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Geometric View ofMeasurement Errors

DIARMUID O’DRISCOLL1 AND
DONALD E. RAMIREZ2

1Department of Mathematics and Computer Studies, Mary Immaculate
College, Limerick, Ireland
2Department of Mathematics, University of Virginia, Charlottesville,
Virginia, USA

The slope of the best fit line from minimizing the sum of the squared oblique errors
is the root of a polynomial of degree four. This geometric view of measurement
errors is used to give insight into the performance of various slope estimators for the
measurement error model including an adjusted fourth moment estimator introduced
by Gillard and Iles (2005) to remove the jump discontinuity in the estimator of
Copas (1972). The polynomial of degree four is associated with a minimun deviation
estimator. A simulation study compares these estimators showing improvement in
bias and mean squared error.

Keywords Maximum likelihood estimation; Measurement errors; Moment
estimation; Oblique errors.

Mathematics Subject Classification 62J05; 62G05.

1. Introduction

With ordinary least squares OLS(y � x) regression, we have data ��x1� Y1 �X =
x1�� � � � � �xn� Yn �X = xn�� and we minimize the sum of the squared vertical
errors to find the best-fit line y = h�x� = �0 + �1x� With OLS(y � x) it is assumed
that the independent or causal variable is measured without error. The
measurement error model has wide interest with many applications; for example,
see Carroll et al. (2006) and Fuller (1987). The comparison of measurements by two
analytical methods in clinical chemistry is often based on regression analysis. There
is no causal or independent variable in this type of analysis. The most frequently
used method to determine any systematic difference between two analytical methods
is OLS(y � x) which has several shortcomings when both measurement sets are
subject to error. Linnet (1993) stated that “it is rare that one of the (measurement)
methods is without error.” Linnet (1999) further stated that “A systematic difference
between two (measurement) methods is identified if the estimated intercept differs
significantly from zero (constant difference) or if the slope deviates significantly
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1374 O’Driscoll and Ramirez

from 1 (proportional difference).” Our article concentrates on how to determine
whether or not there is a proportional difference between two measurement
instruments using a Monte Carlo simulation. As in the regression procedure of
Deming (1943), to account for both sets of errors, we determine a fit so that a
function of both the squared vertical and the squared horizontal errors will be
minimized. All of the estimated regression models we consider are contained in the
parametrization (with 0 ≤ � ≤ 1) of the line from �x� h�x�� to �h−1�y�� y�.

We outline the Oblique Error Method in Sec. 2. In Sec. 3, we show how the
geometric mean slope is a natural estimator for the slope in the measurement error
(error-in-variables) model. Section 4 computes Madansky’s moment estimators
for varying slope estimators and shows a relationship between the maximum
likelihood estimator in the measurement error model and our moment estimator.
We give a case study to illustrate the effects that erroneous assumptions for
the ratio of variance of errors can have on the maximum likelihood estimators.
Section 5 discusses a fourth moment estimator and shows a circular relationship
to the maximum likelihood estimator. Section 6 develops a minimum deviation
estimator derived by minimizing Eq. (2) in Sec. 2 with respect to � for fixed �1.
Section 7 contains our Monte Carlo simulations where we illustrate the effects
that erroneous assumptions for the ratio of variance of errors can have on the
maximum likelihood estimators and we compare the efficiencies of the above
mentioned estimators. Supporting Maple worksheets are available from the link
http://people.virginia.edu/˜der/ODriscoll_Ramirez/.

2. Minimizing Squared Oblique Errors

From the data point �xi� yi� to the fitted line y = h�x� = �0 + �1x, the vertical
length is ai = �yi − �0 − �1xi�� the horizontal length is bi = �xi − �yi − �0�/�1� =
���1xi − yi + �0�/�1� = �ai/�1�, and the perpendicular length is hi = ai/

√
1+ �2

i .
Using standard notation we set Sxx =

∑n
i=1�xi − x�2, Syy =

∑n
i=1�yi − y�2, Sxy =∑n

i=1�xi − x��yi − y�, correlation 	 = Sxy/
√
SxxSyy, Sxxxy =

∑
�xi − x�3�yi − y� and

Sxyyy =
∑
�yi − y�3�xi − x�.

