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ABSTRACT 

 

The slope of the best-fit line from minimizing a function of the squared vertical and 

horizontal errors is the root of a polynomial of degree four. We use second order and 

fourth order moment equations to estimate the ratio of the variances of errors in the 

measurement error model and this estimate is used to introduce two new estimators. A 

simulation study shows improvement in bias and mean squared error of each of these new 

estimators over the ordinary least squares estimator. 
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1 Introduction  

With ordinary least squares )( xyOLS  regression we have data 

{ }nnnn xXYxxXYx == ),(),...,,( 111  and we minimize the sum of the squared vertical errors 

to find the best-fit line xxhy 10)( ββ +==  where it is assumed that the independent or 

causal variable X is measured without error. The measurement error model does not 

assume that X is measured without error, has wide interest with many applications and 

has been studied in depth by Carroll et al. (2006) and Fuller (1987). As in the regression 

procedure of Deming (1943) to account for both sets of errors we determine a fit so that a 

function of both the squared vertical and the squared horizontal errors will be minimized.  

 

2 Minimizing Squared Oblique Errors  

From the data point ),(
ii
yx  to the fitted line xxhy 10)( ββ +==  we define the vertical 

length 
iii
xyv

10
ββ −−=  from which it follows that the sum of the squares of the oblique 

lengths from ),(
ii
yx to ( )))(()),(()( 11

iiiiii
yxhyyhxyh −+−+ −− λλ is  
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In a comprehensive paper by Riggs et al. (1978), the authors state that: “It is a poor 

method indeed whose results depend upon the particular units chosen for measuring the 

variables.” So that our equation is dimensionally correct we consider the standardized 

weighted average  
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The solution of 0/ βδδ oSSE  is given by xy 10 ββ −=  and the solutions of 

0/
1
=δβδ

o
SSE are the roots of the fourth degree polynomial, )(

14
βP ,  
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From O’Driscoll et al. (2008), the Complete Discrimination System },...,{ 1 nDD of Yang 

is a set of explicit expressions that determine the number (and multiplicity) of roots of a 

polynomial. This system is used to show that the fourth order polynomial )(
14
βP  has 

exactly two real roots, one positive and one negative with the global minimum being the 

positive (respectively negative) root corresponding to the sign of ./ nSs xyxy =  

With λ = 1 we recover the minimum squared vertical errors with estimated slope ver
1β  

and with λ = 0 we recover the minimum squared horizontal errors with estimated 

slope hor
1β . The geometric mean estimator xxyy

gm
ss /1 =β  has the oblique parameter λ 

=0.5 and for the measurement error model, when both the vertical and horizontal models 

are reasonable, a compromise estimator such as 
gm

1β  is widely used and
 

is hoped to have 

improved efficiency. However, Lindley and El-Sayyad (1968) proved that the expected 

value of 
gm

1β
 

is biased unless 22 /
XY

σσκ =  where 22 / δτ σσκ =  

 

3 Measurement Error Model; Second and Fourth Moment Estimation  

We now consider the measurement error model as follows. In this paper it is assumed that 

X and Y are random variables with respective finite variances 2

X
σ and 2

Y
σ , finite fourth 

moments and have the linear functional relationship xY 10 ββ += . The observed data 

{ ),(
ii
yx , ni ≤≤1 } are subject to error by 

iii
Xx δ+=  and 

iii
Yy τ+=  where it is also 

assumed that δ  is ),0( 2

δσN  and τ is ),0( 2

τσN .  It is well known, in a measurement error 

model, that the expected value for ver
1β  ( )( xyOLS ) is attenuated to zero by the 

attenuating factor )/( 222

δσσσ +
XX

called the reliability ratio by Fuller (1987) and similarly 

the expected value for hor
1β  ( )( yxOLS ) is amplified to infinity by the amplifying 

factor 222 /)(
YY

σσσ τ+ . From Gillard and Iles (2009), using the second moment estimating 

equation, we derive the Frisch hyperbola of Van Montfort (1989)  

 222 )~)(~( xyyyxx sss =−− τδ σσ  (3) 

and from the fourth order moments 

 22222 ~3()~())(~3( τδδ σσσ xyxyyyxxxyxyxxxy ssssss −−=− ) (4). 

We use these two equations to solve for 2~
δσ and 2~

τσ  imposing suitable restrictions on the 

possible solutions; firstly the variances must be positive; secondly the kurtosis of the 

underlying distribution must be significantly different from the kurtosis of the normal 



distribution to assure the validity of Equation (4) and thirdly the sample sizes must be 

adequately large. We then use these solutions as estimates for the ratio κ  in the 

maximum likelihood estimator as described in Section 4. 

