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ABSTRACT
In linear models having near collinear columns of X , ridge and surro-
gate estimators often are used tomitigate collinearity. A new class of
estimators is based on mixtures, either of X and a design minimal in
anordered class or of the Fisher informationanda scalarmatrix. Com-
parisons are drawn among choices for the mixing parameter, and
the estimators are found to be admissible relative to ordinary least
squares. Case studies demonstrate that selected mixture designs
are perturbed from the original design to a lesser extent than are
those of the surrogatemethod, while retaining reasonable efficiency
characteristics.
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1. Introduction

Themodels of note are {Y0 = β01n + Xβ + ε}where the columns ofX, comprising regres-
sors of order (n × p), have been centred about their means. In addition, elements of Y0 are
centred also about their mean Y such that

Y0 − Y1n = Y = Xβ + ε and 1n′X = 0, (1)

with 1n′ = [1, . . . , 1]. The assumptions, A1. E(ε) = 0 and V(ε) = σ 2In; A2. L(ε) =
Nn(0, σ 2In), are taken to apply, where σ 2 is unity unless specified otherwise. Here E(·)
and V(·) are the expectation and dispersion operators, and assumption A2 designates the
Gaussian law on Rn. The Ordinary Least Squares (OLS) solutions are β̂L = (X′X)−1X′Y .
Pervasive issues continue to arise when X is ill-conditioned, i.e. its columns are nearly
collinear, resulting in instability of the estimating equations, inflated variances, solutions β̂L
having excessive lengths, estimators of doubtful signage and other problematic anomalies.

Hadi [1] in The International Encyclopedia of Statistical Science identifies the principal
techniques for mitigating collinearity to include the ridge estimators of Hoerl and Kennard
[2] and the surrogate estimators of Jensen and Ramirez [3], both essentially data-analytic.
Here we focus on the regressors themselves, altered so as to enhance their conditioning,
as innate to the structure of collinearity itself. In particular, a recent technique of Jensen
and Ramirez [4] is developed further based on mixtures, either of X and an alternative X0
minimal in an ordered class, or a mixture of the ill-conditioned Fisher information matrix
X′X with a scalar moment matrix ‘ideal’ under ordering by Schur majorization.
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Table 1. Given design X = PDξQ′ and X′X = QDλQ′, details follow on
their transition into ridge and surrogate regressions, together with the
estimators {β̂R(k); k ≥ 0} and {β̂S(k); k ≥ 0}.
Item Ridge regression Surrogate regression

X′X → X′X + kIp X′X + kIp
Special values {λi → λi + k; 1≤ i ≤ p} {ξi → (ξ 2i + k)1/2; 1≤ i ≤ p}
X → X Xk = P Diag((ξ 2i + k)1/2)Q′

Estimators β̂R(k) = (X′X + kIp)−1X′Y β̂S(k) = (X′X + kIp)−1Xk ′Y

To place this study in perspective, the ill-conditioning of X′X is addressed in ridge
regression on perturbing the moment matrix {X′X → X′X + kIp} with k ≥ 0, so that all
eigenvalues are increased identically, namely {λi → λi + k; 1≤ i ≤ p}, both the small ones
at the root of ill-conditioning as well as large ones not effecting ill-conditioning. Sim-
ilarly, surrogate regression perturbs the singular values of X → Xk by the rule {ξi →
(ξ 2i + k)1/2; 1≤ i ≤ p} defined to allow comparisons between the ridge and surrogate pro-
cedures, as both have identical moment matrices as seen in Table 1. Moreover, a mixing
procedure of Jensen and Ramirez [4] perturbs the eigenvalues of X′X towards a target
value, so that the small eigenvalues are increased and the large eigenvalues are decreased.
Specifically, X → Xt is modified such that the eigenvalues of X′X are perturbed by the con-
tinuum of rules {λi = ξ2i → [(1 − t)ξ2i + tξ̄2]; t ∈ [0, 1]} with target ξ̄ 2 as the square of
the average singular value of X. These are called arithmetic mixtures owing to the form
{(1 − t)ξ 2i + tξ̄2; t ∈ [0, 1]}.

Against this background, further mixtures are undertaken here: (i)X → Zt on perturb-
ing the eigenvalues ofX′X by the continuum of rules {λi = ξ2i → [(1 − t)ξ2i + tξ̄ 2 ; 1≤ i ≤
p} for t ∈ [0, 1] with target as the average eigenvalue; (ii) X → Wt on perturbing the sin-
gular values of X by the rule {ξi → [(1 − t)ξi + tξ̄ ]; 1≤ i ≤ p} with target as the average
singular value. Details are summarized in Table 3. Theorem 3.2 shows that the design effi-
ciencies [A,D,E] are monotonic in t for {X → Zt} and {X → Wt} of the present study. In
short, altered design points discovered throughmixturesmay be instructive towards better
conditioning in experiments yet to be designed. An outline follows.

Section 2 sets conventions for notation, together with reviews of basic orderings, of
ridge and surrogate regressions, of Variance Inflation Factors (VIFs), and of the critical
Admissibility Criterion for biased alternatives toOLS. Section 3 identifies themixtures and
establishes their admissibility together with other essential properties. Section 4 illustrates
the concepts for five data sets known to exhibit collinearity to varying degrees. In compar-
ing ridge, surrogate and three mixtures, all with common VIFs, the case studies support
two conclusions: (i) one mixture design remains closer to the original design than the sur-
rogate and othermixtures using twometrics to be defined, and (ii) the surrogate design has
superior (A,D,E) efficiencies in the cases studied. Section 5 draws essential conclusions.

