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Lower and upper spectral bounds are known for positive-definite (k × k) matrices in (S+
k , �L) under

Loewner (Uber monotone Matrixfunktionen. Math Z. 1934;38:177–216) ordering. Lower and upper
singular bounds for matrices of order (n × k) in (Fn×k , �) derive under an induced ordering. These
orderings are combined here to the following effects. Given two first-order experimental designs (X , Z)

in (Fn×k , �), their upper singular bound XM enhances both X and Z in that its Fisher Information matrix
dominates those for both X and Z, thus ordering essentials in Gauss–Markov estimation. Moreover, if
�, �, and � are dispersion matrices for linear estimators under X , Z, and XM , respectively, then � is the
spectral lower bound for (�, �) in (S+

k , �L). In essence this algorithm identifies elements in Z comple-
mentary to those of X , and combines these into XM . Case studies illustrate gains to be made thereby in first
and second-order designs. Specifically, two examples demonstrate that designs optimal under separate cri-
teria may be combined into a single design dominating both. In addition, selected examples demonstrate
that classical second-order designs may be improved inter se.

Keywords: symmetrical and rectangular matrix extremes; monotone functions; efficiency indices; design
augmentation

1. Introduction

Extremal problems have pervaded applied probability and statistics from their beginnings. These
include maximal, minimal, and optimal solutions as foundation stones. Such solutions often shed
new light on structural aspects of the systems at hand.

Specifically, spectral lower (A ∧ B) and upper (A ∨ B) bounds are known for positive-definite
matrices (A, B) in (S+

k , �L) under Loewner [1] ordering. In addition, lower (X ∧ Z) and upper
(X ∨ Z) singular bounds derive for matrices (X , Z) in (Fn×k , �) under an invariant ordering
induced on Fn×k . Details are found in [2]. These orderings are combined here to the following
effects. Given two first-order experimental designs (X , Z) in (Fn×k , �), their upper singular
bound XM enhances both X and Z in that its Fisher Information matrix dominates those for
both X and Z, thus ordering essentials in Gauss–Markov procedures. These gains are achieved
formally on isolating elements of Z that serve to complement those of X , and combining those
elements with X to obtain XM . Moreover, if �, �, and � are dispersion matrices for linear
estimators under X , Z, and XM , respectively, then � is the spectral lower bound for (�, �) in
(S+

k , �L), i.e.� = min(�, �).
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In a standard design using n = 8 runs, a subsequent example demonstrates that half the design,
when modified as prescribed here, yields estimates for linear and second-order coefficients more
precise than the original design with eight runs. An outline of the paper follows.

Preliminary developments in Section 2 establish notation and essentials for orderings on
(S+

k , �L) and (Fn×k , �). Our main results are developed in Section 3, where two first-order exper-
imental designs (X , Z) combine to give their upper singular bound XM , its Fisher Information
matrix dominating those for both X and Z. Essentials in Gauss–Markov procedures are thereby
ordered as documented in detail. Applications in Section 4 serve to illustrate these findings
through selected case studies.

2. Preliminaries

Conventions for notation are followed by basic properties of (S+
k , �L) and (Fn×k , �), as well

as functions monotone on these spaces. The principal features summarized here are covered in
detail in [2]; two essential theorems from that work are stated without proof in the Appendix, as
the cited Proceedings source may not be widely available.

2.1. Notation

Denote by R
k the Euclidean k-space and by R

k
+ its positive orthant; by Fn×k the real (n × k)

matrices of rank k ≤ n; by Sk the real symmetric (k × k) matrices, with S
0
k , S

+
k and Dk as their

positive semidefinite, positive definite, and diagonal varieties. The transpose, trace, and deter-
minant of A are denoted by A′, tr(A), and |A| where applicable; and special arrays include
the unit vector 1k = [1, . . . , 1]′ ∈ R

k , the unit matrix Ik , and a typical diagonal matrix Dα =
Diag(α1, . . . , αk) ∈ Dk . Transformation groups acting on R

k include the general linear group
Gl(k) and the real orthogonal group O(k); and elements of Hn×k comprise the semiorthogonal
matrices H such that HH ′ is idempotent of rank k and H ′H = Ik . The spectral decomposition

A = ∑k
i=1 αiqiq

′
i ∈ S

+
k yields its symmetric root A

1
2 = ∑k

i=1α
1
2
i qiq

′
i. The singular decomposi-

tion of X ∈ Fn×k is X = ∑k
i=1λipiq

′
i = PDλQ′ in which P = [p1, . . . , pk] ∈ Hn×k contains the

left singular vectors, Q = [q1, . . . , qk] ∈ O(k) contains the right singular vectors, and Dλ =
Diag(λ1, . . . , λk), with {λ1 ≥ λ2 ≥ · · · ≥ λk}, comprise the ordered singular values of X .

Standard usage refers to independent, identically distributed (iid) variates, their cumulative
distribution function (cdf) and L(Y) the distribution of Y , with Nk(μ, �) as the Gaussian law on
R

k having the mean E(Y) = μ and dispersion matrix V(Y) = �.

2.2. Models

Models {Y = β01n + Xβ + ε} with intercept typically are encountered in practice, under
assumptions to follow.

Assumptions

A1: E(ε) = 0 and V(ε) = σ 2In;
A2: L(ε) = Nn(0, σ 2In).

The columns of X(n × k) often are centered so that 1′
nX = 0. Nonlinear models emerge

on replacing X by some function f (X), so that {Y = β01n + f (X)β + ε}. In what follows
we distinguish carefully between the design matrix X , and the model matrix X(X) as in the
following.
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1800 D.R. Jensen and D.E. Ramirez

Definition 1

(i) Given a design X in {Y= β01n + f (X)β + ε}, the model matrix X incorporates both the
design and model as X = [1n, f (X)]. For another design Z in context, the model matrix is
Z = [1n, f (Z)]. retaining the functional form f (·) together with the new design.

(ii) The Fisher Information matrix for β is σ 2I(β) = X′X under design X, and σ 2I(β) = Z′Z
under design Z, with inverses V(β̂) = σ 2(X′X)−1 and V(β̂) = σ 2(Z′Z)−1 under the respec-
tive designs. For notational convenience we take σ 2 = 1.00 in much that follows, reinstating
σ 2 
= 1.00 as required for clarity.

Remark 1 The model {Y = β01n + Xβ + ε}, linear in X ∈ Fn×k , has the model matrix X =
[1n, X] of order (n × (k + 1)). A full second-order model with k = 2 regressors is

{Yi = β0 + xi1β1 + xi2β2 + x2
i1β11 + x2

i2β22 + xi1xi2β12 + εi; 1 ≤ i ≤ n}

so that rows of X (n × 6) are now [1, x1, x2, x2
1, x2

2, x1x2].

2.3. Ordered spaces

Given a binary relation �0, a pair (A, �0), is said to be linearly ordered if �0 is reflexive,
transitive, antisymmetric and complete; partially ordered if reflexive, transitive and antisym-
metric; and preordered if reflexive and transitive. A partially ordered set is a lower semi-lattice
if for any two elements x, y in A, there is a glb (greatest lower bound) x ∧ y in A; an upper
semi-lattice if there is a lub (least upper bound) x ∨ y in A; and a lattice if it is both a lower and
upper semi-lattice. Spaces having lower and upper bounds are central to this study. Of note here
are the following

2.3.1. Bounds on (Rk , ≥k)

Clearly (Rk , ≥k) is a lattice with a ∧ b = [a1 ∧ b1, . . . , ak ∧ bk]′ and a ∨ b = [a1 ∨ b1, . . . , ak ∨
bk]′}, where {ai ∧ bi = min(ai, bi)} and {ai ∨ bi = max(ai, bi)} for {1 ≤ i ≤ k}. See,[3] for
example.

