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Abstract

Ridge regression is often favored in the analysis of ill-conditioned systems. A canonical form
identifies regions in the parameter space where Ordinary Least Squares (OLS) is problematic.
The objectives are two-fold: To reexamine the view that ill-conditioning necessarily degrades
essentials of OLS; and to reassess ranges of the ridge parameter £ where ridge is efficient in
mean squared error (MSE) relative to OLS; and conversely. In particular, ridge is intended to
ameliorate effects of ill-conditioning over a wide range of k. Contrary to conventional wisdom,
ridge often must be abandoned in favor of OLS for & sufficiently large.

1. Introduction

In a full-rank model {Y = XB + €}, the p equations {X'XB = X'Y} yield

OLS solutions B , unbiased with minimal dispersion V(B ) = 2V = o2(X'X) !
under conventional errors. Ill-conditioning, as near-dependency among columns
of X, “causes crucial elements of X'X to be large and unstable”, and B, to be
“very sensitive to small changes in X’ with “inflated variances” [2, p. 119].
Specifically, the Variance Inflation Factors (VIFs) of B L= B Lis o B Ipl are
ratios of actual to “ideal” variances had the columns of X been orthogonal, i.e.,
{VIF(B;) =vj /w3';1<j < p} with W = X'X. Since {VIF(B;)>1.0; 1<
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<p}, and often much greater, ill-conditioning is widely held to degrade
essentials of OLS: In fact, V| = max{VIF(ﬁLj ), 1<i< p} is identified in [10]
as “the best single measure of the conditioning of the data”. Standard
remedies include ridge estimators as solutions of {(X'X +kI,) Brr = X'Y;

k > 0}; see [4-6] and numerous subsequent citations. A basic canonical form is
{Y = PD§9+€}, where PP = I,; @ is orthogonal; D: = Diag(&y, ..., &p),

ordered as {&; > &y >...> &, }; and 8 = @B. The OLS solutions 6 =[071, ...,

éLp]', with variances {c2/ &2 <o?/e3 < ... <c?%/ ﬁ% }, thus identify “... linear
combinations of parameters about which the data at hand are most/least
informative” [13]. Moreover, these variances escalate for values of é‘;lz near

zero, a characteristic of ill-conditioning. To validate ridge as a rational
alternative to OLS in mean squared error (MSE); Hoerl and Kennard [6] gave

k< 02/ 9%4 as sufficient for ridge to dominate OLS with lesser MSE, where

03, = max{6f, ..., 02 }.

Our purposes here are two-fold: (i) To reexamine the extent to which OLS
solutions are degraded through ill-conditioning, and (i1) to reassess ranges of
the ridge parameter k& where ridge is MSE-efficient with respect to OLS, and
conversely. An outline follows.

Conventions for notation and supporting materials are in Section 2.
Section 3 sets forth the principal findings, to include (1) a decomposition of
the parameter space according to comparative subspace efficiencies of OLS;
(11) a reexamination of conditions sufficient for ridge to dominate OLS in
MSE, and conversely, as k evolves; and (ii1) elementary but illuminating
examples. Section 4 revisits a highly ill-conditioned case study treated
elsewhere and Section 5 reprises essentials of the present study.

2. Preliminaries

2.1. Notation

Designate by R”? the Euclidean p-space, and by R? its positive orthant;
matrices and vectors are set in bold type; the transpose, inverse and trace of

A are A, A7 and tr(A); special arrays are the identity I,, the unit vector
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1,=0,1,...,1] e R?, and the diagonal matrix D, = D(a;)=Diag(q,...,
ap). Let X, of order (n x p), have rank p < n; its singular decomposition is
X = PDgQ', where D; = Diag(&, ..., ﬁp) comprise its ordered singular values
{&12& >...2&, > 0}; and the columns of P =[py, ..., p,] and of @ =[qy,
o qp] are the left- and right-singular vectors of X, such that P'P = I, and
Q is orthogonal. By Sp(Z) is meant the linear column span of Z(p x k) =