2. Preliminaries

Conventions for notation are followed by surveys of essential supporting topics. These
include ridge and surrogate regression, VIFs, and elements of Schur majorization.
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2.1. Notation

Denote by Rp the Euclidean p -space; by R
p
+ its positive orthant; by Fn×p the real

(n × p) matrices of rank p < n; by Sp the real symmetric (p × p) matrices, with S0
p,

S+
p and Dp as their positive semidefinite, positive definite and diagonal varieties. The

transpose, trace and determinant of A are A′, tr(A) and |A|; and special arrays include
the unit vector 1p = [1, . . . , 1]′ ∈ Rp, the unit matrix Ip and a typical diagonal matrix
Dα = Diag(α1, . . . ,αp) ∈ Dp. Transformation groups acting on Rp include the general
linear group Gp and the real orthogonal group Op. The spectral decomposition of A is
A = ∑p

i=1αiqiqi′ ∈ S+
p with λ(A) = {α1 ≥ . . . ≥ αp > 0} as its eigenvalues. The singular

decomposition of X ∈ Fn×p is X = ∑p
i=1ξipiqi

′ = PDξQ′ in which P = [p1, . . . , pp] con-
tains the left singular vectors,Q = [q1, . . . , qp] ∈ Op contains the right singular vectors,
and elements of Dξ = Diag(ξ1, . . . , ξp) are its ordered singular values under the map-
ping σ(X) = {ξ1 ≥ . . . ≥ ξp > 0}. Denote by tr †(X) = tr(Dξ ) = ∑p

i=1ξi. Moreover, for
subsequent reference let F τ

n×p = {X ∈ Fn×p : tr †(X) = τ } and Sτ
p = {A ∈ S+

p : tr(A) =
τ }.

Standard usage refers to independent, identically distributed (iid) variates, their cumu-
lative distribution function (cdf) and L(Y) as the distribution of Y , with Np(μ,�) as the
Gaussian law on Rp having the mean E(Y) = μ and dispersion matrix V(Y) = �.

Definition 2.1: In regard to themodel {Y = Xβ + ε}, thematrixXmay be either observa-
tional, i.e. concomitant variables observed during the course of an experiment, or as points
in the space of the concomitant variables specified by a given design. In either case, X will
be called a design matrix and X → Xω as its design modification.

2.2. Ordered spaces

A partially ordered set (A,�0) satisfies the order axioms: (i) antisymmetric, (ii) reflexive
and (iii) transitive. It is a lower semi-lattice if for elements (x, y) inA, there is a greatest lower
bound (glb = x ∧ y) inA; an upper semi-lattice if there is a least upper bound (lub = x ∨ y)
in A; and a lattice if both a lower and upper semi-lattice. Such spaces are central to this
study.

In particular, take the simplex Ck = {x ∈ R
k+ | x1 ≥ . . . ≥ xk} and, for (x, y) ∈ Ck,

suppose that

{x1 + x2 + · · · + xt ≥ y1 + y2 + · · · + yt ; 1 ≤ t ≤ k − 1} (2)

{x1 + x2 + · · · + xk = y1 + y2 + · · · + yk}. (3)

Then x is said to majorizey, to be denoted as x � y. The functions monotone increasing
under � are called Schur convex (S -convex) or S -concave if decreasing. Vectors x � y
are related as xP = y through a doubly stochastic matrix P, or the recovery of y from x
through a finite number of T-transforms [5].

Recalling σ(X) = (κ1 ≥ . . . ≥ κp) and λ(A) = (α1 ≥ . . . ≥ αp) as their respective sin-
gular and eigenvalue mappings, we have the following.
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Definition 2.2: (i) Let C
τ
k = {x ∈ Ck | ∑k

i=1xi = τ } together with the ordering
(Cτ

k ,�).
(ii) Let (F τ

n×p,�S) be ordered such that X �S Y ∈ (F τ
n×p,�S) if and only if their

singular values are ordered by majorization as σ(X) � σ(Y) in (Cτ
p ,�).

(iii) Let (Sτ
p ,�S) be ordered such thatA �S B in (Sτ

p ,�S) if and only if their eigenvalues
are ordered by majorization as λ(A) � λ(B) in (Cτ

p ,�).
(iv) Let (S+

p ,�L) be ordered as in [6] such that A�LB if and only if (A − B) ∈ S0
p, with

A
LB for (A − B) ∈ S+
p .

To continue, essential properties follow, where the glb for (Xω,Xθ ) isXM = Xω ∧ Xθ such
that both Xω �S XM and Xθ �S XM in (Fn×p,�S), and similarly for their lub.

Proposition 2.1: (i) The space (Cτ
k ,�) is a lattice with x ∧ y and x ∨ y as in Equa-

tions (2.1) and (2.2) of Jensen [7].
(ii) For X = PDiag(ω)Q′ and Z = PDiag(θ)Q′ in (F τ

n×p,�S), then the

glb : X ∧ Z = PDiag(ω ∧ θ)Q′ and lub : X ∨ Z = PDiag(ω ∨ θ)Q′ (4)

are in (F τ
n×p,�S).

(iii) For A = QDiag(α)Q′ and B = QDiag(β)Q′ in (Sτ
p ,�S), then A ∧ B = QDiag(α ∧

β)Q′ and A ∨ B = QDiag(α ∨ β)Q′ are in (Sτ
p ,�S).

(iv) For (A,B) ∈ (S+
p ,�L), thenA ∧ B = QDiag(min{αi,βi}; 1≤ i ≤ p)Q′ andA ∨ B =

QDiag(max{αi,βi}; 1≤ i ≤ p)Q′.

Proof: Foundations for this work trace to Jensen [7,8]. Conclusion (i) was obtained con-
structively in 1993 essentially byworking backwards in expressions (2) and (3). Conclusion
(ii) is from Jensen and Ramirez [4], and Conclusion (iii) from Jensen [9]. Conclusion (iv)
was pivotal as established and applied in [10]. �

Subsequent developments rely heavily on the notion of mixtures. On defining the con-
stant vector c′ = [c, c, . . . , c] ∈ Rp as minimal in (Cτ

p ,�) with τ = pc, the following is
basic.

Lemma 2.1: Take a and c in (Cτ
p ,�) with τ = ∑p

i=1ai = pc, and consider the ‘mixture’
m(t) = [(1 − t)a + tc]. Thenm(t) � m(s) for each 0 ≤ t < s ≤ 1.