2.3.2. Bounds on (S+
k , �L)

Ordered as in [1], A �LB if and only if A − B ∈ S
0
k , with A �LB whenever A − B ∈ S

+
k . To

motivate, let � and � be dispersion matrices in S
+
k for Gauss–Markov estimators in two models,

say A and B. The Rayleigh quotient here is

γk ≤ u′�u
u′�u

= w′�− 1
2 � �− 1

2 w
w′w

≤ γ1, (1)

where {wi = �
1
2 ui; 1 ≤ i ≤ k}, and {γ1 ≥ γ2 ≥ · · · ≥ γk > 0} are eigenvalues from the spec-

tral decomposition �− 1
2 � �− 1

2 = Q Diag(γ1, . . . , γk) Q′ with Q ∈ O(k). If neither � � � nor
�� �, then for some nonnegative (r, s) it would follow that

{γ1 ≥ · · · ≥ γr > 1 = γr+1 = · · · = γr+s > γr+s+1 ≥ · · · ≥ γk > 0}. (2)
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Definition 2 Regarding Q = [q1, . . . , qk], identify

L1 = Sp(q1, . . . , qr) ⇐⇒ {γ1, . . . , γr}
L2 = Sp(qr+1, . . . , qr+s) ⇐⇒ {γr+1, . . . , γr+s}
L3 = Sp(qr+s+1, . . . , qk) ⇐⇒ {γr+s+1, . . . , γk}

as subspaces of R
k corresponding to the indicated eigenvalues.

Clearly at most two of {L1, L2, L3} may be empty, and � �L� asserts that L3 is empty. For
nonempty subspaces, the model A is uniformly more efficient than B for linear parametric func-
tions in L1; the models are equi-efficient for functions in L2; and B is uniformly more efficient
for functions in L3. Here efficiency refers both to Fisher’s variance comparisons in estimation
(see [4]), and to Pitman’s power comparisons in tests for linear hypotheses (see [5]).

That (Sk , �L) is not a lattice is noted in [6, p.142]. Nonetheless, (S+
k , �L) admits lower and

upper spectral bounds that are tight. This follows on imbedding Dγ = Diag(γ1, . . . , γk) into
(Rk , ≥k), itself a lattice as noted by Vulikh.[3] These spectral bounds emerge as follows; details
are given in [2].

Definition 3 Given (�, �) in (S+
k , �L) such that neither � � � nor � � �. Then the

matrices given by

� ∧ � = �
1
2 Q(Dγ ∧ Ik)Q′�

1
2 and � ∨ � = �

1
2 Q(Dγ ∨ Ik)Q′�

1
2

are called the spectral glb and the spectral lub, respectively, for (�, �).

Properties of these are essential to this study: principally, whether the operation � ∧ � =
� ∧ � commutes, and whether the spectral bounds are tight. Both are answered affirmatively, as
summarized without proof in Theorem A.1 of the Appendix.

2.3.3. Bounds on (Fn×k , �)

Ordering of (Fn×k , �) is induced from that of (S+
k , �L) such that X � Z if and only if X ′X�LZ ′Z,

requiring as before that (X , Z) ∈ Fn×k should be of rank k ≤ n. For further details see.[7] This
ordering is invariant in that X � Z if and only if PXB � QZB for any (P, Q) ∈ O(n) and B ∈
Gl(k), and the antisymmetry axiom holds up to equivalence under O(n) acting from the left.

To proceed, begin with (X , Z) ∈ Fn×k; take

(X , Z) → (X(Z ′Z)−1/2, Z(Z ′Z)−1/2) → (PDλQ′, UIkQ′), (3)

the latter as their singular decompositions, where (P, U) ∈ Hn×k are the left singular vectors, Q ∈
O(k) the right singular vectors, and Dλ = Diag(λ1, . . . , λk), the singular values of X(Z ′Z)−1/2

ordered as {λ1≥· · ·≥λk > 0}. Again (Fn×k , �) is not a lattice, nor can it inherit lattice properties
through its induced ordering. Nonetheless, (Fn×k , �) admits lower and upper singular bounds
that themselves are tight. Details are supplied in [2], culminating in the following.

Definition 4 For (X, Z) ∈ (Fn×k , �) such that neither X � Z nor Z � X, the matrices given by

X ∧ Z = P(Dλ ∧ Ik)Q′(Z′Z)
1
2 and X ∨ Z = P(Dλ ∨ Ik)Q′(Z′Z)

1
2 (4)

are called the singular glb and the singular lub, respectively, for (X, Z).
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1802 D.R. Jensen and D.E. Ramirez

Properties of these are summarized without proof in Theorem A.2 of the Appendix. In
addition, the following facts are used subsequently.

Lemma 1 Given (PDλQ′, UIkQ′) as the singular decompositions of Equation (3) with (P, U) ∈
Hn×k , Q ∈ O(k), and Dλ = Diag(λ1, . . . , λk); the following hold.

(i) X may be recovered as X = PDλQ′(Z′Z)
1
2 ;

(ii) Z may be recovered as Z = PIkQ′(Z′Z)
1
2 .

Proof Details are given in [2]; but it is crucial to note that the singular values of Z(Z ′Z)−1/2

are repeated values of unity, so that its left and right singular vectors may be taken to be (P, Q),
as for X(Z ′Z)−1/2. �

Remark 2 The principal driver, namely X ∨ Z = P(Dλ ∨ Ik)Q′(Z ′Z)
1
2 , depends on Z only

through Z ′Z. Accordingly, X and Z need not have the same number of rows. For if Z ∈ Fs×k , then
the asserted properties continue to hold with X ∨ Z ∈ Fn×k , while Z ∨ X ∈ Fs×k and U ∈ Hs×k .
For this reason the commutative property of Theorem A.1(iii) fails for the entity X ∨ Z.

2.4. Efficiency indices

A real-valued function φ(·) on (S+
k , �L) is said to be order-preserving if A�LB implies φ(A) ≥

φ(B) on R
1. Denote these by 	(S+

k , �L), and by 	0(Sk , �L) the subclass invariant under orthog-
onal congruence and thus depending only on the eigenvalues of its matrix argument. Functions
in 	(S+

k , �L) are characterized in [8].
Central to {Y =Xβ + ε} are the Design X , the Fisher Information matrix σ 2I(β̂) = X ′X ,

its inverse V(β̂) = σ 2� = σ 2[�ij] with eigenvalues {Chi(�) = γi; 1 ≤ i ≤ k}, and correlation
matrix R. Designs often are evaluated on the variances of estimation and prediction, to include
the trace, determinant, and largest eigenvalue of � as the A, D and E indices in 	0(S

+
k , �L) as

in [9]. Earlier uses of determinants trace to |R | as the scatter coefficient, and to |� | as the gener-
alized variance, as in Frisch [10] and Wilks.[11] Wald [12] initially proposed E-efficiencies, but
opted instead for determinants, in his study of local power in the analysis of variance. Standard
references include Federov,[13] Silvey,[14] Pukelsheim,[15] for example. Various concepts of
universal optimality are reviewed and reassessed in [16] together with further references.

Nonetheless, the concept of vector efficiency is genuinely multidimensional, beyond capture
by any scalar, as seen through axiomatics in [4]. Even Kiefer [17] advocated that competing
designs be screened through multiple criteria. We survey a collection of scalar criteria (Cr) in
current vogue, as summarized in Table 1, to include gages of efficiency for subsets of parameters.
In regard to D-efficiency, recall that {(β̂ − β)′X ′X(β̂ − β) ≤ σ 2cα} is the confidence ellipsoid
for β with coefficient 1 − α whenever cα is the upper quantile of χ2(ν, 0) for suitable choice
of ν. Excluding MV, Table 1 criteria all belong to 	0.

Notions of Cr-optimality are pervasive. If minimal is deemed optimal, then X0 is said to be
Cr-optimal in a class {X i; i ∈ I }, if and only if {Cr(X0) ≤ Cr(X i); i ∈ I }. For example, the
design X0 with dispersion �0 is D-optimal if and only if |�0| ≤ |�i| for every {X i; i ∈ I }.

Subset efficiencies are of continuing interest.[18–27] Similarly, if β ′ = [β ′
1, β ′

2]; and if β̂
′ =

[β̂
′
1, β̂

′
2] is partitioned such that V(β̂1) = �11 and V(β̂2) = �22, then X0 is DS-optimal for β1

if and only if |�011| ≤ |�i11| for every design in the class {X i; i ∈ I }. Special properties of
determinants support the following connection between D and DS-efficiencies.