[21, ..., 2] in RP.
2.2. Stochastic concepts

The expectation, dispersion, and law of distribution of Z € R? are
E(Z), V(Z) and £(Z). Given B for estimating p € R? having E(B) = By and
second moments, its MSE is Mgp(B) = E[(B-B) (B -B)] = Zil Var(p;)
+(Bo - B)(Bp —B), to quantify the trade-off of bias for variance. Since
(B-PB)=Q(6-06) and Q is orthogonal in canonical form, it suffices that
Mgp(B)=Mgz(8)=E(0-0) (6—0). Moreover, if Mgz(8) < Mgz (8), then 6
is said to be Mgg-admissible with respect to 6. Specifically, in regard to

estimators ¢ and & for a € R' having second moments, the Fisher

efficiency of & relative to a is defined as Ep(a: a) = Var(a)/ Var(&).
3. The Principal Findings

3.1. Efficiencies of OLS

Despite that VIF(B 1j) = 1.0, we reexamine the ostensible degradation of

OLS in ill-conditioned models having second moments. Take X'X to be
centered and scaled as in [6, 9, 10], and elsewhere, such that tr(XX) = p

but X'X # I,. Write X'X = QDgQ’; then there are r > 1 eigenvalues greater
than unity; s>0 equal to unity; and ¢ = p —r —s > 1 eigenvalues less than
unity. Designate these as {i% >...2 i% >1= §%+1 =..= Q%H > §%+s+1 > ...

> F’% > 0}. Conformably partition @ = [Q;, @, @3] and 0" = [0, 05, 03],
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such that Ql = [‘h? s qr]’ Q2 = [Qr+17 () Qr+s]7 and Q3 = [qr+s+17 SRE) qP];
0; =[6,...,0.],05 =[0,.7, ..., 0,5 ], and 05 =[6,,5,1, ..., 6, ], and similarly
0 = [6'1, é’g, éé], and observe from 0 = QB that B = Q0 = @,0; + @90,
+ Q303. Identify I; = Sp(@Q; ), Ly = Sp(Q3), and Ly = S,(Q3), as orthogonal

complements in R? of dimensions {r, s, t}.

We next identify {L;, Ly, L3} as subspaces of parameters in R” where
OLS solutions have greater, equal and lesser Fisher efficiencies, in

comparison with an orthogonal reference model having X'X =1, {Ef =..=

&?, = 1.0}, and solution B.

Theorem 1. Consider OLS estimators {¢'By; ¢ € RP} for {¢'B; ¢ € RP},
and similarly {¢'By; ¢ € RP} under a fully orthogonal model with {£3 = ... =

&%, = 1.0} and solution B.

Then
2 " 2 . "
0 % < M <2 <1.06" and Ep(cBr:cPo)>1.0 for cely
gl cc ar
= Sp(@ );

(1) w =1.06% and Ep(cBr:cBy)=1.0 for ¢ e Ly = Sp(Qy);

and

o2 < Var(c'By,) < %

o and Ep(cBr:c'By)<1.0 for ¢

(iii) 1.062 <

r+s+1 p
e Ly = Sp(Qs3).
. . A 9 1 1 92—
Proof. In canonical form write V(0) = c“Diag —5 s =5 | =O0°E, s0
1 E.’p
that V(0], 8%, 03) = 6°Diag(E,, g, Z3), say, and V(0;) = 6’5, = czDiag[%,
&1

"’Lz . Variational properties of Rayleigh quotients assure that %

ar &1
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< % < Lz; c € R'}. That these transfer to p is seen from ¢/ = c'(Qlél
e g2

+ @By + Q305) = ¢'Q,0; = ¢,6, since ¢ € Sp(Q;), so that ¢'Qy =0 = c'Q;.
Moreover, Ep(c'Br : ¢By) = Var(e¢'By)/ Var(e'Br ) > 1.0, since [Var(¢'By)/

ccl= 1.062, to give conclusion (i). Conclusions (ii) and (iii) follow similarly,

taking in turn =y = I, and Zg = Diag{ S LQJ O
é’Sr+s+1 (tap

In short, ¢B 1, exhibits (1) enhanced efficiency for ¢ € Sp(Q,); (i) equal

efficiency for ¢ € Sp(@); and (iii) degraded efficiency for ¢ € Sp(Qs); all

relative to an orthogonal model preserving tr(X'X) = p.