Proof: The differences

[(1 − t)a1 + tc] − [(1 − s)a1 + sc] = (s − t)(a1 − c) > 0

[(1 − t)a1 + tc + (1 − t)a2 + tc] − [(1 − s)a1 + sc + (1 − s)a2 + sc]

= (s − t)(a1 + a2 − 2c) > 0

(by induction: {r = 1, 2, . . . , p}) = (s − t)(a1 + · · · + ar − rc) > 0

are essential, where the assertions ‘> 0’ follow since a � c in (Cτ
p ,�). �
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2.3. Ridge and surrogate regression

For a given parameter k ≥ 0, both the ridge (RR(k)) and surrogate (SR(k)) estimators
modify the ill-conditioned X′X → X′X + kIp in the same manner, but solve disparate esti-
mating equations with X → Xk in surrogate regression. Details are supplied in Table 1.
In considering collinearity among the columns of X, we may assume that not all singu-
lar values are equal and, as before, the singular values σ(X) = {ξ1 ≥ . . . ≥ ξp} are arrayed
as Dξ = Diag(ξ1, . . . , ξp), and the eigenvalues as λ(X′X) = Dλ = Diag(λ1, . . . , λp) with
{λi = ξi

2; 1≤ i ≤ p}.
As the ridge and surrogate solutions are not equivariant under scaling, it is conventional

to scale V = (X′X)−1 into its correlation form by centering, then scaling, each column of
X to unit lengths. Then the variances Var(β̂Lj) are equal, which in turn justifies the single
perturbation parameter k>0 for all variables inX′X → X′X + kIp. In case studies to follow,
we adhere to these conventions.

2.4. Variance inflation factors

The VIFs serve to gauge effects of ill-conditioning on variances of the estimators. The OLS
solutions β̂L

′ = [ β̂L1, . . . , β̂Lp] with V(β̂L) = V have {Var(β̂Lj) = vjj; 1≤ j ≤ p} as actual
values.Were the columns ofX to be orthogonal, thus ‘ideal’, then {Var(β̂Lj) = wjj

−1; 1≤ i ≤
p} with X′X = Diag(w11, . . . ,wpp). Accordingly, VIFs are defined as {VIF(β̂Lj) = vjjwjj; 1≤
j ≤ p}, namely, ratios of actual to ‘ideal’ variances.Marquardt and Snee [11] have identified
VIF as ‘the best single measure of the conditioning of the data’.

To achieve the intended improvement in conditioning, one would expect that
VIF(β̂j(k)) → 1 as k → ∞ for ridge and surrogate solutions. Extensions for ridge and
surrogate VIFs are given in [12], where it is shown, contrary to expectations, that
VIF(β̂Rj(k)) → VIF(β̂Lj) as k → ∞. Thus for large k the ridge VIFs return to the original
ill-conditioned OLS values. On the other hand, it was shown that VIF(β̂Sj(k)) → 1 mono-
tonically as k → ∞, so that the surrogateVIFs eventually converge to theirminimal values.
Moreover, VIFs are unambiguous for models without intercept for reasons given in [13].
Accordingly, we continue to focus on the model {Y = Xβ + ε} of Equation (1).

It remains to ask, how large are VIFs to be of consequence? Current rules-of-thumb are
those exceeding 10 or even 4 [14–16]. A recurring problem centres on the choices for k. In
the case studies to be reported, we choose k so as to achieve {max{VIF(β̂j(k)) : 1≤ j ≤ p} =
10}. Fixing to a constant serves to equilibrate diverse models for comparative purposes. A
choice alternative to 10 is examined in Section 5.4.

2.5. Admissibility criterion

Biased estimators are gauged via their Mean Squared Errors, MSE = Variance +
Bias2. Hoerl and Kennard [2] established ridge estimators to be MSE -admissible, i.e.
MSE(β̂R(k)) < MSE(β̂L) for some k ∈ (0,∞), assuring a reduction in MSE from that
of OLS. This result is shown for surrogate regression in [12]. As a caution, however,
those authors reported in [17] the existence of cross-over values k0 for which, if k > k0
then MSE(β̂R(k)) > MSE(β̂L), so that all {β̂R(k); k > k0} are inadmissible. The stronger
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result, that MSE(β̂S(k)) ≤ MSE(β̂R(k)) for all k ≥ 0 from that study, effectively supplants
ridge estimators for prediction. Mixture estimators to follow will be shown to satisfy the
Admissibility Criterion, namely (d/dk)MSE(k)|k=0 < 0.

3. Estimation via mixtures

3.1. Overview

Our developments support the use of designs X ∈ (Fτ
n×p,�S) whose singular values are

‘smoother’ than other designs in the sense of majorization. A transformation X → Xω is
sought to enhance the conditioning of X, as might its Fisher information matrix FI(Xω) =
Xω

′Xω. Initiated briefly in [4], this approach is extended here to include alternative choices
for mixtures; to an examination of their capacities to modulate ill-conditioning, and thus
adverse effects in linear inference; and to a comparison of these inter se and with ridge and
surrogate methods. Consider the following.

Definition 3.1: The collection {Li = piqi′; 1≤ i ≤ p} may be viewed as frames of order
(n × p), i.e. basis elements in Fn×p supporting the design X = ∑p

i=1ξiLi.

Then taking X → Xω = PDωQ′ as in Table 2 amounts to representing Xω while retain-
ing this basis. To proceed, we construct altered designs, together with the linear estimator
β̂ω, its expectation, its dispersion matrix, bias and MSE, on recalling that biased estima-
tors typically are assessed by their MSE at E(β̂ω) = β0, namely MSE(β̂ω) = tr(�ω) + (β −
β0)

′(β − β0). The ordered eigenvalues of V(β̂ω) = (Xω
′Xω)−1 are λ(�ω) = (1/ω2

p ≥
. . . ≥ 1/ω2

1).

3.2. Themixtures

Our choices are summarized inTable 3, the first fromSection 4.4 of Jensen andRamirez [4].
It is seen from {FI(Xω) = [(1 − t)X′X + t (κIp)]; t ∈ [0, 1]} that FI(Xω) is drawn towards
the perfectly conditioned κIp, and that X → Xω|t=1. In the case studies to be reported, t
is chosen so as to bound VIFs within accepted ranges. All solutions offer a continuum of
type {Xt ; t ∈ [0, 1]} as prospects for improved conditioning. Note that the successive scalar
values in the displays are {tξ̄2, tξ̄ 2 , tξ̄} with ξ̄ as the average, ξ̄ 2 as its square and ξ̄

2 as the
average of the squared singular values of X, such that {ξ̄2 < ξ̄

2}. Note that the eigenvalues
of Zt

′Zt , and the singular values ofWt , sum to pξ̄ 2 and pξ̄ , respectively.

