution
L(F9,31) ≈− F(2, 19, 39.3637, 3.6946). This offers persuasive evidence that, contrary to con-
vention, (Y9, Y31) are not true outliers, but instead appear so as an artifact of swamping and
relationships among the rows (9, 31) and (5, 26).

5. Conclusions

The statistics literature is replete with diagnostics for influential and outlying observations.
An important fact, to be restated, is that the Table 1 diagnostics are functionally equivalent
to FI . In contrast to numerous experimental and simulation studies reporting these diag-
nostics, the present work concerns distributions of FI and irregularities induced by shifted
outliers. These irregularities are given in section 3 as doubly noncentral distributions, their
parameters as functions of the design and shifts in observations. An informative dichotomy
emerges as projections of shifts into the “regressor” and “error” spaces of a model.

A large body of known results, assuming outliers only at data to be deleted, is extended
here to include shifts anywhere. The induced distributions F(ν1, ν2, λ1, λ2) may be skewed
either to the left or right of F(ν1, ν2, 0, 0) as reference, accounting on occasion for mask-
ing or swamping effects. Case studies in section 4 illustrate the basic concepts, to include
swamping curves as evolving probabilities that a non-outlying subset is deemed incorrectly
to be outlying. Of particular interest is the Drill Data set of Cook and Weisberg (1982, 149),
long a benchmark for deletion diagnostics. Cases 9 and 31, singled out by those authors as
having “the largest potential and the largest influence,” are now refuted, appearing instead
to be so through swamping. Moreover, our tools support moment estimation of selected
shifts themselves in the Drill Data set.

Anomalies uncovered here emphasize difficulties intrinsic to identifying outliers in
regression. Noncentralities correspond to shifts; masking and swamping may misidentify
shifts; and these typically are hidden from the user. Accordingly, prospects for correct-
ing p-values to account for shifts using our methods typically are not feasible. These
anomalies serve to abrogate realistic prospects for correctly distinguishing outlying from
non-outlying, or equivalently, influential from noninfluential subsets. Despite wide and con-
tinuing usage, abetted by available if ill–understood software support, conventional deletion
diagnostics no longer can be recommended to achieve the objectives traditionally cited.
Nonetheless, our tools may support future projects using, for example, moment estimates
for shifts as in Lemma A.3(iv). Current work in progress by the authors seeks alternatives
to deletions for identifying outlying data.

“Theory,” as set forth over many decades, claims to offer a succession of new and effec-
tive methods, some preferred in comparison to others. On revisiting foundations supporting
that methodology, we demonstrate much to be flawed and offer ours as a much-needed cor-
rective paradigm. Rather than offering yet more layers of things to be done, that is, even
newer methods, this study is cautionary regarding unintended consequences that may befall
a body of literature that has devolved “for the most part . . . based on ad hoc reasoning,”
but for “a more complete understanding of past results, ad hoc reasoning no longer seems
sufficient” (Cook 1986).
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Appendix A: Foundations

The construction FI = e′
I(Is − HII)−1eI/sS2

I requires that L(eI) be of full rank s, that is, that
(Is − HII) be invertible, as assumed in Gentleman and Wilk (1975). This need not hold, in
which case FI is undefined. This matter is covered analytically through ranks R(·) with
matrix argument as follows.

Lemma A.1. Consider (Is − HII), of order (s × s), as a principal submatrix of the
idempotent (In − Hn). Then

i. In order that (Is − HII) be invertible, it is necessary that s ≤ n − p.
ii. R(Is − HII) is s diminished by the number of unit eigenvalues of HII .

iii. In particular, R(Is − HII) is s diminished by the number of unit leverages appearing on
the diagonal of HII .