Example 1. To illustrate, suppose that p = 3; B = [B;, B2, B3]; and XX,

its inverse (XX )}, and the matrix @ are given in succession by

1 1 0 0
2.97 0 0 _— 0 0
2.97 .1
0 0.015 0.005 |, 0 75.00 -25.001,|]0 — — |. (3.1
7z vz @Y
0 0.005 0.015 0 -25.00 75.00 1 1
Z

Verify directly that VIF(B;)=1.0, and VIF(By)=1.125 = VIF(B3). The
spectral decomposition gives XX = QD%Q’; Dg = Diag(2.97, 0.02, 0.01); @
is displayed; the canonical parameters 0 = QB are 0; = B;, 05 = (By + B3)/
V2, and 05 = (By — B3)/~2; and V(6;) = c?Diag(0.3367, 50, 100). Clearly
Var(0;) = 0.3367c2 is diminished by the factor 1/2.97 from the orthogonal
case, but at the expense of grossly inflated variances for é2 and ég.

Conventional diagnostics fail to convey the reduction in variance for 6;, nor

do the relatively benign VIFs of {1.0,1.125,1.125} anticipate the critically
inflated variances Var(s) = 5062 and Var(63) = 10062. On the other hand,

the condition number ¢;(X'X) = £2/£2 = 297.0 is the ratio of variances of

the least to the most precisely estimated linear functions.
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To continue, partition @ as [q;, @3] with @ = [q9, q3] from (3.1), where

s =0 and Ly = Sp(®y) is empty. Clearly Sp(Qs) identifies the subspace

2
where OLS is problematic. Theorem 1(iii) now gives {“— = 5002 <

A 2
Vargcﬁ) <-2_ =1006% ¢ e Sp(Q3)}. In particular, at xg = [0, 1, 2]'e
c'c 0.01
Sp(Q;), the predicted response has variance Var(By + 2B3) = o2x)(X'X) ' x,
= 27502, sothat Var(xyB)/ xhxy = 27562 /5 = 5502 € 62[50, 100], the interval

asserted in conclusion (iii) for every x; € Sp(@s).

We next revisit the comparative MSE-efficiencies of OLS and ridge
solutions. In order that ridge might better OLS as gauged by MSE; i.e., that
Mgz (Br(k)) < Mgg(Br), itis sufficient that k < o2/ 63;, with 6%, = max {6,
6%, ey 6%,}, as noted earlier from [6]. In what follows we sharpen this

condition. Of equally compelling interest, heretofore neglected, is to seek
values for k where the reversal Mgg(Br(k)) > Mgg(Br,) might obtain. The

latter goes substantially beyond the work of [6] and numerous subsequent

studies, in characterizing larger values for k where ridge necessarily is

usurped by OLS. In what follows write 6p, = [0%), 0%, ..., é%k]” with
typical element ', .

3.2. MSE comparisons
3.2.1. Basics

Let  Mgg(Brr) = v1(k) + v2(k),  where  y(k) = tr[V(Bg,)] and
vo(k) = (B} - B)(B) —B), with B = E(Bg,). Then y,(k) is the total

variance and yq9(k) is the sum of squared biases. Since 8 = @B and @ is

orthogonal, it suffices to take

p . p .
yi(k) = ) Var(dfy ) and ya(k) = D B> (8 (3.2)
i=1 =1



TRACKING MSE EFFICIENCIES IN RIDGE REGRESSION 387

with B%(8%;,) = [E(8%),) - 0;]%. It is shown in [6] that y;(k) and y,(k) are
continuous monotone functions, decreasing and increasing, respectively.
Their sum, M SE(é Rrr ), decreases to a minimum and increases thereafter, as
shown graphically in Figure 1 of [6, p. 61]. So, too, for the component

functions and their partial sum, namely, {Var(0%y), B%(6%; ), Mgg (0% );
1 < i < p}. Specifically, the condition k < 02/ 03, of [6] is chosen so that
each term in the expansion of dMSE(éRk)/dk, and thus their sum, is
negative. Looking ahead, let k. be the crossing value such that Mg (0%),) is
equal to Mgp(67;) = 6%/ €2 not depending on k, where Mgy (6'%;) clearly
crosses from below. Then in order that Mgg (6%, ) < Mgg (07, ), it is necessary
and sufficient that k < k’; whereas Mgg(0%;) > Mggr(6;), holds if and

only if k > k. Details follow.