 

4 The Maximum Likelihood Estimator  

If the ratio of the error variances 22 / δτ σσκ = is assumed finite, then Madansky (1959), 

among others, showed that the maximum likelihood estimator for the slope is  
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It also follows that if κ  = 1 in Equation (5) then the MLE (often called the Deming 

Regression estimator) is equivalent to the perpendicular estimator,
per

1β  first introduced 

by Adcock (1878). In the particular case where xxyy ss /=κ then mle
1β has a λ value of 0.5. 

Using the solutions from equations (3) and (4) as estimates for κ  in mle
1β , we introduce a 

new estimator 
kap

1β  which performs very well in our Monte Carlo simulation. 

 

5 Relation between kappa and lambda 

The invertible function ]1,0[],0[: →∞ψ defined by yyxx ssccc /),1/()( =+== κκκψλ , 

creates a new estimator lam
1β  with κ estimated as in Section 4. This proposed oblique 

estimator also performs very well in our Monte Carlo simulation. Since the range of κ 

includes infinity, we do not compute its average value in our simulation. Instead, we 

compute the average λ value for lam
1β , and use )(

_
1 λψ − as the effective average κ~  for κ.  

 

6 Monte Carlo Simulation 

To determine the efficiency of the above six estimators we conducted a Monte Carlo 

simulation which assigns a Uniform Distribution over the interval (0,20) to X and sets Y = 

X. Both X and Y are subjected to errors ( 2
δσ , 2

τσ ) ∈ }9,4,1{}9,4,1{ × and the sample size n is 

set to 100. Our simulations use R = 1000 and we report in Tables 1-4 the MSE and the 

Bias for the estimators { ver
1β ,

gm
1β , hor

1β ,
per

1β ,
kap

1β , lam
1β }. Table 5 reports the effective 

average for κ~ for ( 2
δσ , 2

τσ ) ∈ }9,4,1{}9,4,1{ ×  

7 Summary 

Our simulations support the claim that our estimators 
kap

1β and lam
1β are more efficient 

than the ordinary least squares estimator ver
1β . 



Table 1 

X is UD(0,20), 1β =1, 0β =0, R=1000, n=100, τσ =1, δσ =3  

 MSE 310−  %Bias λ  
ver
1β  46.569 -21.189 1 51.76 
gm

1β
 11.897 -9.947 0.500 95.99 

hor
1β  4.402 2.9572 0 134.17 
per

1β
 15.130 -11.246 0.556 89.93 

kap
1β

 4.625 -1.382 0.169 118.37 
lam
1β  4.442 -0.029 0.237 123.49 

 

Table 2 

X is UD(0,20), 1β =1.25., 0β =0, R =1000, n=100, τσ =1, δσ =3 

 MSE 310−  %Bias λ  
ver
1β  70.809 -20.929 1 45.33 
gm

1β
 18.425 -10.036 0.500 83.29 

hor
1β  5.708 2.413 0 127.99 
per

1β
 15.081 -8.546 0.434 89.90 

kap
1β

 6.304 -1.180 0.171 114.70 
lam
1β  5.847 0.092 0.145 116.62 

 

Table 3 

X is UD(0,20), 1β =1, 0β =0, R =1000, n =100, τσ =2, δσ =2 

 MSE 310−  %Bias λ  
ver
1β  13.403 -10.688 1 48.23 
gm

1β
 2.117 0.0989 0.500 89.94 

hor
1β  18.146 12.232 0 131.70 
per

1β
 2.672 0.126 0.500 89.92 

kap
1β

 4.432 0.295 0.495 90.38 
lam
1β  5.962 0.425 0.497 90.14 

 

Table 4 

X is UD(0,20), 1β =0.75, 0β =0, R =1000, n =100, τσ =2, δσ =2 

 MSE 310−  %Bias λ  
ver
1β  7.791 -10.518 1 56.13 
gm

1β
 2.603 4.196 0.500 103.99 

hor
1β  28.487 21.417 0 137.68 
per

1β
 2.041 0.169 0.640 89.96 

kap
1β

 4.233 0.725 0.590 95.55 
lam
1β  5.402 -0.029 0.615 92.97  

 

 



Table 5 

Effective κ~  average, X is UD(0,20), 1β =1, 0β = 0, R =1000, n =100 

 2
τσ =1 2

τσ = 4 2
τσ = 9 

2
δσ =1 1.1781 3.3975 6.1251 

2
δσ =4 0.3185 0.9169 1.9514 

2
δσ =9 0.1701 0.4090 1.1658 
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