Proof. Clearly (In − Hn) is idempotent of rank r = n − p, having r linearly independent
rows and, by symmetry, r linearly independent columns. Accordingly, every principal (s ×
s) submatrix of order s > r is necessarily deficient in rank, to establish conclusion (i) by
contradiction. From the eigenvalue identities {λi(Is − HII) = 1.0 − λi(HII); 1 ≤ i ≤ s},
it follows that as many eigenvalues of ( Is − HII) are zero as there are unit eigenvalues of
HII , to verify conclusion (ii). Conclusion (iii) follows from (ii) since each unit leverage on
the diagonal of HII generates a unit eigenvalue of HII . For suppose that the leading element
of HII is unity, say hr+1,r+1 = 1. Since Hn is symmetric idempotent, every other element
in the row and column containing hr+1,r+1 must vanish, so that HII = Diag(1.0, B) has one
unit eigenvalue, and (Is − HII) has rank s − 1. Applied recursively, this gives (iii) and our
proof.

To continue, properties of FI in turn rest on those of the subvector eI of ordinary
residuals. For brevity rewrite expression (1) as

[
e
eI

]
=

[
G11 G12

G21 G22

] [
Y
YI

]
(A.1)

with G11 = (Ir − H00), G′
21 = G12 = − H0I , and G22 = (Is − HII).

Lemma A.2. Consider the ordinary residuals e′
0 = [e′, e′

I] under Assumption A1: E(ε0) =
ω, with ω′ = [γ ′, δ′], and A2: V(ε0) = σ 2In. As in Definition 2.3.1 decompose ω = ω1 +
ω2 with ω1 = Hnω and ω2 = (In − Hn)ω. Then

i. E(e0) = ω2;
ii. E(eI) = G21γ + G22δ; and

iii. V(eI) = σ 2G22 = σ 2(Is − HII).

Moreover, under Assumption A3: L([(ε − γ )′, (εI − δ)′]′) = Nn(0, σ 2In), it follows that

iv. L(eI) = Ns(G21γ + G22δ, σ 2G22).
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Proof. Assumption A1 gives E(e0) = (In − Hn) (X0β + ω) = (In − Hn) ω = ω2 as in (i)
since (In − Hn)X0 = 0. In partitioned form this is

E

[
e
eI

]
=

[
G11 G12

G21 G22

] [
(Xβ + γ )
(Zβ + δ)

]
=

[
(G11γ + G12δ)
(G21γ + G22δ)

]
. (A.2)

giving conclusion (ii). Moreover, under Assumption A2 with V(e0) = σ 2G, the marginal
values E(eI) = (G21γ + G22δ) and V(eI) = σ 2G22 = σ 2(Is − HII) are immediate, as in (ii)
and (iii). Conclusion (iv) follows directly, to complete our proof.

Theorem 3.1 rests on a version of the Fisher–Cochran theorem and the decomposi-
tion of quadratic forms. Accordingly, we turn next to working expressions equivalent to
(X′X)−1, (β̂ − β̂I), and the reduced residual sum of squares RSS(Y) = (Y − Xβ̂I)′(Y −
Xβ̂I). In view of Lemma A.1 we take (Is − HII) to have rank s, that is, that no eigen-
value of HII is unity. Recurring matrices include R = [R1, R2], with R1 = (X′

0X0)−1X′ and
R2 = (X′

0X0)−1Z′.

Lemma A.3. Consider X′
0 = [X′, Z′], R = [R1, R2], and Hn = [Hij], together with the

partitioned vector ω′ = [γ ′, δ′] in {Y0 → Y0 + ω}. Then

i. (X′X)−1 = (X′
0X0)−1 + R2(Is − HII)−1R′

2;
ii. (β̂ − β̂I) = R2(Is − HII)−1eI ; and

iii. RSS(Y) = e′
0e0 − e′

I(Is − HII)−1eI .

Under Assumptions A, with (γ , δ) fixed we have

iv. E(YI − Zβ̂ I) = δ − Z(X′X)−1X′γ
def= θ ;

v. V(YI − Zβ̂ I) = σ 2[Is + Z(X′X)−1Z′]
def= σ 2�;

vi. L(YI − Zβ̂ I) = Ns(θ , σ 2�).