Theorem 2. Consider OLS solutions 87 = [071, ..., éLp]', together with
canonical ~ ridge  estimators Orp = [0%r, 6%, ..., é%k I, solving
{(D? + kI, )0R;, = D:P'Y}.
o%e7 + k207

(&7 + k)

(1) MSE(éle) achieves its minimal value 207/ (c> +£202) at k; =

o2/ 62

(111) The cross-over value from below, where equality is attained in

(i) The typical element éé%k has MSE(é‘Rk) =

MSE(éle) < Mgg(0y;), occurs at

2¢2
poo 2050 20° (3.3)
§07 -0 g2 o
&?

foreach {i =1, 2, ..., p}.

(v) If ko < min{kl, k2, ..., kP}, then Og(ky) is Mgg-admissible with

respect to 6 L-
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™) If k' = max{kl, k2, ..., kP, then 0] is Mgg-admissible with respect
to Op(k").
Proof. It follows directly that E(6%,)=[&? /(&7 +k)]9;, with bias
B; =—k0;/ (& + k), and Var(bly,) = 6”67/ (&7 + k)?, giving Mgg(0l,) =

Var(6%, ) + B%(6%, ) from (3.2) as in conclusion (i). Denoting Mgy (0%, ) as

Mgg;(k), we have

dMgp;(k) _ 2k(E} + k)* 07 — 2(c”e7 + k%07 )(&F + &)

dk (& + k) o

Setting the numerator to zero and solving gives aiz(ke? - 62) =0, ie.,
k; = 6%/ 62. The second derivative is positive; the solution is minimizing; the
minimal value is by substitution; and thus follows conclusion (ii). Equating
Mgg(0%;) to Mgp(01;) = 6?/¢? and solving, gives k. as in conclusion (iii).

Since components of Mgg(8p;) - Msg(6,) = Y+ [ Mg (0k) - Msg(0 ;)]

are all negative for ky < min{kg, kc2, .., kP}, from (iii), conclusion (iv)
follows directly. Similarly, that all components are positive for

kB> max{kg, kc2, ..., P}, gives conclusion (v), to complete our proof. O

Remark 1. Observe that k! = 262/(07 — 62/ ¢?) at (3.3) is finite and
positive, if and only if 07>c%/? =Var(f;;). Otherwise, 0%, is

Mg - admissible with respect to ) 1; for all values of the ridge parameter k.
Remark 2. Clearly k! is scale-invariant, since k. = 202/ (07 — 62/£?)

=2/(x —1/¢?) under rescaling {6; = ot;}. Accordingly, it often suffices to

take o2 = 1.0.

Remark 3. With g;iQ fixed in (3.3), ké decreases as r,-z = 9;2/ o2 increases;

for ké fixed at k., the parameters 91-2 and &L-z are inversely related.
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Remark 4. The condition k<o?/03; of [6] exhibits excessive
conservatism. From Theorem 2(i1) this value is to the left of all the minima

for the Mgp(0%;,) curves, whereas conclusion (iii) adjoins to these the rising

branch on the Mgy (6%, ) curves up to their crossing with the constant OLS
line. Further insight regarding conclusion (ii) is seen in the initial rates of

change, namely [dMgg;(k)/dE]| _o= —c>/&} < 0.

Conclusions (iv) and (v) specialize further as follows, where crossings now

are taken to coincide at the common value {k, = kX = k2 = ... = kP,

Corollary 1. If crossings all coincide at k., then for Mgg(0gy)
< Mgg(0y,), it is necessary and sufficient that k < k.. Similarly, Mgg(0gy,)
> Mgg(0y), if and only if k > k,.

Example 2. To illustrate, suppose that p = 3; B = [By, B, B3]; and XX

and its inverse are

2.900 0 0 0.344828 0 0
XX=| 0 0.050 0.005 ,(X’X)_1 = 0 20.2020 -2.0202 |(3.5)
0 0.005 0.050 0 -2.0202 20.2020

and @ carries over from (3.1). Further computations give Dg = Diag(2.900,
0.055, 0.045), V(6; ) = 6?Diag(0.3448, 18.1818, 22.2222), and the condition
number ¢ (X'X)=2.900/0.045 = 64.4444.  Essential features are

demonstrated on taking o> =1.0, in which case 0; and 1; are

interchangeable as in Remark 2.
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Table 1. Values [67, 62, 63 ] = [2.8448, 20.6818, 24.7222] with common crossover
k. = 0.8; {[Var(é%k ), Bz(é%k )]; 1 <i < 3} as variances and squared biases

standardized to 6> =1.0; and Mgg(0p;), for various k.