Table 2. The modified X = PDξQ′ → Xω = PDωQ′,
together with the resulting linear estimators and their
essential properties.

Modified regressions Properties

X → Xω = PDωQ′ E(β̂ω) = QD−1
ω DξQ′β

β̂ω = QD−1
ω P′Y V(β̂ω) = QD−2

ω Q′ = �ω

MSE = ∑p
i=1[

1

ω2
i

+ θ2i (
ξi − ωi

ωi
)2]; θ = Q′β
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Table 3. Mixtures generated by a design X = PDξQ′ and its FI(X) = QDξ
2Q′, together

with their altered design, FI(·)matrix and admissibility criterion.

Item Design Fisher Information Matrix d
dtMSE(β̂ω(t))|t=0

Xt P Diag([(1 − t)ξ 2i + tξ̄ 2]1/2)Q′ QDiag([(1 − t)ξ 2i + tξ̄ 2])Q′ ∑p
i=1

(ξ2i −ξ̄2)

ξ4i

Zt P Diag([(1 − t)ξ 2i + tξ̄ 2 ]1/2Q′ QDiag([(1 − t)ξ 2i + tξ̄ 2 ])Q′ ∑p
i=1

(ξ2i − ¯
ξ
2
)

ξ4i

Wt P Diag([(1 − t)ξi + tξ̄ ])Q′ QDiag([(1 − t)ξi + tξ̄ ]2)Q′ 2
∑p

i=1
(ξi−ξ̄ )

ξ3i

3.3. Admissible solutions

Before examining their properties further, it is essential first to determine whether
{Xt ,Zt ,Wt} are MSE-admissible and thus are viable alternatives to OLS. We have the
following.

Theorem 3.1: Each of the family of designs {Xt ,Zt ,Wt ; t ∈ [0, 1]} has MSE(β̂ω(t)) to be
decreasing at t=0 and so satisfies the Admissibility Criterion to giveMSE(β̂ω(t)) < MSE(β̂L)

for some t ∈ [0, 1].

Proof: Designs in the collection {(Zt ,Wt); t ∈ [0, 1]} were constructed such that
tr(Zt

′Zt) = pξ̄ 2 and tr †(Xt) = pξ̄ . Chebyshev’s sum inequality applies directly to show∑p
i=1

1
ξ2i∑p

i=1
1
ξ4i

≤ ξ̄
2 and

∑p
i=1

1
ξ2i∑p

i=1
1
ξ3i

≤ ξ̄ (5)

implying for {Zt ,Wt} that (d/dt)MSE(β̂ω(t))|t=0 < 0. For {Xt ; t ∈ [0, 1]}, the Method of
Lagrange Multipliers as in Chapter 19 of Cvetkovski [18] gives max{(∑p

i=1(1/ξ
2
i ))/(

∑p
i=1

(1/ξ 4i ))} = ξ̄2 which is the required bound in order that (d/dt)MSE(β̂ω(t))|t=0 < 0 forXt ,
to conclude our proof. �

3.4. Properties ofmixture estimators

Standard criteria for evaluating the design Xω include the {A,D,E} efficiency indices,
where A = tr(�ω); D = log(|�ω|) and E = λ1(�ω), together with the condition number
κ(Xω) = λ1/λp and Mauchly’s [19] Sphericity Criterion

M(Xω) = pp
p∏

i=1

(
1
ω2
i

)
/

[ p∑
i=1

(
1
ω2
i

)]p

as a function of the ratio of the geometric mean to the arithmetic mean of the eigen-
values of �ω. Here with A = tr(�ω) = ∑

Var(β̂i), small values of {κ ,A,D,E} reflect
well-conditioned models. On the other hand, M(Xω) serves to gauge the non-sphericity
of contours of the Gaussian density of β̂ω, taking the value M = 1.0 when well conditioned
and spherical, and M < 1.0 otherwise.

To continue, we examine properties of {(β̂(Wt), β̂(Xt), β̂(Zt)); t ∈ [0, 1]} together
with their dispersion matrices {�W(t),�X(t),�Z(t); t ∈ [0, 1]}. Some properties may be
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viewed as mappings F τ
n×p → R1+; others as Sτ

p → R1+. The dichotomy rests on differing
structural features in individual cases. The following theorem asserts for Wt and Zt that
the {κ ,A,D,E} criteria are monotone decreasing, and M(·) increasing, for t ↑∈ [0, 1].

Theorem 3.2: Consider the ensembles {(Wt ,Zt); t ∈ [0, 1]}, and their inverse Fisher infor-
mation matrices as V(β̂W(t)) = �W(t) and V(β̂Z(t)) = �Z(t), together with invariant
functions taking F τ

n×p → R1+ or Sτ
p → R1+. The condition numbers κ(Wt), the operators

�(Wt) = |�W(t)|,�(Wt) = tr(�W(t)) and the eigenvalues λ(�W(t)) = [λ1 ≥ . . . ≥ λk].

(i) Then {κ(Wt),�(Wt),�(Wt), λ1(�W(t))}, as mappings F τ
n×p → R1+, all decrease

monotonically in R1+ for t ↑∈ [0, 1].
(ii) The (κ ,A,D,E)-efficiency indices for β̂(Wt), considered as functions on (F τ

n×p,�), all
decrease monotonically in R1+ for t ↑∈ [0, 1], whereas λp(�W(t)) increase monotoni-
cally in R1+ for t ↑∈ [0, 1].

(iii) Mauchly’s criteria M(Wt) for p = 2, as mappings F τ
n×p → R1+, increase monotonically

in R1+ for t ↑∈ [0, 1], i.e. for s > t, the Gaussian contours of β̂(Wt) are less spherical
than those of β̂(Ws).

(iv) For β̂Z(t), the (κ ,A,D,E)-efficiency indices, when considered as functions Sτ
p → R1+,

all decrease monotonically in R1+ for t ↑∈ [0, 1].
(v) Mauchly’s M(Zt), here mapping Sτ

p → R1+, increase monotonically in R1+ as t ↑∈
[0, 1], i.e. for s > t, the Gaussian contours of β̂(Zt) are less spherical than those of
β̂(Zs).

