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Abstract 

Ridge regression is often favored in the analysis of ill-conditioned systems. A canonical form 
identifies regions in the parameter space where Ordinary Least Squares (OLS) is problematic. 
The objectives are two-fold: To reexamine the view that ill-conditioning necessarily degrades 
essentials of OLS; and to reassess ranges of the ridge parameter k where ridge is efficient in 
mean squared error (MSE) relative to OLS; and conversely. In particular, ridge is intended to 
ameliorate effects of ill-conditioning over a wide range of k. Contrary to conventional wisdom, 
ridge often must be abandoned in favor of OLS for k sufficiently large. 

1. Introduction 

In a full-rank model { },ε+= βXY  the p equations { }YXXX ′=′ β  yield 

OLS solutions ,ˆ Lβ  unbiased with minimal dispersion ( ) ( ) 122ˆ −′σ=σ= XXVLV β  
under conventional errors. Ill-conditioning, as near-dependency among columns 
of X, “causes crucial elements of XX ′  to be large and unstable”, and Lβ̂  to be 
“very sensitive to small changes in X” with “inflated variances” [2, p. 119]. 
Specifically, the Variance Inflation Factors (VIFs) of [ ]′ββ= LpLL ˆ,,ˆˆ 1 …β  are 
ratios of actual to “ideal” variances had the columns of X been orthogonal, i.e., 

{ ( ) }pjwvVIF jjjjLj ≤≤=β − 1;ˆ 1  with .XXW ′=  Since { ( ) ;0.1ˆ ≥βLjVIF  j≤1  
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},p≤  and often much greater, ill-conditioning is widely held to degrade 

essentials of OLS: In fact, { ( );ˆmax1 LjVIFV β=  }pi ≤≤1  is identified in [10] 
as “the best single measure of the conditioning of the data”. Standard 
remedies include ridge estimators as solutions of {( ) ;ˆ YXIXX ′=+′ Rkpk β  

};0≥k  see [4-6] and numerous subsequent citations. A basic canonical form is 
{ },ε+= ξθPDY  where QIPP ;p=′  is orthogonal; ( ),,,Diag 1 pξξ=ξ …D  

ordered as { };21 pξ≥≥ξ≥ξ …  and .βθ Q′=  The OLS solutions [ ,,ˆˆ 1 …LL θ=θ  

] ,ˆ ′θLp  with variances { },222
2

22
1

2
pξσ≤≤ξσ≤ξσ …  thus identify “… linear 

combinations of parameters about which the data at hand are most/least 
informative” [13]. Moreover, these variances escalate for values of 2

iξ  near 
zero, a characteristic of ill-conditioning. To validate ridge as a rational 
alternative to OLS in mean squared error (MSE); Hoerl and Kennard [6] gave 

22
Mk θσ<  as sufficient for ridge to dominate OLS with lesser MSE, where 

{ }.,,max 22
1

2
pM θθ=θ …  

Our purposes here are two-fold: (i) To reexamine the extent to which OLS 
solutions are degraded through ill-conditioning, and (ii) to reassess ranges of 
the ridge parameter k where ridge is MSE-efficient with respect to OLS, and 
conversely. An outline follows. 

Conventions for notation and supporting materials are in Section 2. 
Section 3 sets forth the principal findings, to include (i) a decomposition of 
the parameter space according to comparative subspace efficiencies of OLS; 
(ii) a reexamination of conditions sufficient for ridge to dominate OLS in 
MSE, and conversely, as k evolves; and (iii) elementary but illuminating 
examples. Section 4 revisits a highly ill-conditioned case study treated 
elsewhere and Section 5 reprises essentials of the present study. 

2. Preliminaries 

2.1. Notation 

Designate by pR  the Euclidean p-space, and by p
+R  its positive orthant; 

matrices and vectors are set in bold type; the transpose, inverse and trace of 
A are 1, −′ AA  and ( );tr A  special arrays are the identity ,pI  the unit vector 
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[ ] ,1,,1,1 p
p R∈′= …1  and the diagonal matrix ( ) ( ,,Diag 1 …aai == DDa  

).pa  Let X, of order ( ),pn ×  have rank ;np <  its singular decomposition is 

,QPDX ′= ξ  where ( )pξξ=ξ ,,Diag 1 …D  comprise its ordered singular values 

{ };021 >ξ≥≥ξ≥ξ p…  and the columns of [ ]pppP ,,1 …=  and of [ ,1qQ =  

]pq,…  are the left- and right-singular vectors of X, such that PP′  pI=  and 

Q is orthogonal. By ( )ZSp  is meant the linear column span of ( ) =× kpZ  

[ ]kzz ,,1 …  in .pR  

2.2. Stochastic concepts 

The expectation, dispersion, and law of distribution of pR∈Z  are 

( ) ( )ZZ V,E  and ( ).ZL  Given β̂  for estimating pR∈β  having ( ) 0ˆE ββ =  and 

second moments, its MSE is ( ) [( ) ( )] ( )∑ =
β=−′−=

p
i iSEM 1

ˆVarˆˆEˆ βββββ  

( ) ( ),00 ββββ −′−+  to quantify the trade-off of bias for variance. Since 

( ) ( )θθββ −=− ˆˆ Q  and Q is orthogonal in canonical form, it suffices that 

( ) ( ) ( ) ( ).ˆˆEˆˆ θθθθθβ −′−== SESE MM  Moreover, if ( ) ( ),~ˆ θθ SESE MM <  then θ̂  

is said to be admissibleMSE -  with respect to .~θ  Specifically, in regard to 

estimators α̂  and α~  for 1R∈α  having second moments, the Fisher 
efficiency of α̂  relative to α~  is defined as ( ) ( ) ( ).ˆVar~Var~:ˆ αα=ααFE  