k| Var(bh,) | BA0kL,) | Var(©%,) | BX0%,) | Var(©%,) | BX©%,) | Mse(®gk)

0.0 | 0.34483 0 18.18182 0 22.22222 0 40.74887
0.2 | 0.30177 0.01184 0.84583 12.72238 0.74969 | 16.47462 31.10612
0.4 | 0.26630 0.04180 0.26567 15.98402 0.22724 | 19.97503 36.76006
0.6 | 0.23674 0.08360 0.12820 17.35436 0.10817 | 21.39295 39.30401
0.8 | 0.21183 0.13299 0.07524 18.10658 0.06302 | 22.15920 | 40.74887
1.0 | 0.19066 0.18704 0.04942 18.58163 0.04121 | 22.63888 | 41.68883

To illustrate its Corollary, Theorem 2(iii) is solved at k., = 0.8 as the
common crossover point, giving solutions [9%, 9%, 9%] = [2.8448, 20.6818,
24.7222] that increase with decreasing Fﬂz as in Remark 3. Variances and
squared biases for the component curves, namely {[Var(é%k ), Bz(é%k )];
1<i<3}, as well as Mgg(py), are reported in Table 1 for various k. It
follows constructively that Mgp(0gy) = Mgp(6r) at k. = 0.8. Moreover,
the values > Var(dk)=0.35009 and Y. B2(fl)=40.39878, at
k = 0.8 in the table, sum to Mgg(0p;) = 40.74887. Specifically, in achieving
the same MSE as the unbiased 6, the ridge solution 0z(0.8) encounters
excessive biases, with ratio Z?zl B?(0, )/Z?zl Var(0%j,)=115.40. Corollary
1 is demonstrated numerically in the table, as the M SE(é RE) curve crosses
the line Mgg() from below at k, = 0.8. On the other hand, the extreme
conservatism of k <1/6% =1/24.7222 = 0.0404 from [6] is clear in
comparison with our k., = 0.8.

To exemplify Theorem 2(iv, v), we instead fix [9%, 9%, 9%] at [3.2, 21.5,
25.0], and solve (3.3) for [k}, k2, k2]. Entries for {[Var(6%y,), B2(0%)]; 1

<i <3} and Mgp(0p,) for various k, including crossover values [k}, k2,
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kcg] = [0.7005, 0.6027, 0.7200], are reported in Table 2. Clearly min {kcl,, kc2,
k3 = 0.6027 and max{kl, k2, k3} = 0.7200. Theorem 2(iv) assures that
0r(ky) is Mgp-admissible with respect to 67 for every ko < 0.6027,
whereas Theorem 2(v) asserts that 0 1 1s Mgg-admissible with regard to

) R(k*) for every k' > 0.7200. These assertions are borne out in Table 2.

Table 2. Component values {[Var(0%; ), B2(0%;)]; 1 <i < 3} and Mgg(6g;)
with o2 =1.0 for various k, including crossover values [k}, k2, k2] =

[0.7005, 0.6027, 0.7200] corresponding to [67, 62, 62 ] = [3.2, 21.5, 25.0].

k Var(ékk) B2(é%k) Var(é%k) B2(é§2k) Var(0

B2(63,) | Mse(6rr)
0.2 0.30177 0.01332 0.84583 13.22568 0.74969 16.65973 31.79601
0.4 0.26630 0.04702 0.26567 16.61635 0.22724 20.19947 37.62205

0.6027 0.23637 0.09475 0.12713 18.05469 0.10725 21.64704 40.26723

0.7005 0.22371 0.12112 0.09636 18.48350 0.08097 22.07292 41.07858

0.7200 0.22130 0.12659 0.09157 18.55667 0.07689 22.14533 41.21835

0.8 0.21183 0.14960 0.07524 | 18.82289 0.06302 | 22.40818 | 41.73076

3
Ri)

3.2.2. Connections to other work

An attempt at Theorem 2(ii1) is reported in [12], but with the absolute

2
value | 612 - G—2| in the denominator of (3.3) instead. Note that the “minus”
i