Lemma 2 Let {ρ1, . . . , ρr} be Hotelling’s [28] canonical correlations between vectors (β̂1, β̂2)

of orders (r × 1) and (s × 1) with r ≤ s. Then the D-efficiency of β̂, the D1
S-efficiency of β̂1, and
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Table 1. Efficiency criteria Cr for Design X having σ 2I(β̂) = X ′X and V(β̂) = � = [�ij], with eigenvalues
{Chi(�) = γi} ordered as {γ1≥· · ·≥γk}, where CrS refers to subset efficiencies, and with minimization as the operation
yielding Cr-optimal designs.

Criteria Description Comments

A, AS tr(�), tr(�11) A: Sum of Var(β̂i) of elements of β̂

D, DS |�|, |�11| D
1
2 : ∝ Vol{(β̂ − β)′X ′X(β̂ − β) ≤ σ 2cα}

E, ES Ch1(�), Ch1(�11) E: Maximal variance of c′β̂, ‖c‖ = 1
MV max{Var(β̂i); 1 ≤ i ≤ k} MV: Maximal variance of elements of β̂

T−1 1/tr(X ′X) T : tr(X ′X) = σ 2 tr(I(β̂))

c Var(c′β̂) c′β : A distinguished linear function
I σ 2

∫
R u′�u du I : Integrated Var(u′β̂) over R ⊂ R

k

V t′�t V : Prediction variance at fixed t ∈ R
k

the D2
S-efficiency of β̂2, are related as D = D1D2 × ∏r

i=1(1 − ρ2
i ), where

∏r
i=1(1 − ρ2

i ) is the
Alienation Coefficient of Hotelling.[28]

The following generalizes the notion of relative Fisher efficiency as the ratio of variances.

Definition 5 Identify Eff
Cr(X : Z) = Cr(Z)/Cr(X) in R

1
+ as the comparative efficiency of

design X relative to Z with regard to the criterion Cr. Specifically, with dispersion matrices
� from X and � from Z, then Eff

D(X : Z) = |�|/|�| is the ratio of their generalized variances.

3. The principal findings

Given designs X and Z, we examine essentials of XM = X ∨ Z as a design matrix itself, in
comparison with X and Z. Throughout we assume that neither X � Z nor Z � X . For if X � Z
dominates strictly, then no extractable elements of Z are available in order to augment X to
advantage, and similarly for Z � X . In what follows we often take X as reference, or otherwise
Z as reference on reversing their roles. This section deals principally with X ∈ Fn×k and typically
Z ∈ Fn×k , or alternatively as Z ∈ Fs×k . These on occasion may be required to be centered such
that 1′

nX = 0 and 1′
nZ = 0.

3.1. Matrix extremes

Further properties of the spectral lower and upper bounds of Section 2.3.2, and of the singular
lower and upper bounds of Section 2.3.3, are required. These are developed here in preparation
for applications to experimental designs and linear inference. In regard to models {Y = β01n +
Xβ + ε} and {Y = β01n + Zβ + ε}, we suppose from the outset that these are coherent in the
following sense.

Definition 6 Designs X and Z are said to be coherent when successive columns of X and Z
are in the same units.

First essentials for the maximal design XM , as induced through (X , Z) → XM = X ∨ Z, are
listed in the following.

Theorem 1 Given X and Z as coherent designs; construct A = (X′X)−1, B = (Z′Z)−1 and
XM = X ∨ Z.

(i) The design XM is coherent with X and Z;
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1804 D.R. Jensen and D.E. Ramirez

(ii) If the columns of X are centered such that 1′
nX = 0, then the columns of XM are centered

and 1′
nXM = 0;

(iii) The matrix X′
M XM has the representation

X′
M XM = X′P Diag(Ir, Is, γr+s+1

−1, . . . , γk
−1)P′X (5)

with (r, s, k) and P as in Equation (3);
(iv) The matrices X′

M XM , A and B are related as (X′
M XM )−1 = A ∧ B.

Proof (i) To identify units of columns of X ∨ Z in terms of Z and X , infer from Lemma 1(ii)
that Q′(Z ′Z)

1
2 = IkP′Z and from Definition 3 that

X ∨ Z = P(Dλ ∨ Ik)Q′(Z ′Z)
1
2 = G′Z (6)

with G′ = P(Dλ ∨ Ik)P′ of order (n × n) and rank k. That G′ is dimensionless, acting from
the left on columns of Z, implies that units of Z are preserved column-wise into X ∨ Z, giv-
ing conclusion (i). For conclusion (ii), Lemma 1(i) gives X = PDλQ′(Z ′Z)

1
2 , so that 1′

nX =
0 ⇐⇒ 1′

nP = 0 carries over to include 1′
n(X ∨ Z) = 0 from Definition 3. To continue, apply

Q′(Z ′Z)
1
2 = Dλ

−1P′X from Lemma 1(i) in going from the first to second lines of

X ′
M XM = (Z ′Z)

1
2 Q(Dγ ∨ Ik)Q′(Z ′Z)

1
2 (7)

= X ′PDλ
−1(Dγ ∨ Ik)Dλ

−1P′X (8)

= X ′P Diag(Ir, Is, γr+s+1
−1, . . . , γk

−1)P′X (9)

to give conclusion (iii), where Dλ = Diag(λ1, . . . , λk) are singular values as square roots of solu-
tions of |X ′X − γ Z ′Z| = 0. For conclusion (iv), invert (7) as (a) and invoke Definition 2 as (b),
where

(a) (X ′
M XM )−1 = (Z ′Z)−1/2Q(Dγ ∨ Ik)

−1Q′(Z ′Z)−1/2

(b) A ∧ B = (Z ′Z)−1/2Q(Dθ ∧ Ik)Q′(Z ′Z)−1/2

such that elements of Dθ are eigenvalues of (Z ′Z)
1
2 (X ′X)−1(Z ′Z)

1
2 , reciprocal to those of

(Z ′Z)−1/2X ′X(Z ′Z)−1/2, so that Dθ = Dγ
−1. That (a) and (b) are equal follows on noting that

(Dγ ∨ Ik)
−1 = (Dγ

−1 ∧ Ik), to give conclusion (iv). �

3.2. First-order models

Consider {Y = β01n + f (X)β + ε} such that f (X) = X . Throughout we take design matrices
to be centered. Accordingly, the model matrix is X = [1n, X]; the Fisher Information matrix is
σ 2I(β) = Diag(n, X ′X); consequently it suffices to consider only the design X and parameters
β ∈ R

k , and similarly for Z and XM = X ∨ Z. Basic properties follow on partitioning X ′P =
F = [F1, F2, F3] ∈ Fk×r ⊗ Fk×s ⊗ Fk×t, with r + s + t = k, to the following effect.

Definition 7 Let θ = F′β = [θ ′
1, θ ′

2, θ ′
3]′ as the canonical parameters in R

r ⊗ R
s ⊗ R

t, and
identify L1 = Sp(F1), L2 = Sp(F2), and L3 = Sp(F3) as the corresponding canonical subspaces.

Fundamentals, to include extremal properties of Fisher Information and dispersion matrices
for XM , are listed in the following.
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Theorem 2 Consider designs X, Z, and XM = X ∨ Z; their OLS solutions β̂X , β̂Z , and β̂M ;
and �, �, and � as inverses of their Fisher Information matrices I(β̂X ), I(β̂Z) and I(β̂M ).
Then

(i) I(β̂M ) is the lub of (I(X), I(Z)) in (S+
k , �L), i.e. I(β̂X ) ∨ I(β̂Z) = I(β̂M );

(ii) � is the glb of (�, �) in (S+
k , �L), i.e. � ∧ � = �;

(iii) Under Assumptions A, L(β̂M ) = Nk(β, σ 2�);
(iv) � = (P′X)−1Diag(Ir, Is, γr+s+1, . . . , γk)(X′P)−1 with {1 > γr+s+1 ≥ · · · ≥ γk > 0};
(v) � �L � and � �L �;

(vi) Linear parametric functions in L3 are estimated more precisely under XM than X,
specifically, V(θ̂3) = σ 2Diag(γr+s+1, . . . , γk) under XM and is σ 2It under X;

(vii) Linear parametric functions in L1 and L2 are estimated with equal precision under XM and
X.