3. The Principal Findings 

3.1. Efficiencies of OLS 

Despite that ( ) ,0.1ˆ ≥βLjVIF  we reexamine the ostensible degradation of 

OLS in ill-conditioned models having second moments. Take XX ′  to be 
centered and scaled as in [6, 9, 10], and elsewhere, such that ( ) p=′XXtr  

but .pIXX ≠′  Write ;2QDQXX ′=′ ξ  then there are 1≥r  eigenvalues greater 

than unity; 0≥s  equal to unity; and 1≥−−= srpt  eigenvalues less than 

unity. Designate these as { ……… ≥ξ>ξ==ξ=>ξ≥≥ξ ++++
2

1
22

1
22

1 1 srsrrr   

}.02 >ξ≥ p  Conformably partition [ ]321 ,, QQQQ =  and =′θ  [ ],,, 321 θθθ ′′′  
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such that [ ] [ ],,,,,, 1211 srrr ++== qqQqqQ ……  and [ ];,,13 psr qqQ …++=  

[ ] [ ],,,,,, 1211 srrr ++ θθ=′θθ=′ …… θθ  and [ ],,,13 psr θθ=′ ++ …θ  and similarly 

[ ];ˆ,ˆ,ˆˆ 321 θθθθ ′′′=′  and observe from βθ Q′=  that 2211 θθθβ QQQ +==  
.33θQ+  Identify ( ) ( ),, 2211 QQ SpLSpL ==  and ( ),33 QpSL =  as orthogonal 

complements in pR  of dimensions { }.,, tsr  

We next identify { }321 ,, LLL  as subspaces of parameters in pR  where 
OLS solutions have greater, equal and lesser Fisher efficiencies, in 
comparison with an orthogonal reference model having { ==ξ=′ …2

1,pIXX  

},0.12 =ξp  and solution .~
0β  

Theorem 1. Consider OLS estimators { }p
L R∈′ cc ;β̂  for { },; pR∈′ cc β  

and similarly { }pR∈′ cc ;~
0β  under a fully orthogonal model with { ==ξ …2

1  

}0.12 =ξp  and solution .~
0β  

Then 

(i) ( ) 2
2

2

2
1

2
0.1

ˆVar
σ<

ξ

σ≤
′

′
≤

ξ

σ

r

L
cc
c β  and ( ) 0.1~:ˆ 0 >′′ ββ cc LFE  for 1L∈c  

( );1QSp=  

(ii) ( ) 20.1
ˆVar

σ=′
′
cc
c Lβ  and ( ) 0.1~:ˆ 0 =′′ ββ cc LFE  for ( );22 Qc SpL =∈  

and 

(iii) ( )
2

2

2
1

2
2 ˆVar0.1

p

L

sr ξ

σ≤
′

′
≤

ξ

σ<σ
++

cc
c β  and ( ) 0.1~:ˆ 0 <′′ ββ cc LFE  for c  

( ).33 QSpL =∈  

Proof. In canonical form write ( ) ,1,,1Diagˆ 2
22

1

2 Ξσ=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

ξξ
σ=

p
V …θ  so 

that ( ) ( ),,,Diagˆ,ˆ,ˆV 321
2

321 ΞΞΞσ=′′′ θθθ  say, and ( ) 1
2

1ˆV Ξσ=θ  ⎜
⎜
⎝

⎛

ξ
σ= ,1Diag 2

1

2  

.1, 2 ⎟
⎟
⎠

⎞

ξr
…  Variational properties of Rayleigh quotients assure that 

⎪⎩

⎪
⎨
⎧

ξ2
1

1  
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.;1
1211

111
⎪⎭

⎪
⎬
⎫

∈
ξ

≤
′
Ξ′

≤ r

r
Rccc

cc  That these transfer to β̂  is seen from ( 11ˆˆ θβ Qcc ′=′  

) 11113322 ˆˆˆˆ θθθθ cQcQQ =′=++  since ( ),1Qc Sp∈  so that 2Qc′  .3Qc′== 0  
Moreover, ( ) ( ) ( ) ,0.1ˆVar~Var~:ˆ 00 >′′=′′ LLFE ββββ cccc  since [ ( )0

~Var βc′  
] ,0.1 2σ=′cc  to give conclusion (i). Conclusions (ii) and (iii) follow similarly, 

taking in turn sI=Ξ2  and .1,,1Diag 22
1

3 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

ξξ
=Ξ

++ psr
…   

In short, Lβ̂c′  exhibits (i) enhanced efficiency for ( );1Qc Sp∈  (ii) equal 
efficiency for ( );2Qc Sp∈  and (iii) degraded efficiency for ( );3Qc Sp∈  all 
relative to an orthogonal model preserving ( ) .tr p=′XX  

Example 1. To illustrate, suppose that [ ] ;,,3; 321 ′βββ== βp  and ,XX ′  

its inverse ( ) ,1−′XX  and the matrix Q are given in succession by 

.