sign in equation (10) of those authors should be “plus;” their a? should be
o2; their o; is our 0;; and their A; is our &7. Moreover, with Mgz (k) =
Mgp(6gy,) = Zle (22 + k%02)/ (£2 + k) from Theorem 2(i), those authors
allege that the optimal k, minimizing M SE(é Rr ) 1is the root of the fourth

degree polynomial p,(k) = cok4 + clk?’ + 02k2 + cgk + ¢4 from the numerator
of dMgp(k)/ dk = 0, with coefficients

co = (p—1) ) 707

o =3[P e e - Y el oF) - (0 -1e* Y e



392 D. R. JENSEN and D. E. RAMIREZ
ey =3 Y gor et - Y efoR o Yoy et - D et ||
DN D IED IR PIEHICED IS
o =Yy e - (3.6

as given following their equation (13). Here the sums all range over {i = 1, 2,

.., p}, and we correct the second parentheses in ¢y to read (Z &izz&iz

- Z&?). Unfortunately, this solution applies only in the special case

p = 2. As the rank goes from p =2 to p = 3, the polynomial from the
numerator of dMgg(k)/dk will increase by 3 in degree to 7; similarly, the
case p =4 entails solving a polynomial of degree 10, the degree and
intractability growing exponentially with order of the model. The higher
polynomials emerge on combining terms to a common denominator.
Example 3. As indicated, the optimal value for k2 in the case p = 2

entails a polynomial of degree 4. Here

k207 + 622 k203 + o2e3

Mgg (k) = 3.7
sz (%) (i% + k)2 (&% + k)2 G0
and
dMgg (k) 2 2k07 2(k%07 + o2E?)
— E - (3.8)

2 3
Sl +p (& k)
which is zero at the root of the fourth degree polynomial p,(k) = cok4 + clk3

+ cok® + cgk + ¢4 from the numerator of dMgg(k)/dk, with coefficients

specializing from (3.6) as
co = 767 + €303
o = 37E3(07 + 03) — o®(&f +&3)
cy = B(E7ER07 + £1£303 — 207E7E3)
cy = 7307 + 0305 — 307 (E7e3 + £1E3)

cy = —o2(E7E5 + &5e3). (3.9)
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4. Case Studies

4.1. The setting

As reported in Table 3.8 of Myers [11, pp. 132-133], the Hospital
Manpower Data consist of n =17 records at U. S. Naval Hospitals, to
include: monthly manhours (Y); Average daily patient load (Xj); monthly

X-ray exposures (Xg); monthly occupied bed days (X3); eligible population
in the area +1000 (X, ); and average length of patients’ stay in days (Xj).

The working model is
{Y; = Bo + P1Xy + BaXp + BaXg + By Xy +B5X5 +¢;51 < i <nj. (4.1)
Following convention, we center and scale to {Y = ZB + €} with Z'Z in

correlation form, our focus being the rates of change P = [y, B2, B3, Ba, Ps]-
Computations reported here utilize the SAS Programming System. The OLS
solutions are B =[-10210.40, 4760.50, 31198.64, —1822.11, —2498.58]', with
S = 642.0771 as the square root of the residual mean square. The data are
remarkably ill-conditioned: Singular values of Z are D; = Diag(2.048687,
0.816997, 0.307625, 0.201771, 0.007347); the condition number is ¢;(Z'Z)
= 77,754.86; and the VIFs in OLS estimation are {9595.685, 7.941,
8931.449, 23.289, 4.279}.

4.2. Canonical analysis

Defects in OLS bear further scrutiny. Returning to Section 3.1, we relate
0 = @B, where @ = [q;, g2, a3, 94, q5 ] is displayed as

0.485286 —0.002030 -0.166230 -0.468190 -0.719480
0.453235 -0.335600 0.804239 0.187470 -0.001160

@ =0.484977 -0.000850 -0.153960 —0.509260 0.694081 |. (4.2)
0.460969 —-0.310800 -0.537200 0.633861 0.023436
0.333737 0.889251 0.115239 0.290733 0.006780

Canonical solutions are éL = Q’ﬁL =[10659.49, -3259.16,1413.40, -12096.70,
28935.42]. Clearly 0; = qiB is close to a scaled average of {By, Ba, B3, B4, B5};

moreover, 0; is estimated by OLS with variance ¢?/2.0486872 = 0.23825962,
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less than 1.0 foran orthogonal design. Thus prediction along the equiangular
line, with scaled variance 0.39843562, 1s more precise than 1.06% in the
corresponding orthogonal design. At the other extremity, 05 = g5p is a near
linear contrast between {B;, By} and {Bs,B4, Bs}, since the inner product