(vi) The minimal eigenvalues λp(�Z(t)) as mappings Sτ
p → R1+ increase monotonically in

R1+ for t ↑∈ [0, 1].

Proof: In regard to Wt , the collection {Wt ; t ∈ [ 0, 1]} is constructed with tr †(Wt) =∑
ξi = pξ̄ so Lemma 2.1 can be applied to establish that singular values satisfy σ(Wt) �

σ(Ws) in (Cτ
p ,�) for {0 ≤ t < s ≤ 1}. ThenWt � Ws in (F τ

n×p,�), and properties (i)–(iii)
given for β̂W(t) follow from Theorem 4.2 of Jensen and Ramirez [4]. To continue, the
ensemble {Zt ; t ∈ [ 0, 1]} was constructed so that tr(Zt

′Zt) = ∑
ξ 2i = pξ̄ 2 , so Lemma 2.1

again may be applied on taking m(t) = [(1 − t)a + tc] with a = Diag(ξ 21 , . . . , ξ
2
p ) and

c = Diag(ξ̄ 2 , . . . , ξ̄ 2
), so thatm(t) � m(s) in (Sτ

p ,�) as in Definition 2.2(ii), that is

Diag([(1 − t)ξ 2i + tξ̄ 2 ]) � Diag([(1 − s)ξ 2i + sξ̄ 2 ]), equivalently, Zt
′Zt � Zs′Zs ∈ (Sτ

p ,�)

(6)

for each {0 ≤ t < s ≤ 1}. Theorem 1 of Jensen [9] asserts that the criteria (κ ,A,D,E) for
design Zt are all monotone decreasing as t ↑∈ [0, 1], as asserted in conclusions (iv) and
(vi), while Mauchly’s M(·) in conclusion (v) increases monotonically to 1. �

Remark 3.1: It is essential to note thatXt thus far has been omitted, as it is not amenable to
the foregoing analyses. Specifically, neither the sums of singular values of Xt nor the sums
of eigenvalues of Xt ′Xt are constant as t ranges over [0, 1]. In short, Xs and Xt will not be
comparable when they lie in different spaces (F τ

n×p,�) and (F
τ†
n×p,�). This may explain
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anomalies found in the numerical studies to follow. Nonetheless, common ground is found
in the following.

Theorem 3.3: Consider the ensembles {(Wt ,Xt ,Zt); t ∈ [0, 1]}, and their Fisher informa-
tionmatrices {Wt

′Wt ,Xt ′Xt ,Zt
′Zt} and inverses {�W ,�X ,�Z}, together with the Loewner [6]

ordering (S+
p ,�L) as in Definition 2.2(iii).

(i) Then {Wt
′Wt
LXt ′Xt
LZt

′Zt in (S+
p ,�L)}.

(ii) Equivalently {�W�L�X�L�Z in (S+
p ,�L)}.

(iii) Each efficiency index (κ ,A,D,E) in R1+ is ordered as are {�W�L�X�L�Z in
(S+

p ,�L)}.

Proof: Recall thatA�LB in (S+
p ,�L) if and only if their eigenvalues are pairwise ordered as

{λi(A) ≥ λi(B); 1≤ i ≤ p}. A direct calculation establishes theMixture Inequality, namely
{(1 − t)a + tb ≤

√
(1 − t)a2 + tb2; a > 0, b > 0, t ∈ [0, 1]}. Thus each ordered singular

value ofWt is dominated by the corresponding singular value ofXt and thus {Wt
′Wt
LXt ′Xt

in (S+
p ,�L)}. Moreover, from Table 3 the difference

[λ(Xt ′Xt) − λ(Zt
′Zt)] = [(1 − t)ξ 2i + tξ̄2] − [(1 − t)ξ 2i + tξ̄ 2 ] = t(ξ̄2 − ξ̄

2
) < 0 (7)

holds for each {i = 1, 2, . . . , p}, so that Xt ′Xt
LZt
′Zt , to give conclusion (i) and the equiva-

lent conclusion (ii). Conclusion (iii) follows as an immediate consequence. �

4. Case studies

4.1. Basics

Data from the literature identified as ill-conditioned are re-examined next, again taking
the regressors to be centred and scaled. The form {Xk′Xk = X′X + kIp} is identical for
ridge and surrogate models, having the same VIFs but without an underlying ridge design.
Accordingly, the surrogate Xk, but not ridge, is to be compared with the mixture designs
{Xt ,Zt ,Wt ; t ∈ [0, 1]}. Regarding choices for {k ∈ [0,∞); t ∈ [0, 1]}, these are determined
so that max{VIFi : 1≤ i ≤ p} = 10 in order to standardize consistently across a diversity
of ill-conditioned cases. The software package Maple supports all computations. Observe
that {Xk,Xt ,Zt ,Wt} all retain the basic frames of Definition 3.1 for spanning Fn×p, taking
these as signature to each design space itself. Moreover, the proximity of X to Xω under
{X → Xω} is the subject of the following.

Remark 4.1: (i) Venues for near collinearity may arise through constraints among the
regressors, thus precluding as infeasible some combinations of points in the space of
regressors.

(ii) If indeedX is feasible though ill-conditioned, then seeking a nearby {X → Xω} holds
promise for a feasible version with enhanced conditioning.

In studies to follow design characteristics are listed, to include VFM = max{VIF; 1≤
i ≤ p}, the efficiency indices {κ ,A,D,E} and Mauchly’s M(·). In addition, in keeping
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with Remark 4.1, the displacement of X = [xij] to its modified version Xω = [ xij(ω)] is
gauged by the mean absolute deviation, namely MAD(Xω) = (1/np)

∑ |xij(ω) − xij|, and
by �(Xω) = ∑ |ξj(ω) − ξj| as the discrepancy between their singular values. The latter is
invariant under left and right unitary operators, and thus is independent of the basis ele-
ments forFn×p as in Definition 3.1. Further criteria include the correlations ρ(Y , Ŷω)with
Ŷω = Xωβ̂ω, larger correlations reflecting greater integrity in predicting Y through β̂ω.