For the oblique length from �xi� yi� to �h−1�yi�+ ��xi − h−1�yi��� yi + ��h�xi�−
yi�� (the horizontal error is �1− ��bi = �1− ��ai/��1� and the vertical error
is �ai), the sum of squared horizontal, respectively, vertical, errors are given
by SSEh��0� �1� �� = �1− ��2�

∑n
i=1 a

2
i �/�

2
1 and SSEv��0� �1� �� = �2

∑n
i=1 a

2
i . In a

comprehensive article by Riggs et al. (1978), the authors placed great emphasis
on the importance of equations being dimensionally correct and state that: “It
is a poor method indeed whose results depend upon the particular units chosen
for measuring the variables � � � and that invariance under linear transformations
is equivalent to requiring the method to be dimensionally correct.” So that our
equation is dimensionally correct we consider

SSEo��0� �1� �� = �1− ��2
SSEh


̃2
�

+ �2
SSEv


̃2
�

(1)

where �
̃2
�� 
̃

2
� � are Madansky’s moment estimators of the variance in the horizontal,

respectively vertical, directions. In Sec. 3, we show that this is equivalent to using

SSEo��0� �1� �� = �1− ��2SyySSEh + SxxSSEv� (2)
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Geometric View of Measurement Errors 1375

Similar to that shown in O’Driscoll et al. (2008), the solution of 
SSEo/
�0 = 0 is
given by �0 = y − �1x and the solutions of 
SSEo/
�1 = 0 are the roots of the fourth
degree polynomial equation in �1, namely

P4��1� = �2

√
Sxx
Syy

Sxx
Syy

�4
1 − �2

Sxx
Syy

	�3
1 + �1− ��2	�1 − �1− ��2

√
Syy

Sxx
= 0� (3)

With � = 1 we recover the minimum squared vertical errors with estimated slope
�ver
1 , and with � = 0 we recover the minimum squared horizontal errors with

estimated slope �hor
1 .

For each fixed � ∈ �0� 1�, there corresponds �1 ∈ ��ver
1 � �hor

1 � which satisfies
Eq. (3), and conversely, for each fixed �1 ∈ ��ver

1 � �hor
1 �, there corresponds � ∈ �0� 1�

such that minimizing the sum of the squared oblique errors has estimated slope
�1. In particular, the geometric mean estimator �

gm
1 = √

Syy/Sxx has the oblique
parameter � = 0�5. We measure the angle �� of the oblique projection associated
with � using the line segments �x� y� to �x� h�x�� and �x� h�x�� to �h−1�y�� y�. When
the slope �1 is close to one, for � near one we anticipate �� to be near 45� and for
� close to zero we anticipate �� to be near 135�. The angles are computed from the
Law of Cosines.

A similar argument to that of O’Driscoll et al. (2008) shows that P4��1� has
exactly two real roots, one positive and one negative with the global minimum being
the positive (respectively negative) root corresponding to the sign of Sxy. Riggs et al.
(1978) in Eq. (119) also noted the role of the roots of a similar quartic equation in
determining the slope estimators.

3. Measurement Error Model and Second Moment Estimation

We now consider the measurement error (errors-in-variables) model as follows.
In this article, it is assumed that X and Y are random variables with respective
finite variances 
2

X and 
2
Y , finite fourth moments and have the linear functional

relationship Y = �0 + �1X. The observed data ��xi� yi�� 1 ≤ i ≤ n� are subject to
error by xi = Xi + �i and yi = Yi + �i where it is also assumed that � is N�0� 
2

�� and
� is N�0� 
2

� �. In our simulation studies we will use an exponential distribution for X.
It is well known, in a measurement error model, that the expected value

for �ver
1 is attenuated to zero by the attenuating factor 
2

X/�

2
� + 
2

X�, called the
reliability ratio by Fuller (1987). Similarly, the expected value for �hor