2
1

2
10

2
1

2
10

001

,
00.7500.250
00.2500.750

0097.2
1

,
015.0005.00
005.0015.00
0097.2

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
 (3.1) 

Verify directly that ( ) ,0.1ˆ1 =βVIF  and ( ) ( ).ˆ125.1ˆ 32 β==β VIFVIF  The 

spectral decomposition gives ( ) QDQQDXX ;01.0,02.0,97.2Diag; 22 =′=′ ξξ  

is displayed; the canonical parameters βθ Q′=  are ( )32211 , β+β=θβ=θ  

,2  and ( ) ;2323 β−β=θ  and ( ) ( ).100,50,3367.0DiagˆV 2σ=Lθ  Clearly 

( ) 2
1 3367.0ˆVar σ=θ  is diminished by the factor 97.21  from the orthogonal 

case, but at the expense of grossly inflated variances for 2θ̂  and .ˆ3θ  

Conventional diagnostics fail to convey the reduction in variance for ,ˆ1θ  nor 

do the relatively benign sVIF  of { }125.1,125.1,0.1  anticipate the critically 

inflated variances ( ) 2
2 50ˆVar σ=θ  and ( ) .100ˆVar 2

3 σ=θ  On the other hand, 

the condition number ( ) 0.2972
3

2
11 =ξξ=′XXc  is the ratio of variances of 

the least to the most precisely estimated linear functions. 



D. R. JENSEN and D. E. RAMIREZ 386

To continue, partition Q as [ ]31, Qq  with [ ]323 , qqQ =  from (3.1), where 

0=s  and ( )22 QSpL =  is empty. Clearly ( )3QSp  identifies the subspace 

where OLS is problematic. Theorem 1(iii) now gives ≤
⎩
⎨
⎧

σ=σ 2
2

5002.0  

( ) ( ) .;10001.0
ˆVar

3
2

2

⎭
⎬
⎫

∈σ=σ≤
′

′ Qccc
c Spβ  In particular, at [ ] ∈′= 2,1,00x  

( ),3QSp  the predicted response has variance ( ) ( ) 0
1

0
2

32 ˆ2ˆVar xXXx −′′σ=β+β  

,275 2σ=  so that ( ) [ ],100,50555275ˆVar 222
000 σ∈σ=σ=′′ xxx β  the interval 

asserted in conclusion (iii) for every ( ).30 Qx Sp∈  

We next revisit the comparative MSE-efficiencies of OLS and ridge 
solutions. In order that ridge might better OLS as gauged by MSE; i.e., that 

( ( )) ( ),ˆˆ LSERSE MkM ββ <  it is sufficient that ,22
Mk θσ<  with { ,max 2

1
2 θ=θM  

},,, 22
2 pθθ …  as noted earlier from [6]. In what follows we sharpen this 

condition. Of equally compelling interest, heretofore neglected, is to seek 

values for k where the reversal ( ( )) ( )LSERSE MkM ββ ˆˆ >  might obtain. The 

latter goes substantially beyond the work of [6] and numerous subsequent 
studies, in characterizing larger values for k where ridge necessarily is 

usurped by OLS. In what follows write [ ] ,ˆ,,ˆ,ˆˆ 21 ′= p
RkRkRkRk θθθθ …  with 

typical element .ˆ i
Rkθ  

3.2. MSE comparisons 

3.2.1. Basics 

Let ( ) ( ) ( ),ˆ 21 kkM RkSE γ+γ=β  where ( ) [ ( )]Rkk β̂Vtr1 =γ  and 

( ) ( 0
2 kk β=γ  ) ( ),0 βββ −′− k  with ( ).ˆE0

Rkk ββ =  Then ( )k1γ  is the total 

variance and ( )k2γ  is the sum of squared biases. Since βθ Q′=  and Q is 

orthogonal, it suffices to take 

( ) ( ) ( ) ( )∑∑
==

=γ=γ
p

i

i
Rk

p

i

i
Rk Bkk

1

2
2

1
1 ˆandˆVar θθ  (3.2) 
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with ( ) [ ( ) ] .ˆEˆ 22
i

i
Rk

i
RkB θ−= θθ  It is shown in [6] that ( )k1γ  and ( )k2γ  are 

continuous monotone functions, decreasing and increasing, respectively. 

Their sum, ( ),ˆ RkSEM θ  decreases to a minimum and increases thereafter, as 
shown graphically in Figure 1 of [6, p. 61]. So, too, for the component 

functions and their partial sum, namely, { ( ) ( ) ( );ˆ,ˆ,ˆVar 2 i
RkSE

i
Rk

i
Rk MB θθθ  

}.1 pi ≤≤  Specifically, the condition 22
Mk θσ<  of [6] is chosen so that 

each term in the expansion of ( ) ,ˆ dkdM RkSE θ  and thus their sum, is 

negative. Looking ahead, let i
ck  be the crossing value such that ( )i

RkSEM θ̂  is 

equal to ( ) 22ˆ iLiSEM ξσ=θ  not depending on k, where ( )i
RkSEM θ̂  clearly 

crosses from below. Then in order that ( ) ( ),ˆMˆ LiSE
i
RkSEM θθ <  it is necessary 

and sufficient that ;i
ckk <  whereas ( ) ( ),ˆˆ LiSE

i
RkSE MM θθ >  holds if and 

only if .i
ckk >  Details follow. 