Proof. For (i)–(iii) see the proof for Lemma A.1 of Jensen (2001). For conclu-
sion (iv) observe that E(YI − Zβ̂ I) = (β + δ) − Z[β + (X′X)−1X′γ ] since E(β̂I) = [β +
(X′X)−1X′γ ]. Conclusion (v) follows since (Y, YI) are uncorrelated, and conclusion (vi)
follows directly.

To continue, we put in place nonstandard distributions of quadratic forms in Gaussian
vectors. In the notation of Eq. (1), Lemma A.3(iii) supplies the needed Fisher–Cochran
expansion

e′
I(Is − HII)

−1eI + (Y − Xβ̂ I)
′(Y − Xβ̂ I) = e′

0e0, (A.3)

where invertibility of (Is − HII) is covered in Lemma A.1. As quadratic forms in Y0,
(A.3) becomes Y′

0A1Y0 + Y′
0A2Y0 = Y′

0A3Y0, where A3 = (In − Hn), A2 = Diag(Ir −
Hr, 0) with r = n − s > p, and A1 = A3 − A2 in partitioned form is

A1 =
[

H0I(Is − HII)−1HI0 −H0I

−HI0 (Is − HII)

]
. (A.4)

Its leading element, namely, [(Ir − X](X′
0X0)−1X′) − (Ir − X(X′X)−1X′)], is

X[(X′X)−1 − (X′
0X0)−1]X′ = H0I(Is − HII)

−1HI0
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using Lemma A.3(i). Observe further that

HI0(Ir − Hr) = Z(X′
0X0)−1X′[Ir − X(X′X)−1X′] = 0. (A.5)

To continue, for U ∈ R
n random having E(U) = μ, the noncentrality parameter for U′AU

is the quadratic form μ′Aμ in its expectation. Accordingly, write μ = E(Y0) = X0 β + ω

with ω′ = [γ ′, δ′] under Assumptions A. Then the corresponding noncentralities are
λ3 = μ′A3μ = ω′A3ω = ω′(In − Hn)ω since (In − Hn)X0β = 0; similarly λ2 = (Xβ +
γ )′(Ir − Hr)(Xβ + γ ) = γ ′(Ir − Hr)γ ; and λ1 = (X0β + ω)′A1(X0β + ω), to be reex-
amined subsequently. Accordingly, consider the quadratic forms Q1 = Y′

0A1Y0, Q2 =
Y′

0A2Y0, and Q3 = Y′
0A3Y0, such that Q1 + Q2 = Q3. Further essentials follow; normal-

ity assumes a central role; (In − Hn) = [Gij] has blocks G11 = (Ir − H00), G′
21 = G12 =

−H0I , and G22 = (Is − HII) as in Eq. (1); and FI = (Q1/Q2)[(n − p − s)/s].

Lemma A.4. Given Assumptions A, such that E(ε0) = ω = [γ ′, δ′]′; decompose γ = γ1 +
γ2 with γ1 = Hrγ and γ2 = (Ir − Hr)γ . Then the respective distributions of Q1, Q2, and
Q3 are the following:

i. L(Q1) = χ2(s, λ1), with λ1 = (G21γ1 + G22δ)′G−1
22 (G21γ1 + G22δ);

ii. L(Q2) = χ2(n − p − s, λ2), with λ2 = γ ′
2(Ir − Hr)γ2;

iii. L(Q3) = χ2(n − p, λ3), with λ3 = ω′(In − Hn)ω.

Moreover, the forms {Q1, Q2, FI} have the properties

iv. Q1 and Q2 are independent; and
v. L(FI) = F(s, n − p − s, λ1, λ2).