1 is amplified
to infinity by the amplifying factor �
2

Y + 
2
� �/


2
Y . Thus, for the measurement error

model, when both the vertical and horizontal models are reasonable, a compromise
estimator such as the geometric mean estimator �

gm
1 is hoped to have improved

efficiency.
Madansky’s moment estimators for �
2

�� 

2
� � are


̃2
� =

Sxx
n

− Sxy

n�1

�

(4)


̃2
� =

Syy

n
− �1Sxy

n

from which it directly follows that �gm
1 is a fixed point of the ratio function �1 =


̃���1�/
̃���1�.
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1376 O’Driscoll and Ramirez

However, Lindley and El-Sayyad (1968) proved that the expected value of �gm
1

is biased unless 
2
�/


2
Y = 
2

�/

2
X .

We now return to the assertion made in Sec. 1. A natural standardized weighed
average for the oblique model is shown in Eq. (1) and using the fixed point solution
of the ratio function in this equation yields the equivalent model given in Eq. (2).

4. The Maximum Likelihood Estimator

If the ratio of the error variances � = 
2
�/


2
� is assumed finite, then Madansky (1959),

among others, showed that the maximum likelihood estimator for the slope is

�mle
1 =

�Syy − �Sxx�+
√
�Syy − �Sxx�

2 + 4�	2SxxSyy

2	
√
SxxSyy

� (5)

It also follows that if � = 1 in Eq. (5) then the MLE (often called the
Deming Regression estimator) is equivalent to the perpendicular estimator, �per

1 , first
introduced by Adcock (1878). In the particular case where � = Syy/Sxx, then �mle

1 has
a � value of 0�5. We note that Syy/Sxx is a good estimator of 
2

y/ 
2
x, but in general, it

is not a good estimator of the error ratio � = 
2
�/ 
2

�. In Sec. 5, we discuss a moment
estimator �̃ for ��

In Table 1, we record the corresponding obliqueness parameter � for the
maximum likelihood model for given typical values. Small values near 0 support
OLS(x � y), denoted by �hor

1 , and large values near 1 support OLS(y � x), denoted by

Table 1
Values for � for typical �	� �� Sxx/Syy�

� = 0�500 0�500 0�500 0�500 1�000 1�000 1�000 1�000 2�000 2�000 2�000 2�000
	 = 0�200 0�400 0�600 0�800 0�200 0�400 0�600 0�800 0�200 0�400 0�600 0�800

Sxx/Syy = 1/2 0�033 0�111 0�197 0�273 0�089 0�223 0�316 0�375 0�500 0�500 0�500 0�500
Sxx/Syy = 1 0�089 0�223 0�316 0�375 0�500 0�500 0�500 0�500 0�911 0�777 0�684 0�625
Sxx/Syy = 2 0�500 0�500 0�500 0�500 0�911 0�776 0�684 0�625 0�967 0�889 0�803 0�727

Table 2
Error ratios for Madansky’s moment estimators for varying �1


̃2
� 
̃2

�

̃2�

̃2�

�ver
1 0 1−	2

n
Syy �

�hor
1

1−	2

n
Sxx 0 0

�
gm
1

1−	

n
Sxx

1−	

n
Syy

Syy
Sxx

�
per
1

1
2

Sxx + Syy−
√

�Sxx−Syy�
2 + 4	2SxxSyy

n
1
2

Sxx + Syy−
√

�Sxx−Syy�
2 + 4	2SxxSyy

n
1

�mle
1

1
2

Sxx + Syy
� −

√
�Sxx− Syy

� �2 + 4	2Sxx
Syy
�

n
1
2

�Sxx + Syy−
√

��Sxx−Syy�
2 + 4	2�SxxSyy

n
�
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Geometric View of Measurement Errors 1377

�ver
1 . For fixed ��� 	�, the values for the obliqueness parameter � in each column

of Table 1 increase indicating the model moves from �hor
1 towards �ver

1 . With
� = Syy/Sxx, �

mle
1 = �

gm
1 as shown by the cells of Table 1 with � = 0�500.