Theorem 2. Consider OLS solutions [ ] ,ˆ,,ˆˆ 1
′θθ= LpLL …θ  together with 

canonical ridge estimators [ ] ,ˆ,,ˆ,ˆˆ 21 ′θθθ= p
RkRkRkRk …θ  solving 

{( ) Rkpk θ̂2 ID +ξ  }.YPD ′= ξ  

(i) The typical element i
Rkθ̂  has ( )

( )
.ˆ

22

2222

k
kM

i

iii
RkSE

+ξ

θ+ξσ
=θ  

(ii) ( )i
RkSEM θ̂  achieves its minimal value ( )22222

iii θξ+σθσ  at =ik  

.22
iθσ  

(iii) The cross-over value from below, where equality is attained in 
( ) ( ),ˆˆ LiSE

i
RkSE MM θ≤θ  occurs at 

2

2
2

2

222

22 22

i
i

ii

ii
ck

ξ
σ−θ

σ=
σ−θξ

ξσ
=  (3.3) 

for each { }.,,2,1 pi …=  

(iv) If { },,,,min 21
0

p
ccc kkkk …≤  then ( )0ˆ kRθ  is admissibleMSE -  with 

respect to .ˆ Lθ  
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(v) If { },,,,max 21 p
ccc kkkk …≥†  then Lθ̂  is admissibleMSE -  with respect 

to ( ).ˆ †kRθ  

Proof. It follows directly that ( ) [ ( )] ,ˆE 22
iii

i
Rk k θ+ξξ=θ  with bias 

iB  ( ),2 kk ii +ξθ−=  and ( ) ( ) ,ˆVar 2222 kii
i
Rk +ξξσ=θ  giving ( ) =θi

RkSEM ˆ  

( ) ( )i
Rk

i
Rk B θ+θ ˆˆVar 2  from (3.2) as in conclusion (i). Denoting ( )i

RkSEM θ̂  as 

( ),kMSEi  we have 

( ) ( ) ( )( )
( )

.22
42

22222222

k
kkkk

dk
kdM

i

iiiiiSEi
+ξ

+ξθ+ξσ−θ+ξ
=  (3.4) 

Setting the numerator to zero and solving gives ( ) ,0222 =σ−θξ ii k  i.e., 

.22
iik θσ=  The second derivative is positive; the solution is minimizing; the 

minimal value is by substitution; and thus follows conclusion (ii). Equating 

( )i
RkSEM θ̂  to ( ) 22ˆ iLiSEM ξσ=θ  and solving, gives i

ck  as in conclusion (iii). 

Since components of ( ) ( ) [ ( ) ( )]∑ =  θ−θ=− p
i LiSE

i
RkSELSERkSE MMMM 1

ˆˆˆˆ θθ  

are all negative for { },,,,min 21
0

p
ccc kkkk …≤  from (iii), conclusion (iv) 

follows directly. Similarly, that all components are positive for 

{ ,,max 21
cc kkk ≥†  },, p

ck…  gives conclusion (v), to complete our proof.  

Remark 1. Observe that ( )22222 ii
i
ck ξσ−θσ=  at (3.3) is finite and 

positive, if and only if ( ).ˆVar222
Liii θ=ξσ>θ  Otherwise, i

Rkθ̂  is 

admissible-SEM  with respect to Liθ̂  for all values of the ridge parameter k. 

Remark 2. Clearly i
ck  is scale-invariant, since ( )22222 ii

i
ck ξσ−θσ=  

( )22 12 ii ξ−τ=  under rescaling { }.ii στ=θ  Accordingly, it often suffices to 

take .0.12 =σ  

Remark 3. With 2
iξ  fixed in (3.3), i

ck  decreases as 222 σθ=τ ii  increases; 

for i
ck  fixed at ,ck  the parameters 2

iθ  and 2
iξ  are inversely related. 
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Remark 4. The condition 22
Mk θσ<  of [6] exhibits excessive 

conservatism. From Theorem 2(ii) this value is to the left of all the minima 

for the ( )i
RkSEM θ̂  curves, whereas conclusion (iii) adjoins to these the rising 

branch on the ( )i
RkSEM θ̂  curves up to their crossing with the constant OLS 

line. Further insight regarding conclusion (ii) is seen in the initial rates of 

change, namely [ ( ) ] .0| 42
0 <ξσ−== ikSEi dkkdM  

Conclusions (iv) and (v) specialize further as follows, where crossings now 

are taken to coincide at the common value { }.21 p
cccc kkkk ==== "  

Corollary 1. If crossings all coincide at ,ck  then for ( )RkSEM θ̂  

( ),ˆ LSEM θ<  it is necessary and sufficient that .ckk <  Similarly, ( )RkSEM θ̂  

( ),ˆ LSEM θ>  if and only if .ckk >  

Example 2. To illustrate, suppose that [ ] ;,,;3 321 ′βββ== βp  and XX ′  

and its inverse are 

( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=′

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=′ −

2020.200202.20
0202.22020.200
00344828.0

,
050.0005.00
005.0050.00
00900.2

1XXXX  (3.5) 

and Q carries over from (3.1). Further computations give ( ,900.2Diag2 =ξD  

) ( ) ( ),2222.22,1818.18,3448.0DiagˆV,045.0,055.0 2σ=Lθ  and the condition 

number ( ) .4444.64045.0900.21 ==′XXc  Essential features are 

demonstrated on taking ,0.12 =σ  in which case iθ  and iτ  are 

interchangeable as in Remark 2. 
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Table 1. Values [ ] [ ]7222.24,6818.20,8448.2,, 2
3