(viii) Each efficiency criterion of Table 1 is no greater under XM than under X or Z.

Proof Definition 3 gives X ′X ∨ Z ′Z = (Z ′Z)
1
2 Q(Dγ ∨ Ik)Q′(Z ′Z)

1
2 , which is precisely (7),

to give conclusion (i). Conclusion (ii) is a restatement of Theorem 1(iv). Conclusion (iii) fol-
lows since {Y = β01n + XM β + ε} is a Gauss–Markov model. Conclusion (iv) follows on
inverting (9), where P′X is invertible by Lemma 1(i). Conclusion (v) follows from (ii) and
Appendix Theorem A.1(i). Given θ = F′β and θ3 = F′

3β from Definition 7, it follows that
V(θ̂) = σ 2Diag(Ir, Is, γr+s+1, . . . , γk) under XM , whereas V(θ̂) = σ 2Ik under X . Linear coeffi-
cients in L3 = Sp(F3) are of type {F3c; c ∈ R

t} so that c′θ3 = c′F3
′β is estimated with variance

V(c′F3
′β̂M ) = σ 2c′Diag(γr+s+1, . . . , γk)c under XM , and with variance σ 2c′I tc under X , for

every {c ∈ Sp(F3)}, to give conclusion (vi). Conclusion (vii) follows similarly, Conclusion (viii)
holds since X ′

M XM �LX ′X and � �L �, which implies {Chi(�) ≤ Chi(�); 1 ≤ i ≤ k} using
Theorem 3 of Bellman,[29, p. 115] in regard to functions in 	0(S

+
k , �L) monotone increasing

in the ordered eigenvalues. �

Remark 3 Through XM = X ∨ Z, the orderings of Definitions 3 and 4 come together. Conclu-
sion (i) asserts that I(β̂M ) = max(I(β̂X ), I(β̂Z)), and conclusion (ii) that � = min(�, �).

4. Case studies

To fix ideas, we turn to examples where X and Z need not have the same number of rows, as
noted in Remark 1.

4.1. Single regressor k = 1

Consider a straight-line model {Yi = β0 + xiβ1 + εi; 1 ≤ i ≤ n} together with a prospective
design having n = 8 centered regressors as in the first row of Table 2. Limited resources may
dictate using only half the runs, considered provisionally as z′ in the second row. It remains
to see whether evidence in x might combine with that of z in order to complement the latter.
The revised design vector zM = z ∨ x of Definition 4, also centered and of order n = 4, is listed
in the third row of Table 2. Straight-line regression analyses follow routinely on noting that
the first-order Fisher Information matrices at σ 2 = 1.00 are Diag(8, 8.00), Diag(4, 6.00), and
Diag(4, 8.00), respectively. Our tools effect improvements to first-order models as noted. For
effects of higher order, consider in addition {Yi = β0 + xiβ1 + x2

i β2 + εi}, and similarly for z and
zM , on appending squared elements to the rows of Table 2. Accordingly, as in Definition 1, take

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
V

ir
gi

ni
a,

 C
ha

rl
ot

te
sv

ill
e]

, [
D

. E
. R

am
ir

ez
] 

at
 1

1:
09

 0
8 

M
ar

ch
 2

01
6 



1806 D.R. Jensen and D.E. Ramirez

Table 2. Regressor vectors x′(1 × 8), z′(1 × 4), and (z ∨ x)′ = z′
M (1 × 4) with α = √

2.

x′ − 1.0000 1.0000 −α α − 1.00 1.00 0.00 0.00
z′ − 1.0000 1.0000 −α α
z′

M − 1.1547 1.1547 − 1.6330 1.6330

Table 3. Summary from dispersion matrices �, � and � corresponding to second-order
models X, Z, and ZM , to include variances, eigenvalues [γ1≥γ2≥γ3], and efficiency
diagnostics corresponding to A, D, E efficiency indices.

Variances Eigenvalues

Item X Z ZM X Z ZM

β̂0 0.3750 2.5000 2.5000 0.5702 3.4271 3.0159
β̂1 0.1250 0.1667 0.1250 0.1250 0.1667 0.1250
β̂2 0.2500 1.0000 0.5625 0.0548 0.0729 0.0466

tr(	) 102|	|
0.7500 3.6667 3.1875 0.3906 4.1648 1.7568

Efficiency ratios

Eff
A(ZM : Z) = 1.1503 Eff

D(ZM : Z) = 2.3707 Eff
E(ZM : Z) = 1.1350

the model matrix X(8 × 3) to have have the typical rows {[1, xi, x2
i ]; 1 ≤ i ≤ 8}, and similarly for

z and zM , giving model matrices Z and ZM of orders (4 × 3). Then X′X, Z′Z, and Z′
M ZM are their

Fisher Information matrices, and �, �, and � their respective inverses. Diagonal elements of
these are listed as variances in Table 3; also listed are their vectors of Eigenvalues; Traces as
A-efficiencies; Determinants 102|�| = Det = 0.3906, 102|�| = 4.1648, and 102|�| = 1.7568.
as D-efficiencies; together with efficiency ratios as in Definition 5.

Not listed are eigenvectors corresponding to largest eigenvalues. Their elements,
[0.7882, 0.0000, −0.6154] for �, determine coefficients of normalized linear functions having
the maximal variance γ1σ

2 as in the following

Var(0.7882β̂0 − 0.6154β̂2) = 0.5702σ 2 for the model X

Var(0.8506β̂0 − 0.5257β̂2) = 3.4271σ 2 for the model Z, and

Var(0.9090β̂0 − 0.4168β̂2) = 3.0159σ 2 for the model ZM

(10)

and similarly for � and �

Together with variances of (β̂0, β̂1, β̂2) apart from σ 2, these collectively display effects of
combining evidence contained in X and Z into ZM , despite that Z itself is relatively uninfor-
mative owing in part to its small sample size. Moreover, improvement in first-order models is
evident in Table 3, where Var(β̂1) ranges from 0.1250 σ 2 for model X with n = 8, to 0.1667 σ 2

for Z and to 0.1250 σ 2 for the amended model ZM , both with n = 4. Even for the parsimonious
models with n = 4, the variance Var(β̂2) has been reduced from 1.00 σ 2 under the half model Z,
to 0.5625 σ 2 under the modified half model ZM . These comparisons illustrate how evidence in
X(8 × 3) combines to enhanced effect into ZM (4 × 3). Diverse values for Var(β̂0) are attributed
in part to different sample sizes. The trade-off here is more precise estimation of β1 and β2 with
half the amended observations using ZM instead of Z, yet retaining the same Var(β̂0) = 2.50 σ 2

under ZM and Z. This comparison of Z with ZM when n = 4 is compelling when X with n = 8
is out of reach owing to expense or to severely limited experimental material.
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Table 4. Regressor vectors for designs X ′(2 × 9)(CCD); Z ′(2 × 7)(SCD); together with ZM = Z ∨ X of order
(2 × 7), where α = √

2, γ = 1.70710 and δ = 0.29289.

CCD −1.00 −1.00 −α α 0.00 0.00 1.00 1.00 0.00
X ′ −1.00 1.00 0.00 0.00 −α α − 1.00 1.00 0.00
SCD −1.00 −α α 0.00 0.00 1.00 0.00
Z ′ −1.00 0.00 0.00 −α α 1.00 0.00
(Z ∨ X)′ −1.00 −γ γ δ −δ 1.00 0.00
Z ′

M −1.00 δ −δ −γ γ 1.00 0.00

Table 5. Variances of OLS solutions at σ 2 = 1.00 under designs CCD(X), the SCD
(Z), together with ZM = Z ∨X .

Design β0 β1 β2 β11 β22 β12 Trace

X 1.0000 0.1250 0.1250 0.3438 0.3438 0.2500 2.1876
Z 1.0000 0.1875 0.1875 0.3750 0.3750 0.7500 2.8750
ZM 1.0000 0.1250 0.1250 0.1953 0.1953 0.4063 2.0469

Table 6. Eigenvalues {γ1, . . . , γ6} and determinants (Det × 10−4) of dispersion matrices of OLS
solutions under designs CCD(X), SCD(Z), and ZM = Z ∨ X , together with the relative efficiencies
ECr

ff (ZM : Z) = Cr(Z)/Cr(ZM ) of Definition 5.