Proof. Let {φi(t); 1 ≤ i ≤ 3} be the chf ’s of {Qi; 1 ≤ i ≤ 3} as quadratic forms in the
elements of Y0. This result is based in part but goes beyond Lemma A.2 of Jensen (2001).
We work backward from (iii), (ii), and (iv) to (i) and (v). Since Q3 = Y′

0A3Y0 and A3

is (n × n) idempotent of rank n − p, it follows directly that L(Q3) = χ2(n − p, λ3), with
chf φ3(t) = (1 − 2it)−(n−p)/2 exp[iλ3 t/(1 − 2it)] and λ3 = ω′A3ω, as claimed in conclusion
(iii). Similarly, since Q2 = Y′

0A2Y0 and A2 is idempotent of rank (r − p) = (n − p − s), it
follows that L(Q2) = χ2(n − p − s, λ2), with chf φ2(t) = (1 − 2it)−(n−p−s)/2 exp[iλ2 t/(1 −
2it)] and λ2 = ω′A2ω, as asserted in conclusion (ii). That A1A2 = 0 is verified directly,
assuring both the independence of Q1 and Q2 as in (iv), and the factorization φ1(t)φ2(t) =
φ3(t) as in Jensen (2001). Substituting for φ2(t) and φ3(t) and solving gives

φ1(t) = (1 − 2it)−s/2 exp [iλ1 t/(1 − 2it)]

and λ1 = λ3 − λ2, so that L(Q1) = χ2(s, λ1) from uniqueness of chf ’s. The equiva-
lent form λ1 = (G21γ + G22δ)′G−1

22 (G21γ + G22δ), as listed in conclusion (i), derives
from L(eI) in Lemma A.2(iii), the quadratic form Q1 = e′

I[V(eI)]−1eI in eI having λ1 =
[E(eI)]′[V(eI)]−1[E(eI)] as given. Conclusion (v) follows directly.

Appendix B: Deletion Diagnostics

In a sweeping survey by Chatterjee and Hadi (1986) and discussants, deletion diagnostics
have been labeled as bewildering, excessive, and largely redundant; as “chaotic,” begging
“distillation” to an “integrated set of procedures”; and as devolving through “ad hoc reason-
ing,” explaining “the diversity of recommendations” for cutoff values, with the latter seen as
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Noncentralities Induced in Regression Diagnostics 165

“vague and . . . contradictory,” not to be “sanctified,” but instead to be “guided by statistical
theory.” One contrived and contradictory rule among many (see Jensen (2000)) is Myers’s
(1990, 261) claim that “a yardstick of approximately ±2 on DIFFITs and DFBETAs may
be reasonable.” Despite those caveats, the misguided use of these diagnostics and their
benchmarks continues apace, abetted in turn by software support.

Those concerns since have been vindicated; they trace to the mistaken advocacy of
diagnostics standardized, but not Studentized using correct standard deviations. Moreover,
these concerns mostly have been resolved through the findings that many single-case dele-
tion diagnostics correspond one-to-one with ti or t2

i , as in LaMotte (1999) and Jensen
(2000), and that the Table 1 diagnostics correspond one-to-one with FI , Jensen (2001).

A number of influence distance diagnostics purport to be patterned on the metrics of
Mahalanobis (1936). These include diagnostics of Cook (1977), Welsch and Kuh (1977),
Welsch (1982), and DI as in Table 1. Apart from DI , their matrices are ad hoc, diverse,
subjective, often contradictory, and devoid of rational bases; none is properly Studentized;
none accounts for the singularity of L(β̂ − β̂I) ∈ R

p of rank s < p; none is a genuine
Mahalanobis (1936) metric; and, unlike proper metrics on R

p, the diagnostic of Cook
(1977) has bounded range.

Appendix C

We turn to computing probabilities for doubly noncentral F-distributions. Bulgren (1971)
has given a series representation for the cdf of F(ν1, ν2, λ1, λ2) in terms of incomplete Beta
functions. Building on the earlier work of Imhof (1961), Ennis and Johnson (1993) have
expressed the cdf for F(ν1, ν2, λ1, λ2) as a one-dimensional integral using trigonometric
functions. This result is easy to code, for example, in Maple, and the Ennis and Johnson
representation for the cdf was used to compute the probabilities shown in the tables of
section 4. The National Institute of Standards and Technology makes available Dataplot as
a public-domain software system. Dataplot contains the FORTRAN subroutine DNFCDF
based on the algorithm of Bulgren (1971). With modern software such as Mathematica 8.0,
probabilities for the doubly noncentral F-distributions are readily accessible.
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