The Madansky’s moment estimators �
̃2
�� 
̃

2
� � depend on the choice of �1. In

Table 2, we record the effect of varying slopes on the moments and their ratio when
computable.

In the next section, we introduce a second moment estimator for � and a fourth
moment estimator for �1�

5. Fourth Moment Estimation

When � is unknown, Solari (1969) showed that the maximum likelihood estimator
for the slope �1 does not exist, as the maximum likelihood surface has a saddle point
at the critical value. Earlier, Lindley and El-Sayyad (1968) suggested, in this case,
that the maximum likelihood method fails as the estimator would be the geometric
mean estimator which converges to the wrong value. Sprent (1970) pointed out the
result of Solari does not imply that the maximum likelihood principle has failed, but
rather that the likelihood surface has no maximum value at the critical value.

Copas (1972) offered some advice for using the maximum likelihood method.
He assumed the data has rounding-off errors in the observations which allows for an
approximated likelihood function to be used, and that this approximated likelihood
function is bounded. His estimator for the slope has the rule

�
cop
1 =

{
�ver
1 if Syy < Sxx

�hor
1 if Syy > Sxx

� (6)

so the ordinary least squares estimators are used depending on whether ��gm
1 � < 1 or

��gm
1 � > 1.
The Copas estimator is not continuous in the data as a small change in data can

switch the direction of the inequality Syy < Sxx which will cause a jump discontinuity
in the estimator �cop

1 . To achieve continuity in the data, we adjust the range of the
fourth moment estimator �mom

1 described in Gillard and Iles (2005) to account for
admissible values for �
2

�� 

2
� �; see also Gillard and Iles (2009).

The basic second moment estimators for 
̃2
� and 
̃2

� are shown in Eq. (4). Since
variances must be positive, we have the admissible range for the moment estimator
for �̃1 as

�ver
1 = Sxy

Sxx
< �̃1 <

Syy

Sxy
= �hor

1 � (7)

Following Gillard and Iles (2005), a fourth moment estimator, �̃1, is given by

�̃1 =
√

Sxyyy − 3SxySyy
Sxxxy − 3SxySxx

� (8)

For example, consider the �x� y� data set ��1� 1�� �2� 3�� �3� 2�� �4� 4�� with �
gm
1 = 1.

The estimator �cop
1 has a jump discontinuity at �x4� y4� since for �x4� y4� = �4� 3�99�,

�
cop
1 = 0�7970, and for �x4� y4� = �4� 4�01�, �cop

1 = 1�2528. The corresponding values

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
V

ir
gi

ni
a,

 C
ha

rl
ot

te
sv

ill
e]

, [
D

. E
. R

am
ir

ez
] 

at
 0

6:
14

 2
0 

M
ay

 2
01

5 



1378 O’Driscoll and Ramirez

for �̃1 are �0�9971� 1�0029�, respectively, demonstrating the smoothing achieved
using the adjusted fourth moment estimator.

As pointed out by the referee, fourth moment estimators will require larger
sample sizes in comparison with lower order moment estimators and for this
estimator to be feasible both the numerator and denominator of Eq. (8) must
be significantly different from zero. In keeping with this recommendation for
the underlying distribution we used in our simulation studies the exponential
distribution, whose kurtosis is significantly different from zero, sample sizes of 100
and found that �̃1 was well defined around 99% of the time. If X and Y are highly
correlated, then Sxyyy/SxySyy − 3 and Sxxxy/SxySxx − 3 are crude estimators of the
kurtosis. When the kurtosis is near zero, these estimators can have different signs
and the radicand in Eq. (8) will be negative, in which case we recommend using the
geometric mean estimator.

To satisfy Eq. (7) we define �mom
1 as

�mom
1 =



�ver
1 if �̃1 ≤ �ver

1

�̃1 if �ver
1 ≤ �̃1 ≤ �hor

1

�hor
1 if �̃1 ≥ �hor

1

� (9)

This is a Copas-type estimator with the moment estimator �̃1 used to “smooth out”
the jump discontinuity inherent in the Copas estimator. We next study the circular
relationship between this adjusted fourth moment estimator and the maximum
likelihood estimator with fixed �.