Eigenvalues

Design γ1 γ2 γ3 γ4 γ5 γ6 Det

X 1.5214 0.2500 0.1250 0.1250 0.1250 0.0411 0.3052
Z 1.5587 0.7639 0.2500 0.1250 0.1250 0.0525 2.4416
ZM 1.3804 0.3185 0.1250 0.1250 0.0625 0.0355 0.1526

Efficiency ratios

EA
ff(ZM : Z) = 1.4046 ED

ff (ZM : Z) = 16.0000 EE
ff(ZM : Z) = 1.1292

4.2. CCD and SCD designs, k = 2

The full second-order model for k = 2 regressors is

{Yi = β0 + β1xi1 + β2xi2 + β11x2
i1 + β22x2

i2 + β12xi1xi2 + εi}. (11)

as in Remark 1. The Central Composite Design (CCD) of Box and Wilson,[30] with axial
α = √

2, has regressors as in rows 1 and 2 of Table 4. The Small Composite Design (SCD)

of Hartley [31] with α = √
2, is in rows 3 and 4 of Table 4. The CCD is considered to be a ‘gold

standard’, while the SCD is hailed as among the smallest of second-order designs, having one
degree-of-freedom for ‘error’.

Owing to established needs for minimal designs, we seek to augment the SCD using our tools,
drawing from the CCD to possible advantage. Accordingly, ZM = Z ∨ X is constructed as given
in rows 5 and 6 of Table 4.

To continue, denote by X, Z, and ZM the model matrices for the respective designs X , Z, and
ZM , where the rows of X correspond to [1, xi1, xi2, x2

i1, x2
i2, xi1xi2] as in Remark 1, and similarly

for Z and ZM . To these ends, variances for OLS solutions are reported in Table 5, together
with their sums as Trace for the A-efficiency indices. In addition, eigenvalues for the respective
dispersion matrices are given in Table 6, together with their scaled determinants for D-efficiency,
and the ratios ECr

ff (ZM : Z) = Cr(Z)/Cr(ZM ) of Definition 5.
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1808 D.R. Jensen and D.E. Ramirez

Table 7. Eigenvectors qi
′ = [q11, q12, q13, q14, q15, q16] corresponding to largest eigenvalues

γ1 of dispersion matrices for OLS solutions under designs X , Z, and ZM .

Design [q11 q12 q13 q14 q15 q16] γ1

X [0.8048 0.0000 0.0000 −0.4197 −0.4197 0.0000] 1.5214
Z [0.7776 0.0000 0.0000 −0.4344 −0.4344 0.1343] 1.5587
ZM [0.8373 0.0000 0.0000 −0.3284 −0.3284 −0.2886] 1.3804

Of primal concern here is whether to replace the time-honored SCD with ZM . By most conven-
tional bases for comparison, we see that ZM dominates Z in having uniformly smaller variances
than Z, as well as in its uniformly smaller (A, D, E) efficiency indices.

In addition, from Table 6 the eigenvalues are smaller for ZM than Z except γ4, where they
are equal. In consequence, for all efficiency indices in 	0 based on the eigenvalues of dispersion
matrices where smaller is better, the SCD, as modified here into ZM , is at least as ‘good’ as
Hartley’s SCD.

To illustrate subset diagnostics, let θ ′ = [β0, β ′], to be partitioned as [θ ′
1, θ ′

2]′ with θ ′
1 =

[β0, β1, β2] and θ ′
2 = [β11, β22, β12], the respective first and second-order coefficients. As in

Table 1 let A1 and A2 be the AS criteria for θ1 and θ2, and similarly D1 and D2 for their DS crite-
ria. Then A1 = 1.2500 and A2 = 0.7969 from Table 5, with A1 + A2 = 2.0469. On partitioning
� to have principal blocks �11 and �22 of orders (3 × 3), we find D1 = |�11| = 1.5625 × 10−2

and D2 = |�22| = 0.6836 × 10−2. Since D = 0.1526 × 10−4 from Table 6, we have the decom-
position D = D1D2 × 0.1429 as in Lemma 2, where 0.1429 = ∏3

i=1(1 − ρ2
i ) is the Coefficient

of Alienation of Hotelling [28] between [β̂0, β̂1, β̂2] and [β̂11, β̂22, β̂12].
Eigenvectors corresponding to largest eigenvalues of the dispersion matrices are listed in

Table 7. These support a complete assessment in regard to E-optimality. As in Equation (10)
from Table 3, we have for the CCD(X) design from Table 7 that

Var(0.8048β̂0 − 0.4197(β̂11 + β̂22)) = 1.5214σ 2,

and similarly for other designs as listed.
To proceed, we examine further consequences of the augmentation Z → ZM . Specifically,

with V(β̂(Z)) = � and V(β̂(ZM )) = �, we return to Definition 2 and undertake the spectral
decomposition of �−1/2��−1/2, independently of σ 2, recovering eigenvalues and eigenvectors
as listed in Table 8. Accordingly, the subspaces are L1 = Sp(qi, q2, q3), L2 = Sp(q4, q5), and L3 =
Sp(q6) from Definition 2. Here ZM is more efficient than Z for linear parametric functions in L1;
equal efficiency applies for functions in L2, to include β1 + β2; whereas design Z is superior
to ZM for 11.99β0 + β11 + β22 + 3.24β12 on scaling q6. From columns 2 and 3, the relative
efficiency Eff(ZM : Z) = 2.00 for inferences regarding β1 − β2 and β11 − β22.

4.3. SCD and Hexagon designs, k = 2

This is a continuation of Section 4.2, but using a design smaller than the CCD for augmenting the
SCD. The alternative is the Hexagon design with one center run as in [32, p.429], correcting a
sign in the first row. Both designs are centered. The second-order model (11) continues to apply.
Computations are carried out in parallel to those of Section 4.2, and are combined into Table 9,
where efficiency ratios are as in Definition 5. The SCD design Z and its values are those reported
in Section 4.2 without the need for further repetition.

Our principal focus here surrounds the viability of replacing the time-honored SCD with ZM .
By most conventional bases for comparison, we see that ZM dominates Z in having uniformly
smaller variances than Z, as well as in its uniformly smaller (A, D, E) efficiency indices.
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Table 8. Eigenvalues and eigenvectors of �−1/2��−1/2.

Eigenvalues

γ1 γ2 γ3 γ4 γ5 γ6

5.8117 2.0000 2.0000 1.0000 1.0000 0.6883

Eigenvectors

qi q2 q3 q4 q5 q6

−0.0525 0.0000 0.0000 −0.2779 0.0000 −0.9592
0.0000 0.7071 0.0000 0.0000 −0.7071 0.0000
0.0000 −0.7071 0.0000 0.0000 −0.7071 0.0000

−0.5865 0.0000 0.7071 0.3868 0.0000 −0.0800
−0.5865 0.0000 −0.7071 0.3868 0.0000 −0.0800

0.5562 0.0000 0.0000 0.7896 0.0000 −0.2592

Table 9. Regressor vectors for designs H (Hexagon) and ZH
M = Z ∨H; variances of OLS solutions at σ 2 = 1.00;

eigenvalues for dispersion matrices; traces and determinants (Det × 10−4) of dispersion matrices of OLS solutions; and
relative efficiency ratios ECr

ff (ZH
M : Z) = Cr(Z)/Cr(ZH

M ).