We refrain from a detailed evaluation of each case in situ. Instead, a comprehensive
comparison across cases seems more informative as given in the Conclusions. In keeping
with the foregoing issues, for each case study we list the numerical diagnostics as follow:

[VFM , κ , A, D, E, M, ρ, MAD, �], (8)

whereD = log |�ω|. Recall that the condition number κ and the efficiency indices (A,D,E)

ideally would be small, whereas the ellipticity index M(·)would increase towards unity and
circular contours in well-conditioned cases.

4.2. Acetylene Data: Marquardt and Snee [11]

For the Five-Coefficient Reduced Quadratic Model with n=16 and p=5, the explana-
tory variables are: x1 reactor temperature; x2 ratio of H2 to n -heptone; x3 contact time;
x1x2 interaction; x21 squared temperature and with y the conversion percentage of n-
heptone to acetylene. Table 4 reports values for the originalX, the surrogateXk and designs
{Xt ,Zt ,Wt ; t ∈ [ 0, 1]}. Values include the perturbation parameters (either k or t) and other
quantities listed in expression (8).

The parameters have been computed with VFM = 10 to allow for comparisons. All
designs show the expected improvement in condition number and design criteria. We
observe that Zt has perturbed the original design X the least with MAD(Zt) = 0.0287 and
�(Zt) = 0.6014. On the other hand, the surrogate design Xk has superior {A,D,E} values.
Using the Acetylene Data, Table 5 shows that the (A,D)-efficiency indices, when viewed
as functions S+

p → R1+, decrease monotonically in R1+ for t ↑∈ [0, 1] for the ensembles
{Zt ,Wt ; t ∈ [0, 1]} as reported in Theorem 3.2. However, the family {Xt ; t ∈ [0, 1]} lacks
monotonicity for the (A,D)-efficiency indices as t increases in [0, 1]. Theorem 3.3 asserts
that the design efficiencies will be ordered as are {�W�L�X�L�Z} as demonstrated in
Table 5.

Table 4. Design criteria for the surrogate andmixture designs for the acetylene data with ξ̄ 2 = 0.4588,
ξ̄ 2 = 1.0000.

X Xk Xt Zt Wt

k,t 0 0.0649 0.1240 0.0610 0.2917
VFM 7682 10.00 10.00 10.00 10.00
κ 47670 52.07 52.07 52.07 53.48
A 15044 39.30 44.87 41.86 52.43
D 17.21 5.78 6.44 6.10 7.17
E 14357 15.38 17.56 16.38 24.15
M 0 0.0108 0.0108 0.0108 0.0102
ρ 0.9968 0.9682 0.9682 0.9682 0.9672
MAD 0 0.0295 0.0289 0.0287 0.0442
� 0 0.6171 0.6765 0.6014 1.0148
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Table 5. Design criteria for the {Xt ,Zt ,Wt} designs for the Acetylene Data.
Xt Zt Wt

t A D A D A D

0.00 15044 17.21 15044 17.21 15044 17.21
0.20 29.88 5.39 15.02 3.15 95.84 8.48
0.40 16.75 3.98 8.43 1.47 31.88 6.08
0.60 12.31 3.39 6.25 0.61 17.47 4.80
0.80 10.50 3.31 5.30 0.16 12.35 4.12
1.00 10.90 3.90 5.00 0.00 10.90 3.90

Table 6. Design criteria for the surrogate and mixture designs for Body Fat with ξ̄ 2 = 0.6563 and ξ̄ 2 =
1.0000.

X Xk Xt Zt Wt

k,t 0 0.0549 0.0773 0.0521 0.2328
VFM 709 10.00 10.00 10.00 10.00
κ 2844 38.11 21.08 38.11 38.10
A 1378 19.45 19.47 20.52 24.60
D 6.57 2.15 2.39 2.31 2.76
E 1376 17.96 19.47 18.95 22.84
M 0 0.0315 0.0315 0.0315 0.0287
ρ 0.8952 0.8860 0.8860 0.8860 0.8858
MAD 0 0.0258 0.0217 0.0218 0.0241
� 0 0.2560 0.2492 0.2240 0.3646

4.3. Body fat data: Neter et al. [20]

The data are given in [20] with n=20and p=3. The explanatory variables are x1 tri-
cep skinfold thickness; x2 thigh circumference; x3 midarm circumference and with y the
amount of body fat. The parameters for the three methods have been computed with
VFM = 10 to allow for comparisons. All designs show the expected improvement in condi-
tion number and design criteria. FromTable 6, it is seen that the design Zt overall indicates
the least perturbation of the original design, with values� = 0.2240 and nearly the small-
est value for MAD = 0.0218. On the other hand, the surrogate design Xk has superior
{A,D,E} values.

4.4. French economy data

A standard regression analysis is given in [21] to model the French Economy for years
1949–1959 with n=11 and p=3. The variables are x1 domestic production; x2 stock for-
mation; x3 domestic consumption and y imports. From Table 7, it is seen that design Zt
reflects the least perturbation of Zt from the original design, with smallest MAD = 0.0220
and � = 0.1921. On the other hand, the surrogate design Xk has superior {A,D,E} values.

4.5. Hospital manpower data

The Hospital Manpower Data comprise records at n=17 U.S. Naval Hospitals with p=5
regressors: x1 average daily patient load; x2 monthly X-ray exposures; x3 monthly occupied
bed days; x4 eligible population in the area divided by 1000; x5 average length of patients’
stay in days and y monthly man-hours as reported in [14]. From Table 8 is seen that the
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Table 7. Design criteria for the surrogate andmixture designs for the French Economywith ξ̄ 2 = 0.6751
and ξ̄ 2 = 1.0000.

X Xk Xt Zt Wt

k,t 0 0.0513 0.0706 0.0488 0.2050
VFM 186 10.00 10.00 10.00 10.00
κ 742 38.00 38.00 38.00 38.00
A 373 19.97 21.49 21.00 24.42
D 5.23 2.15 2.37 2.30 2.69
E 371 18.53 19.94 19.48 22.74
M 0 0.0292 0.0292 0.0292 0.0272
ρ 0.9959 0.9948 0.9948 0.9948 0.9948
MAD 0 0.0248 0.0225 0.0220 0.0265
� 0 0.2238 0.2170 0.1921 0.3156

Table 8. Design criteria for the surrogate and mixture designs for the Hospital Manpower Data with
ξ̄ 2 = 0.4576 and ξ̄ 2 = 1.0000.