2
2

2
1 =θθθ  with common crossover 

{[ ( ) ( )] }31;ˆ,ˆVar;8.0 2 ≤≤θθ= iBk i
Rk

i
Rkc  as variances and squared biases 

standardized to ;0.12 =σ  and ( ),ˆ RkSEM θ  for various k. 

k  ( )1ˆVar Rkθ  ( )12 ˆ
RkB θ  ( )2ˆVar Rkθ  ( )22 ˆ

RkB θ  ( )3ˆVar Rkθ  ( )32 ˆ
RkB θ  ( )RkSEM θ̂  

0.0 0.34483 0 18.18182 0 22.22222 0 40.74887 

0.2 0.30177 0.01184 0.84583 12.72238 0.74969 16.47462 31.10612 

0.4 0.26630 0.04180 0.26567 15.98402 0.22724 19.97503 36.76006 

0.6 0.23674 0.08360 0.12820 17.35436 0.10817 21.39295 39.30401 

0.8 0.21183 0.13299 0.07524 18.10658 0.06302 22.15920 40.74887 

1.0 0.19066 0.18704 0.04942 18.58163 0.04121 22.63888 41.68883 

To illustrate its Corollary, Theorem 2(iii) is solved at 8.0=ck  as the 

common crossover point, giving solutions [ ] [ ,6818.20,8448.2,, 2
3

2
2

2
1 =θθθ  

]7222.24  that increase with decreasing 2
iξ  as in Remark 3. Variances and 

squared biases for the component curves, namely {[ ( ) ( )];ˆ,ˆVar 2 i
Rk

i
Rk B θθ  

},31 ≤≤ i  as well as ( ),ˆ RkSEM θ  are reported in Table 1 for various k. It 

follows constructively that ( ) ( )LSERkSE MM θθ ˆˆ =  at .8.0=ck  Moreover, 

the values ( )∑ =
=θ

3
1 35009.0ˆVari

i
Rk  and ( )∑ =

=θ
3

1
2 ,39878.40ˆ

i
i
RkB  at 

8.0=k  in the table, sum to ( ) .74887.40ˆ =RkSEM θ  Specifically, in achieving 

the same MSE as the unbiased ,ˆ Lθ  the ridge solution ( )8.0ˆ Rθ  encounters 

excessive biases, with ratio ( ) ( )∑ ∑= =
=θθ

3
1

3
1

2 .40.115ˆVarˆ
i i

i
Rk

i
RkB  Corollary 

1 is demonstrated numerically in the table, as the ( )RkSEM θ̂  curve crosses 

the line ( )LSEM θ̂  from below at .8.0=ck  On the other hand, the extreme 

conservatism of 0404.07222.2411 2 ==θ< Mk  from [6] is clear in 
comparison with our .8.0=ck  

To exemplify Theorem 2(iv, v), we instead fix [ ]2
3

2
2

2
1 ,, θθθ  at [ ,5.21,2.3  

],0.25  and solve (3.3) for [ ].,, 321
ccc kkk  Entries for {[ ( ) ( )] 1;ˆ,ˆVar 2 i

Rk
i
Rk B θθ  

}3≤≤ i  and ( )RkSEM θ̂  for various k, including crossover values [ ,, 21
cc kk  
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] [ ],7200.0,6027.0,7005.03 =ck  are reported in Table 2. Clearly { ,,min 21
cc kk  

} 6027.03 =ck  and { } .7200.0,,max 321 =ccc kkk  Theorem 2(iv) assures that 

( )0ˆ kRθ  is admissible-SEM  with respect to Lθ̂  for every ,6027.00 ≤k  

whereas Theorem 2(v) asserts that Lθ̂  is admissible-SEM  with regard to 

( )†kRθ̂  for every .7200.0≥†k  These assertions are borne out in Table 2. 

Table 2. Component values {[ ( ) ( )] }31;ˆ,ˆVar 2 ≤≤θθ iB i
Rk

i
Rk  and ( )RkSEM θ̂  

with 0.12 =σ  for various k, including crossover values [ ] =321 ,, ccc kkk  

[ ]7200.0,6027.0,7005.0  corresponding to [ ] [ ].0.25,5.21,2.3,, 2
3

2
2

2
1 =θθθ  

k  ( )1ˆVar Rkθ  ( )12 ˆ
RkB θ  ( )2ˆVar Rkθ ( )22 ˆ

RkB θ  ( )3ˆVar Rkθ  ( )32 ˆ
RkB θ  ( )RkSEM θ̂  

0.2 0.30177 0.01332 0.84583 13.22568 0.74969 16.65973 31.79601 

0.4 0.26630 0.04702 0.26567 16.61635 0.22724 20.19947 37.62205 

0.6027 0.23637 0.09475 0.12713 18.05469 0.10725 21.64704 40.26723 

0.7005 0.22371 0.12112 0.09636 18.48350 0.08097 22.07292 41.07858 

0.7200 0.22130 0.12659 0.09157 18.55667 0.07689 22.14533 41.21835 

0.8 0.21183 0.14960 0.07524 18.82289 0.06302 22.40818 41.73076 

3.2.2. Connections to other work 

An attempt at Theorem 2(iii) is reported in [12], but with the absolute 

value 2

2
2

i
i

ξ

σ−θ  in the denominator of (3.3) instead. Note that the “minus” 