Desn Regressors

H ′ − 0.7071 − 1.4142 − 0.7071 0.7071 1.4142 0.7071 0.0000
− 1.2247 0.0000 1.2247 1.2247 0.0000 − 1.2247 0.0000

ZH ′
M − 1.0000 − 1.5313 − 0.1589 1.0000 1.5713 0.1589 0.0000

− 1.0000 0.1589 1.5731 1.0000 − 0.1589 − 1.5731 0.0000

Variances

Desn β0 β1 β2 β11 β22 β12 Trace

H 1.0000 0.1667 0.1667 0.3750 0.3750 0.3333 2.4167
ZH

M 1.0000 0.1458 0.1458 0.2465 0.2465 0.4861 2.2707

Eigenvalues

Desn γ1 γ2 γ3 γ4 γ5 γ6 Det

H 1.5288 0.3333 0.1667 0.1667 0.1667 0.0545 1.2864
ZH

M 1.3986 0.4534 0.1667 0.1250 0.0833 0.0438 0.4821

Efficiency ratios

EA
ff(Z

H
M : Z) = 1.0643 ED

ff (Z
H
M : Z) = 2.6683 EE

ff(Z
H
M : Z) = 1.0931

In addition, from Table 9 the eigenvalues are smaller for ZM than Z except γ3, where they are
equal. In consequence, for all efficiency indices based on the eigenvalues of dispersion matrices
where smaller is better, the SCD, as modified here into ZM , is at least as ‘good’ as Hartley’s
SCD.

4.4. Improving optimal designs, k = 2

Apart from universal optimality, conventional designs declared to be optimal are con-
figured on a single criterion for optimality. Nonetheless, views among users often differ
markedly as to criteria appropriate even to a particular experiment. The tools presented here
enable us to merge two designs, separately optimal under one of two criteria, into a single
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1810 D.R. Jensen and D.E. Ramirez

Table 10. Variances and traces for OLS solutions at σ 2 = 1.00, in the D-optimal design X , the I-optimal design Z, and
XM = X ∨ Z, together with eigenvalues, determinants (Det × 10−5), and efficiency ratios for each design.

Variances

Design β0 β1 β2 β11 β22 β12 Trace

X 0.2993 0.0693 0.0693 0.2820 0.2820 0.0833 1.0852
Z 0.1786 0.0833 0.0833 0.2143 0.2143 0.1250 0.8988
ZM 0.1786 0.0669 0.0669 0.1381 0.1381 0.0805 0.6691

Eigenvalues

Design γ1 γ2 γ3 γ4 γ5 γ6 Det

X 0.5043 0.3414 0.0853 0.0666 0.0654 0.0222 0.1418
Z 0.3301 0.2500 0.1250 0.0833 0.0833 0.0270 0.1933
ZM 0.2725 0.1611 0.0805 0.0671 0.0667 0.0211 0.0334

Efficiency ratios

EA
ff(ZM : X) = 1.6219 ED

ff (ZM : X) = 4.2455 EE
ff(ZM : X) = 1.8506

EA
ff(ZM : Z) = 1.3433 ED

ff (ZM : Z) = 5.7874 EE
ff(ZM : Z) = 1.2114

Table 11. Eigenvectors qi
′ = [q11, q12, q13, q14, q15, q16] corresponding to largest eigenvalues γ1 of dispersion matrices

of OLS solutions under designs X , Z, and ZM .

Design [q11 q12 q13 q14 q15 q16] γ1

X [0.7573 −0.0704 0.0704 −0.4564 −0.4564 0.0010] 0.5043
Z [−0.7071 0.0000 0.0000 0.5000 0.5000 0.0000] 0.3301
ZM [0.7914 0.0000 0.0000 −0.4323 −0.4323 0.0047] 0.2725

nearby design dominating both designs on these and other criteria. This represents a math-
ematical first step towards constructing designs under Compound Criteria as set forth in
[33, p.870 ff]. See also [26] and [27].

Accordingly consider designs with k = 2 regressors optimal for second-order response mod-
els. As given in [34], these are listed for completeness in Table 12, where Design X , now
centered, is D-optimal; Design Z is I-optimal; and ZM = Z ∨ X is constructed as in Definition 4.
Jones and Goos [34] focus on I-optimality as critical in dose-response methodology, where
prediction often dominates the need for estimation and hypothesis testing, both relevant to
D-optimality. To illustrate the enhanced capacity of ZM over X and Z, we undertake the fol-
lowing analyses, taking model matrices to have n = 20 rows as [1, x1, x2, x2

1, x2
2, x1x2] from X ,

and similarly for Z and ZM , as in Remark 1, We examine prospects for replacing the sepa-
rately optimal X and Z with ZM . Specifically, summary computations are reported in Table 10,
to include variances, eigenvalues, traces and determinants of the (6 × 6) dispersion matrices
(�, �, �) from (X , Z, ZM ). By conventional bases for comparison, ZM dominates both X and Z
in having uniformly smaller variances excluding Var(β̂0), as well as uniformly smaller (A, D, E)

efficiency indices. In addition, the eigenvalues are uniformly smaller for ZM than Z, and smaller
than X except γ4 and γ5.

Eigenvectors corresponding to the largest eigenvalue γ1 are reported in Table 11, in order
to characterize the workings of E-optimality. As before, these vectors identify those standard-
ized linear functions having the maximal variance γ1σ

2. For example, for ZM : Var(0.7914β̂0 −
0.4323(β̂11 + β̂22) + 0.0047β̂12) = 0.2725σ 2.

To evaluate the I-criterion for each design, Borkowski [35, p.75] has noted that, with symbolic
software such as Maple, the I-criterion can be evaluated numerically. For example, with regard
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Table 12. Design values for the D-optimal X(20 × 2), and for the I-optimal Z(20 × 2), together with
(Z ∨ X) = ZM (20 × 2).

X Z ZM

− 1.05 1.05 − 1.00 1.00 − 1.11430 1.11430
− 1.05 1.05 − 1.00 1.00 − 1.11430 1.11430
− 1.05 1.05 0.00 1.00 0.00187 1.11617
− 0.05 1.05 0.00 1.00 0.00187 1.11617

0.95 1.05 1.00 1.00 1.11803 1.11803
0.95 1.05 1.00 1.00 1.11803 1.11803
0.95 1.05 − 1.00 0.00 − 1.11617 − 0.00187

− 1.05 0.05 − 1.00 0.00 − 1.11617 − 0.00187
− 0.05 0.05 0.00 0.00 0.00000 0.00000
− 0.05 0.05 0.00 0.00 0.00000 0.00000

0.95 0.05 0.00 0.00 0.00000 0.00000
0.95 0.05 0.00 0.00 0.00000 0.00000

− 1.05 − 0.95 1.00 0.00 1.11617 0.00187
− 1.05 − 0.95 1.00 0.00 1.11617 0.00187
− 1.05 − 0.95 − 1.00 − 1.00 − 1.11803 − 1.11803
− 0.05 − 0.95 − 1.00 − 1.00 − 1.11803 − 1.11803
− 0.05 − 0.95 0.00 − 1.00 − 0.00187 − 1.11617

0.95 − 0.95 0.00 − 1.00 − 0.00187 − 1.11617
0.95 − 0.95 1.00 − 1.00 1.11430 − 1.11430
0.95 − 0.95 1.00 − 1.00 1.11430 − 1.11430

Table 13. Values for I(�), I(�), and I(�) for varying regions [−b, b] × [−b, b].

b I(�) I(�) I(�)

0.6667 0.2425 0.1579 0.1591
1.0000 0.2321 0.1829 0.1676
1.1180 0.2493 0.2127 0.1833
1.5000 0.4546 0.4462 0.3200

to u′ = [1, x1, x2, x2
1, x2

2, x1x2] and �, predictive variance is the expected value for u′�u over the
region of interest, namely R = {[x1, x2] ∈ [−b, b] × [−b, b]} such that the required iterated and
standardized integral, from Table 1 at σ 2 = 1.00, takes the form

I(�) = 1

(2b)2

∫ b

−b

∫ b

−b
(u′�u) du1 du2,

and similarly for I(�) and I(�). Table 13 reports these integral values for varying b. In particular,
the I-optimal design takes the value I(�) = 0.1829 on [−1, 1] × [−1, 1]; corresponding values
are I(�) = 0.2321 and I(�) = 0.1676.