X Xk Xt Zt Wt

k,t 0 0.0722 0.1363 0.0674 0.2945
VFM 9598 10.00 10.00 10.00 10.00
κ 77770 59.09 59.09 59.09 64.73
A 18566 30.28 35.05 32.46 40.31
D 14.36 5.45 6.18 5.80 6.59
E 18529 13.84 16.02 14.83 23.93
M 0 0.0286 0.0286 0.0286 0.0214
ρ 0.9954 0.9944 0.9944 0.9944 0.9935
MAD 0 0.0221 0.0231 0.0211 0.0412
� 0 0.5571 0.5711 0.5287 0.8910

design Zt has been perturbed least from the original X, having the smallest MAD = 0.0211
and � = 0.5287. On the other hand, the surrogate design Xk has superior {A,D,E} values.

4.6. Number of activemetropolitan physicians

We use the Standard Metropolitan Statistical Area (SMSA) data having n=141 and p=3
from the website.1 The variables are x1 total population (in thousands); x2 land area (in
square miles); x3 total personal income (in millions of dollars) and y number of active
physicians. From Table 9, the design Zt reflects the least perturbation from the original
design, having the smallest values MAD = 0.1969 and � = 0.0047. On the other hand, the
surrogate design Xk has superior {A,D,E} values.

5. Conclusion

5.1. Summary

This study advances a new class of linear estimators as mixtures in efforts to mitigate
collinearity. The procedure is based on mixing the original design with a minimal design,
or mixing its Fisher informationmatrix with a scalar matrix as target, giving the ensembles
{Xt ,Zt ,Wt ; t ∈ [0, 1]}. Theorem 3.1 shows that MSE(β̂ω(t)) is decreasing at t=0 for each
of {Xt ,Zt ,Wt ; t ∈ [0, 1]}, so that the solutions are admissible and thus well-conditioned
alternatives to OLS. Theorem 3.2 establishes that the (κ ,A,D,E)-efficiency indices for
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Table 9. Design criteria for the surrogate andmixture designs for the SMSA data with ξ̄ 2 = 0.6707 and
ξ̄ 2 = 1.0000.

X Xk Xt Zt Wt

k,t 0 0.0518 0.0717 0.0492 0.2087
VFM 211 10.00 10.00 10.00 10.00
κ 854 38.48 38.48 38.48 38.44
A 423 19.93 21.47 20.96 24.48
D 5.37 2.16 2.39 2.32 2.71
E 420 18.47 19.89 19.42 22.78
M 0 0.0297 0.0297 0.0297 0.0276
ρ 0.9789 0.9787 0.9787 0.9787 0.9787
MAD 0 0.0052 0.0049 0.0047 0.0058
� 0 0.2280 0.2209 0.1969 0.3214

Table 10. Summary comparing surrogate (Xk) and mixture (Zt) designs.

Case study MAD(Xk) MAD(Zt) % �(Xk) �(Zk) %

Acetylene 0.0295 0.0287 2.7 0.6171 0.6014 2.5
Body fat 0.0258 0.0218 15.5 0.2560 0.2240 12.5
French economy 0.0248 0.0220 11.3 0.2238 0.1921 14.2
Hospital 0.0221 0.0211 4.5 0.5571 0.5287 5.1
SMSA 0.0052 0.0047 9.6 0.2280 0.1969 13.6

β̂(Wt) decrease monotonically for t ↑∈ [0, 1] viewed as functions on (F τ
n×p,�); and sim-

ilarly, the (κ ,A,D,E) indices for β̂(Zt) decrease monotonically for t ↑∈ [0, 1] viewed as
functions on (S+

p ,�L). For a fixed t ∈ [0, 1], it is shown in Theorem 3.3 that the Fisher
information matrices are Loewner ordered as {Wt

′Wt
LXt ′Xt
LZt
′Zt}, and their inverses

as {�W�L�X�L�Z}, the latter as dispersion matrices for the corresponding β̂ω, and thus
each efficiency index (κ ,A,D,E) is ordered as are {�W�L�X�L�Z} in (S+

p ,�L).

5.2. Comparing themixtures

In comparisons among designs, we seek a balance between (i) efficiency and (ii) proximity
to the original design, since highly ill-conditioned data often stem from constrained ranges
of the settings. Thus modified designs might reflect those same constraints. In addition,
design points so discoveredmay suggest improved yet feasible design points in subsequent
experiments. In this regard, theMAD and�diagnosticsmay be especially helpful to users.In
retrospect, each case study demonstratedZt to be nearer to the original design in bothMAD
and �. In Table 10 are summarized advantages of Zt over the surrogate and ridge designs.
The relative improvement is shown in the percentage column identified with %, in some
cases negligible. Again k and t achieve VFM = 10.

Details regarding efficiencies are summarized inTable 11. As noted, the surrogate design
Xk dominates in the (A,D,E) criteria, often negligibly, in comparison with Zt . On the other
hand, Wt exhibits somewhat larger values. Such diagnostics may serve to inform users
regarding the tradeoff between efficiency and proximity to the original design, in all cases
improving uniformly over designs known to be excessively ill-conditioned.

Surrogate and ridge solutions offer OLS-admissibility for k ∈ [0,∞) and k ∈ [0, k0),
respectively, yet remain somewhat equivocal as to those diverse choices. On the other hand,
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Table 11. Comparison of (A,D,E) efficiency indices across choices among (Xk ,Xt ,Zt ,Wt) for the five
cases studies.