sign in equation (10) of those authors should be “plus;” their 2α  should be 

;2σ  their iα  is our ;iθ  and their iλ  is our .2
iξ  Moreover, with ( ) =kMSE  

( ) ( ) ( )∑ =
+ξθ+ξσ=

p
i iiiRkSE kkM 1

222222θ̂  from Theorem 2(i), those authors 

allege that the optimal k, minimizing ( ),ˆ RkSEM θ  is the root of the fourth 

degree polynomial ( ) 3
1

4
04 kckckp +=  43

2
2 ckckc +++  from the numerator 

of ( ) ,0=dkkdMSE  with coefficients 

( ) ∑ θξ−= 22
0 1 iipc  

( ) ∑∑ ∑ ∑ ξσ−−⎟
⎠
⎞⎜

⎝
⎛ θξ−ξθξ= 2224222

1 13 iiiiii pc  
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⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ ξ−ξθσ−θξ−ξθξ= ∑ ∑ ∑∑ ∑ ∑ 42226422

2 3 iiiiiiiic  

⎟
⎠
⎞⎜

⎝
⎛ ξ−ξξσ−θξ−ξθξ= ∑ ∑ ∑∑ ∑ ∑ 642228622

3 3 iiiiiiiic  

⎟
⎠
⎞⎜

⎝
⎛ ξ−ξξσ−= ∑ ∑ ∑ 8622

4 iiic  (3.6) 

as given following their equation (13). Here the sums all range over { ,2,1=i  

},, p…  and we correct the second parentheses in 2c  to read ⎜
⎝
⎛ ξξ∑ ∑ 22

ii  

.4 ⎟
⎠
⎞ξ− ∑ i  Unfortunately, this solution applies only in the special case 

.2=p  As the rank  goes from 2=p  to ,3=p  the polynomial from the 
numerator of ( ) dkkdMSE  will increase by 3 in degree to 7; similarly, the 
case 4=p  entails solving a polynomial of degree 10, the degree and 
intractability growing exponentially with order of the model. The higher 
polynomials emerge on combining terms to a common denominator. 

Example 3. As indicated, the optimal value for k in the case 2=p  
entails a polynomial of degree 4. Here 

( )
( ) ( )22

2

2
2

22
2

2

22
1

2
1

22
1

2

k
k

k
kkMSE

+ξ

ξσ+θ
+

+ξ

ξσ+θ
=  (3.7) 

and 

( )
( )

( )
( )

,222

1
32

2222

22

2

∑
= ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

+ξ

ξσ+θ
−

+ξ

θ
=

i i

ii

i

iSE
k

k
k

k
dk

kdM  (3.8) 

which is zero at the root of the fourth degree polynomial ( ) 3
1

4
04 kckckp +=  

43
2

2 ckckc +++  from the numerator of ( ) ,dkkdMSE  with coefficients 
specializing from (3.6) as 

2
2

2
2

2
1

2
10 θξ+θξ=c  

( ) ( )2
2

2
1

22
2

2
1

2
2

2
11 3 ξ+ξσ−θ+θξξ=c  

( )2
2

2
1

22
2

2
2

4
1

2
1

4
2

2
12 23 ξξσ−θξξ+θξξ=c  

( )2
2

4
1

4
2

2
1

22
2

2
2

6
1

2
1

6
2

2
13 3 ξξ+ξξσ−θξξ+θξξ=c  

( ).2
2

6
1

6
2

2
1

2
4 ξξ+ξξσ−=c  (3.9) 
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4. Case Studies 

4.1. The setting 

As reported in Table 3.8 of Myers [11, pp. 132-133], the Hospital 
Manpower Data consist of 17=n  records at U. S. Naval Hospitals, to 
include: monthly manhours ( );Y  Average daily patient load ( );1X  monthly 
X-ray exposures ( );2X  monthly occupied bed days ( );3X  eligible population 
in the area ( );1000 4X÷  and average length of patients’ stay in days ( ).5X  
The working model is 

{ }.1;55443322110 niXXXXXY ii ≤≤+β+β+β+β+β+β= ε  (4.1) 

Following convention, we center and scale to { }ε+= βZY  with ZZ′  in 

correlation form, our focus being the rates of change [ ] .,,,, 54321
′βββββ=β  

Computations reported here utilize the SAS Programming System. The OLS 
solutions are [ ] ,58.2498,11.1822,64.31198,50.4760,40.10210ˆ ′−−−=Lβ  with 

0771.642=S  as the square root of the residual mean square. The data are 
remarkably ill-conditioned: Singular values of Z are ( ,048687.2Diag=ξD  

);007347.0,201771.0,307625.0,816997.0  the condition number is ( )ZZ′1c  
;86.754,77=  and the sVIF  in OLS estimation are { ,941.7,685.9595  

}.279.4,289.23,449.8931  

4.2. Canonical analysis 

Defects in OLS bear further scrutiny. Returning to Section 3.1, we relate 
,βθ Q′=  where [ ]54321 ,,,, qqqqqQ =  is displayed as 

.