We will define the moment estimator ���1� as a function of �1, then use this
value to compute �mle

1 ��� as a function of �. Finally, we note that �mle
1 ����̃1�� =

�̃1, showing the circular relationship between the estimators ��̃1� �
mle
1 �. Thus,

our moment estimator also has the functional form of the maximum likelihood
estimator with fixed �.

Set �̃��̃1� = 
̃2
�/
̃

2
� so

�̃��̃1� =
Syy − �̃1	

√
SxxSyy

Sxx − 	/�̃1

√
SxxSyy

� (10)

We use �̃��̃1� in Eq. (5) to determine �mle
1 ��̃��̃1��. As �̃1 → �hor

1 the numerator in
Eq. (10) tends to zero so �̃��̃1� → 0 and �mle

1 ��̃��̃1�� → �hor
1 ; similarly, as �̃1 → �ver

1

the denominator in Eq. (10) tends to zero so �̃��̃1� → � and �mle
1 ��̃��̃1�� → �ver

1 �
A stronger result is given in the following Proposition.

Proposition 5.1. For each �1, �
mle
1 ��̃��1�� = �1 and in particular �mle

1 ��̃��̃1�� = �̃1.

Proof. In Eq. (5), solve �mle
1 ��� = �1 for � = �0, and then check that �0 is the same

as in Eq. (10).

An example helps to demonstrate the smoothing achieved with the moment
estimator �mom

1 . Assume �	 = 0�5� Sxx = 1� Sxxxy = 10� Sxyyy = 5�. Equation (7)
requires that 0�13029 ≤ Syy ≤ 1�31862. As Syy varies over the admissible values for
Syy, �̃��̃1� varies over �0��� and �̃1 varies over ��ver

1 � �hor
1 � and �mle

1 ��̃��̃1�� = �̃1, a
surprising result as shown in Table 3.
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Geometric View of Measurement Errors 1379

Table 3
Slope estimates with �	 = 0�5� Sxx = 1� Sxxxy = 10� Sxyyy = 5�

Syy �ver
1 �̃1 �hor

1 �̃��̃1� �mle
1

0�1303 0�1805 0�7219 0�7219 0�0000 0�7219
0�2000 0�2236 0�7222 0�8944 0�0558 0�7222
0�4000 0�3164 0�7145 1�2649 0�3123 0�7145
0�6000 0�3873 0�6977 1�5492 0�7412 0�6977
0�8000 0�4472 0�6734 1�7889 1�4850 0�6734
1�0000 0�5000 0�6417 2�0000 3�0760 0�6417
1�2000 0�5477 0�6020 2�1909 9�6582 0�6020
1�3186 0�5742 0�5742 2�2966 � 0�5742

6. Minimum Deviation Estimation

From Sec. 1, with fixed �1 the solution of 
SSEo/
� = 0 is given by � = Syy/�Syy +
�2
1Sxx�. Substituting �mom

1 for �1 in this result for � produces a Minimum Deviation
type estimator which we denote by �md

1 , with �ver
1 ≤ �md

1 ≤ �hor
1 .

7. Monte Carlo Simulation

Riggs et al. (1978) stated that “no one method of estimating �1 is the best method
under all circumstances.” To determine the efficiency of the above estimators we
conduct a Monte Carlo simulation which uses X with an exponential distribution
with mean �X = 10 (and 
X = 10) and Y = X so �1 = 1 and �0 = 0. Both X and
Y are subject to errors 
2

�, respectively, 

2
� where �
2

�, 

2
� � ∈ �1� 4� 9�× �1� 4� 9�. The

sample size n is chosen as 100.
The first simulation, with the number of replications R = 100, summarized in

Table 4, reports on the bias in the MLE estimator in using a misspecified value of �.
For �
2