Xk Xt Zt Wt

A D E A D E A D E A D E

Acetylene
39.30 5.78 15.38 44.87 6.44 17.56 41.86 6.10 16.38 52.43 7.17 24.15

Body fat
19.45 2.15 17.93 19.47 2.39 19.47 20.52 2.31 18.95 24.60 2.76 22.84

French economy
19.97 2.15 18.53 21.49 2.37 19.94 21.00 2.30 19.48 24.42 2.69 22.74

Hospital
30.28 5.45 13.84 35.05 6.18 16.02 32.46 5.80 14.83 40.31 6.59 23.93

SMSA
19.93 2.16 18.47 21.47 2.39 19.89 20.96 2.32 19.42 24.48 2.71 22.78

Table 12. Design criteria for the surrogate–mixture designs for body fat with k= 0.0549.

t VFM κ A D E

0.0 10.0000 38.1080 19.45 2.15 17.96
0.2 2.3952 7.4675 5.44 0.72 3.91
0.4 1.4958 3.7218 3.77 0.24 2.20
0.6 1.1752 2.2611 3.17 0.00 1.53
0.8 1.0392 1.4832 2.92 −0.12 1.17
1.0 1.0000 1.0000 2.84 −0.16 0.95

themixturemodels serve to pull a design or its Fisher informationmatrix towards perfectly
conditioned, albeit unattainable, targets. It is apparent that mixtures apply also in surrogate
models, beginning now with Xk instead of X. Accordingly, to simplify notation, denote by
σ(Xk) = {ξ1, . . . , ξp}, clearly depending on k. As an example, consider the Body Fat Data
of Section 4.3 with surrogate design Xk having k=0.0549. Working towards Table 12, take
Zt fromTable 3 asTt to get the surrogatemixturesTt = PDiag([(1 − t)ξ 2i + tξ̄ 2 ]1/2Q′ and
Tt ′Tt = QDiag([(1 − t)ξ2i + tξ̄ 2 ])Q′ with ξ̄

2 = 1.05494. The ensemble {Tt ; t ∈ [ 0, 1]}
thus varies from the surrogate design Xk to an orthogonal design. Table 12 reports the
efficiency indices for the family {Tt ; t ∈ [0, 1]} for varying values of the mixing parameter
t, demonstrating how the surrogate design can be further enhanced through mixtures.

5.3. Performance of the algorithms

The several case studies enable a preliminary assessment as to the performance of our algo-
rithms. Details are summarized in Table 13, where the case studies are arranged in order
of decreasing κ(X) in the original data. It is seen that choices for k in surrogate regression,
namely k(Xk), decrease monotonically with decreasing values of κ(X). In like manner, the
choice for t ∈ [0, 1] is seen to be monotone decreasing with decreasing κ(X) for each of
{Xt ,Zt ,Wt}. In addition, from their definitions in Tables 2 and 3, where Wt adjusts first-
order effects and ({Xk,Xt ,Zt) adjust moments of second order, it is plausible that [t(Wt)]2

should approximate both k(Xk) and t(Zt), which is supported in Table 13. In summary, our
algorithms are seen to perform consistently over a wide range of ill-conditioned data.
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Table 13. Summary comparing performance of the algorithms in use.

Case study κ(X) k(Xk) t(Xt) t(Zt) t(Wt) [t(Wt)]2

Hospital 77770 0.0722 0.1363 0.0674 0.2945 0.0867
Acetylene 47670 0.0649 0.1240 0.0610 0.2917 0.0851
Body fat 2844 0.0549 0.0773 0.0521 0.2328 0.0542
SMSA 854 0.0518 0.0717 0.0492 0.2087 0.0436
French economy 742 0.0513 0.0706 0.0488 0.2050 0.0420

Table 14. Design criteria for the surrogate and mixture models for the SMSA data with VFM = 5.

X Xk Xt Zt Wt

k,t 0 0.1158 0.1473 0.1038 0.3133
VFM 211 5.00 5.00 5.00 5.00
κ 854 18.17 18.17 18.17 18.14
A 423 9.85 11.55 10.99 13.69
D 5.37 1.29 1.77 1.62 2.19
E 420 8.46 9.92 9.44 11.88
M 0 0.1029 0.1029 0.1029 0.0944
ρ 0.9789 0.9787 0.9787 0.9787 0.9786
MAD 0 0.0085 0.0077 0.0074 0.0088
� 0 0.3924 0.3632 0.3166 0.4826

5.4. Choice of tuning parameters

Recalling VFM = max{VIF(β̂j); 1≤ i ≤ p}, we have followed the common rule-of-thumb
that ill-conditioning occurs whenVFM ≥ 10, and accordingly have chosen the tuning
parameters, either k or t, to satisfy VFM = 10. As this is arbitrary, we return to the SMSA
data in Section 4.6 and set VFM = 5 as the benchmark. The results are given in Table 14;
these show once again that the altered Zt reflects the least perturbation from the origi-
nal design with MAD = 0.0074 and � = 0.3166; and that the surrogate Xk has superior
(A,D,E) efficiencies.

5.5. In retrospect

Our original goals in seeking alternatives to ridge regression were to overcome two prob-
lems, namely, (1) the condition number κ for the dispersion matrix V(β̂R(k)) is not
monotone in k but tends back to that of V(β̂R(0)) for the original OLS solution and (2) for
large k the ridge model becomes infeasible, having an infinite moment matrix and solu-
tions β̂R(k) → 0. For surrogate regression, Jensen and Ramirez [12] established that the
condition number κ for V(β̂S(k)) is indeed monotone and tends to 1. The condition num-
ber facts follow on noting at σ 2 = 1 that the eigenvalues of V(β̂S(k)) are {1/(ξ 2i + k)} and
of V(β̂R(k)) are {ξ 2i /(ξ 2i + k)2} with {1≤ i ≤ p}, so that

lim
k→∞

κ[V(β̂R(k)] = lim
k→∞

ξ 21
ξ 2p

(ξ 2p + k)2

(ξ 21 + k)2
= ξ21

ξ 2p
= κ[V(β̂L)]

for OLS as claimed. In addition, both V(β̂S(k)) and V(β̂R(k)) tend to zero in the Frobenius
matrix norm. These considerations solve problem (1).

To avoid problem (2), the mixtures {Xt ; t ∈ [0, 1]} were introduced in [4] as noted. The
present study introduces two additional mixtures, namely, Zt and Wt , the first by mixing
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the eigenvalues of the original moment matrix with their average, and the second by mix-
ing the singular values of the original design with their average. These procedures both
serve to circumvent problems (1) and (2). For our case studies, Zt was seen to be the supe-
rior procedure. A forthcoming study will undertake further extensions such as mixing the
eigenvalues using the geometricmeans in lieu of the arithmeticmeans of the present study.

Note

1. https://onlinecourses.science.psu.edu/stat857/sites/onlinecourses.science.psu.edu.stat857/
files/smsa.data
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