006780.0290733.0115239.0889251.0333737.0
023436.0633861.0537200.0310800.0460969.0
694081.0509260.0153960.0000850.0484977.0
001160.0187470.0804239.0335600.0453235.0
719480.0468190.0166230.0002030.0485286.0

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−−

−−
−−−−

=Q  (4.2) 

Canonical solutions  are [ ,70.12096,40.1413,16.3259,49.10659ˆˆ −−=′= LL βθ Q  
] .42.28935 ′  Clearly β11 q′=θ  is close to a scaled average of { };,,,, 54321 βββββ  

moreover, 1θ  is estimated by OLS with variance ,238259.0048687.2 222 σ=σ  
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less than 20.1 σ  for an orthogonal design. Thus prediction along the equiangular 

line, with scaled variance ,398435.0 2σ  is more precise than 20.1 σ  in the 
corresponding orthogonal design. At the other extremity, β55 q′=θ  is a near 
linear contrast between { }21, ββ  and { ,, 43 ββ  },5β  since the inner product 

003657.055 =′ q1  is approximately zero; but this is estimated by OLS with 

variance .71.525,18007347.0 222 σ=σ  This also resembles the highly variable 

contrast ( ),ˆˆ 31 β−β  with (( ) ) .77.508,182ˆˆVar 2
31 σ=β−β  The regressors, 

:1X  average daily patient load and :3X  monthly occupied bed days, exhibit 
near collinearity with entry 0.999904 in the ZZ′  matrix. A variation on 

Theorem 1 shows that { ( ) }22 5631.24ˆVar5671.10 σ≤′′≤σ ccc Lβ  for ∈c  

( )43, qqSp  under OLS, from 222 5671.10307625.0 σ=σ  and 22 201771.0σ  

.5631.24 2σ=  

It follows similarly that { ( ) }22 5671.10ˆVar238259.0 σ≤′′≤σ ccc Lβ  for 

( ).,, 321 qqqc Sp∈  In short, ill-conditioning here essentially devastates OLS 

estimation of the near contrast ,55 βq′=θ  and the actual contrast ( ),31 β−β  

but considerably less for functions βc′  orthogonal to ,5βq′  i.e., { 2238259.0 σ  

( ) }25631.24ˆVar σ≤′′≤ ccc Lβ  for { ( )}.,,, 4321 qqqqc Sp∈  In summary, OLS 

is conspicuously deficient in the one-dimensional subspace spanned by .5q  

This fact is anticipated neither by ( ) ,86.754,771 =′ZZc  nor by the maximal 

( ) ,685.595,9ˆ11 =β= VIFV  and it becomes apparent only through a canonical 

analysis as reported. 

4.3. Ridge regression 

Ill-conditioning renders 1ˆ Lθ  as super-efficient, its variance ( )1ˆVar Lθ  
22 238259.0197118.4 σ=σ=  deflated relative to 20.1 σ  under “ideal” 

orthogonality, as in Theorem 1. Since ridge is intended to ameliorate ill 

effects of ill-conditioning, and 1ˆ Lθ  is not among them, it remains to ask 

whether 1ˆ Lθ  should be retained per se, with ridge adjustments deferred to 
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the remaining estimators. Accordingly, we seek effects of ridge adjustments, 

in the event these were made to 1ˆ Rkθ  in lieu of .ˆ 1Lθ  Essential features again 

follow at ,0.12 =σ  where iθ  and iτ  become interchangeable from Remark 1. 

As in Theorem 2(iii), we seek crossing values in pairs ( )2
1

1, θck  at which 1ˆ Rkθ  

achieves the same MSE as 1ˆ Lθ  under OLS. Table 3 lists selected values for 

( ),, 2
1

1 θck  together with the corresponding variance and squared bias for .ˆ1
Rkθ  

Entries in the final row are identical, namely ( ) ( ) 2
11 ˆVarˆ σ=θ=θ LLSEM  

23826.0197118.4 =  at ,0.12 =σ  since each ( )1ˆ RkSEM θ  curve is required to 

cross the OLS line. In particular, at 5.01 =ck  and ,23826.42
1 =θ  the ridge 

estimator 1ˆ Rkθ  achieves the same MSE as OLS, namely, ( ) =θ1ˆ RkSEM  

( ) ( ) ( ) ,23826.004803.019023.0ˆˆVar 121 =+=θ+θ RkRk B  but biased with bias 

ratio ( ) ( ) ,2525.0ˆVarˆ 112 =θθ RkRkB  as opposed to .ˆ 1Lθ  Further evaluation 

from (3.3) shows that 23826.22
1 >θ  implies the corresponding .0.11 <ck  This 

in turn implies the MSE-inadmissibility of Rkθ̂  with respect to OLS for some 

values ( ),1,0∈k  where OLS necessarily is superior to ridge for those values. 

Table 3. Values for 1
ck  in the Hospital Manpower Data and corresponding 

values for { ( ) ( ) ( )},ˆ,ˆ,ˆVar 1121
RkSERkRk MB θθθ  standardized to ,0.12 =σ  such 

that ( )1ˆ RkSEM θ  crosses the ( )1ˆ LSEM θ  line, where 0.01 =ck  corresponds to 
OLS. 