1595 = 0.003657 is approximately zero; but this is estimated by OLS with
variance 62/ 0.007347% = 18,525.71c2. This also resembles the highly variable

contrast (B; —B3), with Var((B; —P3)/+2) = 18,508.77c2. The regressors,
Xj : average daily patient load and X3: monthly occupied bed days, exhibit
near collinearity with entry 0.999904 in the Z'Z matrix. A variation on

Theorem 1 shows that {10.5671c? < Var(¢'B;)/c'c < 24.5631c6%} for ¢ e
Sp(qs, q4) under OLS, from 2/0.3076252 =10.5671c> and c2/0.2017712
= 24.5631c%.

It follows similarly that {0.238259c% < Var(¢By )/ c'e <10.5671c%} for

¢ € Sp(qy, g9, q3 ). In short, ill-conditioning here essentially devastates OLS

estimation of the near contrast 05 = g5B, and the actual contrast (B; — B3),
but considerably less for functions ¢'B orthogonal to giB, i.e., {0.238259(52

< Var(¢'By )/ c'c < 24.563162 ) for {¢ e Sp(qy, 43, 43, 44)}. In summary, OLS
is conspicuously deficient in the one-dimensional subspace spanned by gs.

This fact is anticipated neither by ¢;(Z'Z) = 77,754.86, nor by the maximal

V; = VIF(B;) = 9,595.685, and it becomes apparent only through a canonical

analysis as reported.

4.3. Ridge regression

Ill-conditioning renders 07; as super-efficient, its variance Var(6z;)

= 6%/4.197118 = 0.2382590> deflated relative to 1.06> under “ideal”
orthogonality, as in Theorem 1. Since ridge is intended to ameliorate ill

effects of ill-conditioning, and éLl is not among them, it remains to ask

whether 6 71 should be retained per se, with ridge adjustments deferred to
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the remaining estimators. Accordingly, we seek effects of ridge adjustments,
in the event these were made to Ole in liew of 0 11- Essential features again
follow at o2 = 1.0, where 0; and 1; become interchangeable from Remark 1.
As in Theorem 2(iii), we seek crossing values in pairs (k}, 62) at which 6%,
achieves the same MSE as 0 71 under OLS. Table 3 lists selected values for
(kL, 62), together with the corresponding variance and squared bias for 0%y,
Entries in the final row are identical, namely Mgy (07;) = Var(671) = o2/
4.197118 = 0.23826 at o = 1.0, since each Mgg(k%;) curve is required to
cross the OLS line. In particular, at kg = 0.5 and G% = 4.23826, the ridge
estimator 0%, achieves the same MSE as OLS, namely, Mgy (0%;) =
Var(6ky, ) + B2(0%;,) = (0.19023 + 0.04803) = 0.23826, but biased with bias
ratio B2(0%;)/ Var(6k),) = 0.2525, as opposed to 67;. Further evaluation
from (3.3) shows that 6% > 2.23826 implies the corresponding k% < 1.0. This

in turn implies the MSE-inadmissibility of 6, with respect to OLS for some

values k € (0, 1), where OLS necessarily is superior to ridge for those values.

Table 3. Values for kg in the Hospital Manpower Data and corresponding
values for {Var(6k;), B%(6%),), Mgz (6%;)}, standardized to ¢? = 1.0, such

that Mgp (0%, ) crosses the Mgp(67;) line, where kX = 0.0 corresponds to
OLS.

Rt 0.0 0.1 0.3 0.5 0.7 0.9

9% 20.23826 | 6.90493 | 4.23826 | 3.09540 | 2.46048

Var(é%k) 0.23826 | 0.22730 | 0.20753 | 0.19023 | 0.17501 | 0.16155
B2(é}%) 0.00 0.01096 | 0.03073 | 0.04803 | 0.06325 | 0.07671

MSE(é%k) 0.23826 | 0.23826 | 0.23826 | 0.23826 | 0.23826 | 0.23826

Deeply divergent criteria have been advocated for choosing k. Five choices
in common usage are identified in Table 4, together with their values for the