To continue, we return to Definition 2 and undertake the spectral decomposition of
�−1/2��−1/2, again independently of σ 2, recovering eigenvalues and eigenvectors as listed
in Table 14. Accordingly, the subspaces of Definition 2 are L1 = Sp(qi, q2, q3, q4, q5). L2 is
empty, and L3 = Sp(q6). Here ZM is more efficient than Z for linear functions in L1, where
γi > 1, whereas design Z is superior to ZM for (−9.997 β0 + 0.185 (β11 + β22) − 0.014β12)

with relative efficiency 1/0.8421 = 1.2134, on scaling q6. Moreover, from column 2 the rela-
tive efficiency is Eff(ZM : Z) = 1.5521 for inferences regarding β11 − β22, and from column 4
Eff(ZM : Z) = 1.250 for β1 + β2.

In summary, the fact of merging the D-optimal X and the I-optimal Z into ZM improves
not only their D and I efficiencies, but in addition Eff

Cr(ZM , Z) > 1.00 for every efficiency
criterion of Table 1, owing to the strictly ordered eigenvalues for � and �. As noted, the forego-
ing developments represent a first step towards constructing Compound Criteria as set forth in
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Table 14. Eigenvalues and eigenvectors of �−1/2��−1/2.

Eigenvalues

γ1 γ2 γ3 γ4 γ5 γ6

1.8840 1.5521 1.5515 1.2500 1.2417 0.8241

Eigenvectors

qi q2 q3 q4 q5 q6

0.0261 0.0000 −0.0025 0.0000 0.0000 −0.9997
0.0000 0.0000 0.0000 0.7071 0.7071 0.0000
0.0000 0.0000 0.0000 0.7071 −0.7071 0.0000
0.7063 0.7071 −0.0294 0.0000 0.0000 0.0185
0.7063 −0.7071 −0.0294 0.0000 0.0000 0.0185
0.0417 0.0000 0.9991 0.0000 0.0000 −0.0014

[33, p.870 ff] and, from another perspective, in Dette [26] and Dette and Franke.[27] The present
approach could incorporate further optimality criteria iteratively on choosing yet another design
optimal under a third criterion, then merging it in turn with ZM . Unfortunately, the foregoing
analyses demand that we register the following.

Disclaimer 1 Properties of ZM appear to contradict the claim of Jones and Goos [34] that X
is D-optimal and Z is I-optimal. For the D-criterion is smaller for ZM than X in excess by the
factor 0.2355, and the I-criterion smaller for ZM than Z by the factor 0.9163, so that both are
dominated by ZM , seen in Table 12 to be nearby to X and Z.

4.5. H311B and CCD, k = 3

The full second-order model in k = 3 regressors is

Yi = β0 + β1xi1 + β2xi2 + β3xi3 + β11x2
i1 + β22x2

i2 + β33x2
i3

+ β12xi1xi2 + β13xi1xi3 + β23xi2xi3 + εi. (12)

Owing to time constraints or limited experimental material, small second-order designs are
critical and often at a premium. The CCD with one center run requires n = 15 runs per
experiment. Among the smallest second-order designs for k ≥ 3 are the hybrid designs of
Roquemore.[36] Prominent among these is H311 B with center in n = 11 runs, 73.3% the size
of the standard CCD in n = 15 runs. The design points for H311 B are listed in Table 15.

The CCD with axial point α is widely available, as in [32], for example, and not repeated here.
Designating the CCD with n = 15 and α = 2.915476 as design X , We seek to recast H311 B as
Z using the CCD as X through ZM = Z ∨ X as reported in Table 15.

To examine properties of designs H311 B and ZM , we proceed as before, giving essential
portions of the extensive output as reported in Table 16. Specifically, variances of OLS solutions,
and eigenvalues of dispersion matrices for the CCD, H311 B, and ZM = Z ∨ X designs; and
traces and determinants of their dispersion matrices, are listed in Table 16. In particular, the
critical comparisons are between Z and ZM , both of order (11 × 3). It is seen that variances
are uniformly smaller for ZM than Z. as are their eigenvalues. In consequence, all efficiency
indices of Table 1 are smaller for ZM than Z. Specifically, the (A, D, E) criteria for ZM are
(1.2938, 0.1271, 1.0536), and (1.4253, 3.6484, 1.0841) for Z. Clearly H311B may be supplanted
by ZM in n = 11 runs to enhanced effect of the latter.
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Table 15. Design matrices for Z = H311 B and ZM = H311 B ∨ CCD of order (11 × 3).

Design matrices

Z = H311 B ZM = H311 B ∨ CCD

0.0000 0.0000 2.4495 0.00000 − 0.00000 2.73701
0.0000 0.0000 − 2.4495 − 0.00000 0.00000 − 2.73701

− 0.7507 2.1063 1.0000 − 1.58118 1.93646 1.11902
2.1063 0.7507 1.0000 1.93646 1.58118 1.11902
0.7507 − 2.1063 1.0000 1.58118 − 1.93646 1.11902

− 2.1063 − 0.7507 1.0000 − 1.93646 − 1.58118 1.11902
0.7507 2.1063 − 1.0000 − 0.00000 2.50000 − 1.11902
2.1063 − 0.7507 − 1.0000 2.50000 0.00000 − 1.11902

− 0.7507 − 2.1063 − 1.0000 − 0.00000 − 2.50000 − 1.11902
− 2.1063 0.7507 − 1.0000 − 2.50000 0.00000 − 1.11902

0.0000 0.0000 0.0000 0.00000 0.00000 0.00000

Table 16. Variances of OLS solutions and eigenvalues of dispersion matrices for the CCD(X), H311 B(Z) and
ZM = Z ∨ X designs; and traces and determinants of these dispersion matrices of type 	.

Design characteristics

Design X Z ZM X Z ZM

Estimates Variances Eigenvalues

β̂0 0.2582 1.0000 1.0000 0.2757 1.0841 1.0536
β̂1 0.0400 0.0500 0.0400 0.1250 0.0501 0.0400
β̂2 0.0400 0.0500 0.0400 0.1250 0.0500 0.0400
β̂3 0.0400 0.0500 0.0400 0.1250 0.0500 0.0400
β̂11 0.0123 0.0416 0.0277 0.0400 0.0500 0.0319
β̂22 0.0123 0.0416 0.0277 0.0400 0.0500 0.0319
β̂33 0.0123 0.0416 0.0267 0.0400 0.0500 0.0286
β̂12 0.1250 0.0500 0.0277 0.0069 0.0168 0.0119
β̂13 0.1250 0.0500 0.0319 0.0069 0.0167 0.0107
β̂23 0.1250 0.0500 0.0319 0.0056 0.0077 0.0051

Item tr(	) |	| × 1014

0.7901 1.4253 1.2938 0.9175 3.6484 0.1271

Designs X , Z and ZM are roughly comparable in variances apart from β0 and {βij; i 
= j}.
But the relative efficiencies are Eff(Z : X | β̂ij, i 
= j) = 2.50. Moreover, Eff(ZM : X | β̂ij, i 
= j) ≥
3.9185. These ratios are critical in dose-response experiments where {βij > 0} designates syn-
ergistic factors (xi, xj), whereas {βij < 0} characterizes antagonistic factors, sought on occasion
to be estimated with greater precision. In this regard both Z and ZM are superior to X despite
its n = 15 runs, but with ZM superior to Z by factors Eff(ZM : Z| β̂ij, i 
= j) ≥ 1.5674. In short,
{βij; i 
= j} are estimated in ZM as if based on 64% of the observations in the H311B experiment,
and 26% of the observations in the CCD.

4.6. Improving optimal designs, k = 3

The full second-order model in k = 3 regressors, given at the beginning of Section 4.5, is con-
tinued here, with parameters [β0, β ′] and β as regression coefficients of order (9 × 1). Based
on an experiment described in Exercise 11.6 of Box and Draper,[37] Gilmour and Trinca [38]
give in their Table 2 two designs, namely Designs I and III with k = 3 and n = 18. Design I,
to be labeled X , is constructed to be DS-optimal, and Design III, labeled Z, to be AS-optimal,
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Table 17. Variances of OLS solutions and eigenvalues of dispersion matrices for the DS-optimal design X , the
AS-optimal Z, and ZM = Z ∨ X ; the traces and determinants of dispersion matrices 	22 of order (9 × 9) excluding
β̂0; and relative efficiencies Eff

Cr (ZM :Z) and Eff
Cr (ZM :X) under DS and AS efficiency criteria.