1
ck  0.0 0.1 0.3 0.5 0.7 0.9 

2
1θ   20.23826 6.90493 4.23826 3.09540 2.46048 

( )1ˆVar Rkθ  0.23826 0.22730 0.20753 0.19023 0.17501 0.16155 

( )12 ˆ
RkB θ  0.00 0.01096 0.03073 0.04803 0.06325 0.07671 

( )1ˆ
RkSEM θ  0.23826 0.23826 0.23826 0.23826 0.23826 0.23826 

Deeply divergent criteria have been advocated for choosing k. Five choices 
in common usage are identified in Table 4, together with their values for the 

Hospital Manpower Data. These include ( );2
1

2 kDF i
p
i ik +ξξ= ∑ =

 kPRESS  
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as the cross-validation rule of [1]; kGCV  as the Generalized Cross Validation 
rule of [3]; kC  as in [8] to achieve a variance-bias trade-off; and kHKB  as in 
[7] from simulation studies. For further details see [11, pp. 392-411], 
including numerical values for kk CDF ,  and kPRESS  as reported here. For 

each criterion, the corresponding 2
1θ  is determined from (3.3), such that 

( )1ˆ RkSEM θ  crosses the OLS line ( ).ˆ 1LSEM θ  Also listed are the variance, the 

squared bias, and ( )1ˆ RkSEM θ  for these ( )2
1, θk  pairs. Note that at kC  

,0050.0=  the ridge estimator 1ˆ Rkθ  achieves the same MSE as OLS, namely, 

( ) ( ) ( ) ( ) ,23826.000057.023769.0ˆˆVarˆ 1211 =+=θ+θ=θ RkRkRkSE BM  but with 

negligible bias ratio ( ) ( ) .002398.0ˆVarˆ 112 =θθ RkRkB  On the other hand, at 

,61696.0=kHKB  the corresponding crossing values are ( )1ˆ RkSEM θ  

( ) 23826.005716.018110.0 =+=  with bias ratio ( ) ( ) .3156.0ˆVarˆ 112 =θθ RkRkB  

Table 4. Choices for k in the Hospital Manpower Data at conventional criteria 
{ };,,,, kkkkk HKBPRESSCGCVDF  and values for { ( ),ˆVar 1

Rkθ  ( ),ˆ12
RkB θ  

( )},ˆ1
RkSEM θ  standardized to ,0.12 =σ  where ( )1ˆ RkSEM θ  crosses the  ( )1ˆ LSEM θ  

line for each k. 
Name kDF  kGCV  kC  kPRESS  kHKB  

Value for k 0.0004 0.004787 0.0050 0.2300 0.61696 
2
1θ  5000.24 418.0365 400.2383 8.93391 3.47994 

( )1ˆVar Rkθ  0.23821 0.23772 0.23769 0.21415 0.18110 

( )12 ˆ
RkB θ  0.00005 0.00054 0.00057 0.02411 0.05716 

( )1ˆ
RkSEM θ  0.23826 0.23826 0.23826 0.23826 0.23826 

To continue, suppose that 0050.0=kC  were the actual cross-over point. 

Then Theorem 2(iv) asserts that 1ˆ Rkθ  is admissible-SEM  with regard to 1ˆ Lθ  
at 0004.0=kDF  and .004787.0=kGCV  In contrast, Theorem 2(v) shows 

1ˆ Lθ  to be admissible-SEM  with respect to 1ˆ Rkθ  for .0050.0>k  In particular, 

at ,2300.0=kPRESS  further computations show that ( ) ( )11 ˆVarˆ RkRkSEM θ=θ  

( ) ( ) ,29442.108027.121415.0ˆ12 =+=θ+ RkB  grossly exceeding ( ) =θ 1ˆ LSEM  
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23826.0  by the factor 5.4328, for which ridge estimation is counter-
productive in excess. 

Finally compute the standardized estimator 0771.64249.659,10ˆ 1 =θ SL  

60157.16=  from earlier estimates, and treat its square as .ˆ2
1τ  Substituting 

this into (3.3) gives 007263.0ˆ1 =ck  to estimate the cross-over value where 

( ) ( ).ˆˆ 1
1

LSERkSE MM θ=θ  This in turn suggests 1ˆ Lθ  to be MSE-superior to 
1ˆ Rkθ  for ( )0000.1,0073.0∈k  and, in particular, at 2300.0=kPRESS  and 

.61696.0=kHKB  

5. Conclusions 

In summary, further insight is offered regarding a large and continuing 
literature on the use of ridge regression in ill-conditioned systems. We first 
reexamine OLS via a canonical form identifying parametric functions where 
OLS is problematic, and where it is not. Specifically, subspaces of parameters 
are characterized where OLS has greater, equal, or lesser Fisher efficiency, 
in comparison with an orthogonal design as “ideal”. These results suggest 
that nonorthogonal regressor designs, properly constituted, could be 
preferred over orthogonal designs, if the information sought is not of uniform 
consequence in all directions. 

Further studies here address not only the superiority of ridge over OLS, 
but of equal importance, the superiority of OLS over ridge, despite the 
perennial neglect of this topic. These are concerned with circumstances for 

use of either methodology in lieu of the other. The rule 22
Mk θσ<  of [6], 

given as sufficient for ridge to dominate OLS in its smaller MSE, is shown to 
be conservative to the point of excess, and the rule is expanded considerably. 
Cross-over values ck  are determined where ridge and OLS agree in MSE, 

values smaller than ck  favoring ridge over OLS, values larger than ck  

favoring OLS over ridge. Contrary to conventional wisdom, ridge often must 
be abandoned in favor of OLS for k sufficiently large. Extended numerical 
studies are reported to illustrate the new findings. 
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