Hospital Manpower Data. These include DF, = >'7 &7 /(£ + k), PRESS,,
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as the cross-validation rule of [1]; GCV), as the Generalized Cross Validation
rule of [3]; C} as in [8] to achieve a variance-bias trade-off; and HKB;, as in

[7] from simulation studies. For further details see [11, pp. 392-411],
including numerical values for DFj,, C;, and PRESS), as reported here. For

each criterion, the corresponding 6% 1s determined from (3.3), such that
Mg (0% ) crosses the OLS line Mgy (07 ). Also listed are the variance, the
squared bias, and Mgy (6%,) for these (k, 62) pairs. Note that at Cj
= 0.0050, the ridge estimator é}%k achieves the same MSE as OLS, namely,
Mg (0%, ) = Var(6ky ) + B2(6%;) = (0.23769 + 0.00057) = 0.23826, but with
negligible bias ratio B2(6%;)/ Var(6k;) = 0.002398. On the other hand, at
HKB, = 0.61696, the corresponding crossing values are MSE(é%i’k)
=(0.18110 + 0.05716 ) = 0.23826 with bias ratio B2(6%y;, )/ Var(6k; ) = 0.3156.
Table 4. Choices for & in the Hospital Manpower Data at conventional criteria
{DF}, GCVy,, C),, PRESS;, HKB;,}; and values for {Var(6%), BZ(6%)

Mg (0%)}, standardizedto 62 =1.0, where Mgz (%), ) crossesthe Mgg(67;)

line for each k.
Name DF}, GOV, Cp PRESS;, | HKB,

Value fork | 0.0004 | 0.004787 | 0.0050 0.2300 0.61696
07 5000.24 | 418.0365 | 400.2383 | 8.93391 3.47994

Var(é}ck) 0.23821 | 0.23772 0.23769 0.21415 0.18110

B2(6%,) 0.00005 | 0.00054 | 0.00057 | 0.02411 | 0.05716

Mgp (0%, ) | 0.23826 | 0.23826 | 0.23826 | 0.23826 | 0.23826

To continue, suppose that C;, = 0.0050 were the actual cross-over point.

Then Theorem 2(iv) asserts that éle is Mgp-admissible with regard to 0 I1
at DF, = 0.0004 and GCV, = 0.004787. In contrast, Theorem 2(v) shows

éLl to be Mgg-admissible with respect to é%gk for £ > 0.0050. In particular,
at PRESS), = 0.2300, further computations show that Mg (6% )= Var(6%;)
+ B2(0%;,) = (0.21415 +1.08027) = 1.29442, grossly exceeding Mgg(67;) =
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0.23826 by the factor 5.4328, for which ridge estimation is counter-

productive in excess.

Finally compute the standardized estimator 6;;/S = 10,659.49/ 642.0771
=16.60157 from earlier estimates, and treat its square as %%. Substituting
this into (3.3) gives /% = 0.007263 to estimate the cross-over value where
Mgy (0%),) = Mgg(671). This in turn suggests 07; to be MSE-superior to

6L, for k e (0.0073,1.0000) and, in particular, at PRESS), = 0.2300 and
HKB;, = 0.61696.

5. Conclusions

In summary, further insight is offered regarding a large and continuing
literature on the use of ridge regression in ill-conditioned systems. We first
reexamine OLS via a canonical form identifying parametric functions where
OLS is problematic, and where it is not. Specifically, subspaces of parameters
are characterized where OLS has greater, equal, or lesser Fisher efficiency,
in comparison with an orthogonal design as “ideal”. These results suggest
that nonorthogonal regressor designs, properly constituted, could be
preferred over orthogonal designs, if the information sought is not of uniform

consequence in all directions.

Further studies here address not only the superiority of ridge over OLS,
but of equal importance, the superiority of OLS over ridge, despite the

perennial neglect of this topic. These are concerned with circumstances for
use of either methodology in lieu of the other. The rule k < o?/0%; of [6],

given as sufficient for ridge to dominate OLS in its smaller MSE, is shown to
be conservative to the point of excess, and the rule is expanded considerably.

Cross-over values k., are determined where ridge and OLS agree in MSE,
values smaller than %, favoring ridge over OLS, values larger than k,

favoring OLS over ridge. Contrary to conventional wisdom, ridge often must
be abandoned in favor of OLS for k sufficiently large. Extended numerical

studies are reported to illustrate the new findings.
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