�, 

2
� � ∈ �1� 4� 9�× �1� 4� 9�, � ranges with ratios from 1�9 to 9�1 The true error

Table 4
Percentage Bias of MLE estimator for the assumed ratios �# for varying values of

� = 
2
�/


2
�

��#� �� 1�9 1�4 4�9 1�1 4�4 9�9 9�4 4�1 9�1

��1 = 1� �0 = 0� n = 100� R = 100�
1�9 0�166 0�502 2�164 0�870 3�663 7�995 8�723 3�592 9.282
1�4 −0�914 −0�012 0�811 0�666 2�807 6�087 7�351 3�067 8.265
4�9 −2�066 −0�564 −0�643 0�445 1�878 3�999 5�838 2�496 7.137
1�1 −4�067 −1�541 −3�184 0�051 0�218 0�266 3�083 1�467 5.058
4�4 −4�067 −1�541 −3�184 0�051 0�218 0�266 3�083 1�467 5.058
9�9 −4�067 −1�541 −3�184 0�051 0�218 0�266 3�083 1�467 5.058
9�4 −5�957 −2�495 −5�590 −0�342 −1�417 −3�330 0�338 0�437 2.936
4�1 −6�956 −3�016 −6�856 −0�561 −2�310 −5�230 −1�161 −0�136 1.748
9�1 −7�840 −3�489 −7�973 −0�763 −3�119 −6�899 −2�513 −0�663 0.657
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1380 O’Driscoll and Ramirez

ratios of � are recorded in the first row and the assumed error ratios �#, which are
used to compute �mle

1 , are recorded in the first column, both in ascending order.
As expected, the values for �# = � show the smallest bias, and in each column

for a given � the bias shows that the estimated slope moves from over estimating the
true value to under estimating the true value of �1 = 1. This was anticipated since
for �# near zero the maximum likelihood estimator favors �hor

1 which over estimates
�1� and correspondingly, for large �# the maximum likelihood estimator favors �ver

1

which under estimates �. If we assume that �# = 1, we would expect that as the the
true error ratio � increases above 1 the bias would increase accordingly. However,
this is not the case as can be seen from Row 4 of Table 4 indicating that the bias is
not only dependent on the difference between the true error ratio � and the assumed
error ratio �# but also on the magnitude of each of the errors 
2

� and 
2
� . In practice,

the researcher may not have any knowledge of �
2
�� 


2
� � and may assign a value of

1 to �#. If the true error ratio � is in fact 1/16, then Table 7 (from our second
simulation) shows that the (MSE, Bias) values for �

per
1 are (7.406, −37.480) while

those for �mom
1 are (5.717, −2.813) indicating a substantial improvement.

We conducted a second large scale Monte Carlo simulation study with
R = 1�000 to demonstrate the improvement in the adjusted fourth moment
estimator �mom

1 over the Copas estimator which has a jump discontinuity.
Simulations for other slope estimators have been reported by Hussin (2004).
We used an exponential distribution for X with �X = 10, and set �1 = 1
and �1 = 0. The values for the error standard deviations were �
�, 
�� ∈
�1� 2� 3� 4�× �1� 2� 3� 4�, the sample size was n = 100 and the number of replications
R = 1�000. We report in Tables 5–7 the MSE and the Bias for the estimators
��ver

1 � �hor
1 � �

per
1 � �

gm
1 � �mom

1 � �
cop
1 � �md

1 � for �
�, 
�� ∈ ��1� 2�� �1� 3�� �1� 4��. Similar
results hold for �
�, 
�� ∈ ��2� 1�� �3� 1�� �4� 1�� Note that in each case the adjusted
fourth moment estimator �mom

1 is more efficient than the Copas estimator. To see
this we compare the pairs of values (MSE, Bias) in the three tables. For �mom

1

these are ��1�001�−0�830�� �2�786�−1�807�� �5�717�−2�813�� and for Copas these
are ��2�378�−2�410�� �8�769�−7�347�� �23�018�−13�848��. For the three reported
simulations in Tables 5, 6, and 7, nearly all of the three replications with R = 1�000
had the adjusted fourth moment estimator �mom

1 well-defined with exceptions
occurring with frequency {1.1%, 1.7%, 2.4%}, respectively. In these rare cases, we

Table 5
X is Exp�10�, �1 = 1, �0 = 0, R = 1�000, n = 100 �
� = 1� 
� = 2�

MSE ∗ 10−3 %Bias � ��

OLS∗ reports average MSE and average absolute Bias for ��ver
1 � �hor

1 �

�ver
1 2.001 −3.843 1.000 46.12

OLS∗ 1.336 2.518 NA NA
�hor
1 0.670 1.193 0.000 136.12

�
per
1 0.688 −1.396 0.507 89.99

�
gm
1 0.653 −1.360 0.500 90.78

�mom
1 1.001 −0.830 0.339 108.27

�
cop
1 2.378 −2.410 0.651 74.47

�md
1 0.646 −1.336 0.497 91.06
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Table 6
X is Exp�10�, �1 = 1, �0 = 0, R = 1�000, n = 100 �
� = 1� 
� = 3�

MSE ∗ 10−3 %Bias � ��

OLS∗ reports average MSE and average absolute Bias for ��ver
1 � �hor

1 �

�ver
1 8.370 −8.459 1.000 47.53

OLS∗ 4.847 4.831 NA NA
�hor
1 1.324 1.203 0.000 137.53

�
per
1 2.688 −3.954 0.520 89.60

�
gm
1 2.423 −3.760 0.500 92.19

�mom
1 2.786 −1.807 0.318 110.94

�
cop
1 8.769 −7.347 0.848 58.14

�md
1 2.309 −3.584 0.490 93.196

followed the rule of using �
gm
1 for the slope estimator. Furthermore, in about half

of the runs �49� 45� 48�, the fourth moment estimator �̃1 satisfied the admissible
conditions in Eq. (7) and we used the bounds for the adjusted fourth moment
estimator �mom

1 to account for inadmissible values.
If the researcher does have information on the relative size of the errors, then

he may choose either of ��ver
1 � �hor

1 � with �hor
1 favored when 
2

� is much bigger than

2
� . Without prior knowlwdge of the errors ratio, a fairer comparison of each of the

above estimators is to use OLS(y � x) and OLS(x � y) each 50% of the time. Thus,
in the Tables we report the average for the MSE and the average of the absolute
deviation of the biases for the two OLS estimators. These average (MSE, Bias)
values from the tables are ��1�336� 2�518�� �4�847� 4�831�� �12�46� 7�858�� showing
the improved efficiency of �mom

1 . As anticipated, the minimum deviation estimator
�ml
1 achieves further improvement in reduction of (MSE, Bias) with values

��0�646�−1�336�� �2�309�−3�584�� �5�578�−6�288��.

Table 7
X is Exp�10�, �1 = 1, �0 = 0, R = 1�000, n = 100 �
� = 1� 
� = 4�

MSE ∗ 10−3 %Bias � ��

OLS∗ reports average MSE and average absolute Bias for ��ver
1 � �hor

1 �

�ver
1 22�791 −14.376 1.000 49.43

OLS∗ 12�46 7.858 NA NA
�hor
1 2�134 1.339 0.000 139.43

�
per
1 7�406 −7.480 0.539 89.95

�
gm
1 6�242 −6.880 0.500 94.08

�mom
1 5�717 −2.813 0.286 114.51

�
cop
1 23�018 −13.848 0.950 52.71

�md
1 5�578 −6.288 0.480 96.04
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1382 O’Driscoll and Ramirez

8. Summary

We modified the fourth moment estimator of the slope from Gillard and Iles (2005)
to show how to remove the jump discontinuity in the estimator given by Copas
(1972). We show how the moment estimators ��mom

1 � 
̃2
�� 
̃

2
� � can be used to determine

an MLE estimator which surprisingly is the original moment estimator of the slope.
Our simulations support our claim that both ��mom

1 � �md
1 � are more efficient than the

average of the OLS estimators.
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