Design characteristics

Design X Z ZM X Z ZM

β̂ Variances Eigenvalues of 	22

β̂0 0.4947 0.3318 0.3318
β̂1 0.0650 0.0686 0.0620 0.1928 0.1365 0.1182
β̂2 0.0650 0.0686 0.0627 0.1430 0.1259 0.1046
β̂3 0.0650 0.0686 0.0627 0.1044 0.1259 0.0984
β̂11 0.0967 0.0817 0.0676 0.1044 0.0965 0.0868
β̂22 0.0967 0.0817 0.0689 0.0644 0.0737 0.0655
β̂33 0.0967 0.0817 0.0689 0.0644 0.0737 0.0622
β̂12 0.1142 0.1156 0.0964 0.0570 0.0583 0.0571
β̂13 0.1142 0.1156 0.0964 0.0488 0.0535 0.0451
β̂23 0.1142 0.1156 0.0966 0.0488 0.0535 0.0444

Item tr(	22) |	22| × 1011

0.8278 0.7975 0.6823 16.8804 18.8977 4.9170

Efficiency ratios

Eff
AS (ZM :Z) = 1.1688 Eff

DS (ZM :Z) = 3.8433 Eff
ES (ZM :Z) = 1.1548

Eff
AS (ZM :X) = 1.2132 Eff

DS (ZM :X) = 3.4331 Eff
ES (ZM :X) = 1.6311

where the subsets of parameters are elements of β, thus excluding β0. We seek an improved
design by recasting Z into ZM = Z ∨ X as in Definition 4, proceeding as in Section 4.2 for
designs having k = 2. After centering, Table A1 gives the initial DS-optimal design X , and also
the AS-optimal design Z, taken from [38]. This table is relegated to Appendix 2 for complete-
ness. As constructed in Definition 4, ZM = Z ∨ X is of order (18 × 3) and is listed in Table A1,
also centered by Theorem 1(ii). To examine properties of designs X , Z and ZM we proceed as
before, reporting essentials of the output in Table 17, to include variances of the OLS solutions.
As both DS and AS refer to the subset β of [β0, β ′], the relevant submatrix 	22(9 × 9) of the
typical dispersion matrix 	(10 × 10) is found on eliminating the first row and column of the
latter. Accordingly, eigenvalues of 	22 of order (9 × 1) are listed in Table 17; each AS-criterion
is the trace, and each DS-criterion the determinant, of the corresponding submatrix 	22.

It is seen that the DS-criterion is smaller for design X than Z, and the AS-criterion smaller for
Z than X , as intended under their respective notions of optimality. In contrast, the ZM design
subsumes both, by a considerable margin in the case of DS-efficiency. Moreover, variances are
uniformly smaller for ZM than either X or Z, as are their ES-criteria. In short, it is seen that
the mapping (X , Z) → ZM = Z ∨ X offers a substantial improvement in essentials over the
DS-optimal design X and the AS-optimal Z.

Disclaimer 2 As in Section 4.4, ZM appears to refute the claim of Gilmour and Trinca [38] that
X is DS-optimal and Z is AS-optimal. For the DS-criterion is smaller for ZM than X by the con-
siderable factor 0.2913, and the AS-criterion smaller for ZM than Z by the factor 0.8555. Accord-
ingly, X and Z are dominated in both criteria by ZM , seen in Table A1 to be nearby to X and Z.

4.7. A retrospective

The analyses heretofore have emphasized the role of small designs, especially in industrial
experiments as often advocated in the literature. On the other hand, Gilmour and Trinca [38] point
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to needs for reliable estimates for σ 2, especially in regard to estimation and tests for hypotheses.
On revisiting our several examples, we now offer further comments on this matter. It is pertinent
that center runs in Z map into center runs in ZM as seen in Tables 4, 9, 12 and 15. This is verified
mathematically in developments surrounding Definition 4. Observe that the Fisher Information
matrix and its inverse are invariant to the number of center runs, themselves supporting estimates
for ‘pure’ error. Accordingly, two center runs may be added to the SCD of Table 4, now the same
size as the CCD but having two degrees of freedom for ‘pure’ error. As the modified SCD, the
comparative efficiencies of ZM to the CCD remain as reported.

Similarly, center runs may be added to the SCD and Hexagon designs of Table 9 without
altering essential comparisons given there. The modified I-optimal design ZM of Table 12 not
only dominates the D-optimal design X and the I-optimal Z, but it has the advantage of four
center runs. The H311 B design of Table 15 may be augmented to have four additional center
runs, now the size of the CCD. Other comparisons of ZM with the CCD remain intact as in
Section 4.5, but now with four degrees of freedom for ‘pure’ error in design ZM in contrast to
the CCD.

5. Conclusions

Two design matrices X and Z of full rank are studied, to include their singular least upper bound
XM = X ∨ Z as an enhanced design matrix. Both X and Z are centered, and Theorem 1(ii)
assures that XM = X ∨ Z is also centered. The principal focus is that some singular values
of X(Z ′Z)−1/2 are less than, and some greater than unity. Corresponding to these designs are
the model matrices X, Z, and XM together with �, � and � as the dispersion matrices of the
respective OLS estimators. Whereas X ∨ Z is maximal, the corresponding dispersion matrix is
minimal, being the spectral lower bound � = � ∧ � as in Theorem 1(iv). The designs X and
Z can differ in numbers of rows, allowing a smaller and parsimonious Z to be enhanced by a
larger and more informative X , so that ZM is of the same order as Z and has improved efficiency
criteria at least those of Z. The success of our algorithm is that it formally identifies elements of
Z complementary to those of X , and combines these with X to form XM .

Case studies as reported treat second-order models in which the design matrix is augmented
to include the constant and second-order terms. These demonstrate that A, D, E and other effi-
ciencies are improved with ZM , often with a relatively small change from Z to ZM as seen in
Section 4.2. Moreover, subspaces in which linear parametric functions are estimated with greater,
equal, or lesser precision between designs are identified in Definition 7.

It is shown in succession that the SCD, Hexagon, H311 B and other standard second-order
designs may be improved through the operation X∨Z. This in turn provides the methodology
for users to explore yet other alternatives to a catalog of second-order and other experimental
designs long available in the literature. In particular, our construction of X∨Z from designs
optimal under separate criteria offers a first step towards invoking Compound Criteria in the
spirit of Kiefer.[33]

We harbor grave concerns regarding claims in Sections 4.4 and 4.6 that pairs of designs are
optimal; see Disclaimers listed there. Extenuating issues persist. In the Discussion following
Gilmour and Trinca,[38] Bradley Jones and Dibyen Majumdar commented that ‘The authors do
not discuss the details of their algorithms except for saying that it is an exchange algorithm.’
Yet Gilmour and Trinca [38] avow thereby to construct ‘near optimum’ designs. Jones and Goos
[34] claim to have restricted their designs to the 9 points in the unit square. But this is refuted by
points of X outside this grid as seen in Table 12. It remains unclear as to how the algorithms for
finding D, DS , A, AS and I-optimal designs, as asserted, could have missed finding XM or ZM in
each case, had these been allowed as candidates, and then to have delivered it as optimal instead.
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Appendix 1

The following theorems, stated without proof from [2], are reproduced here in that the original Proceedings source may
not be widely available. Here 	(S+

k , �L) is as in Section 2.3, and 	(Fn×k , �) the monotone functions induced as in [2].

Theorem A.1 Let {A ∧ B, A ∨ B} and {B ∧ A, B ∨ A} be spectral glb’s and lub’s as in Definition 1. Then for any (A, B)

in (S+
k , �L),

(i) A ∧ B �L {A, B} �L A ∨ B,
(ii) φ(A ∧ B) ≤ {φ(A), φ(B)} ≤ φ(A ∨ B) for each φ ∈ 	(S+

k , �L), and
(iii) A ∧ B = B ∧ A and A ∨ B = B ∨ A.Moreover, the bounds are tight in the sense that
(iv) if {A, B} �L T and T �L A ∨ B, then T = A ∨ B, and
(v) if {A, B}�LS and S�LA ∧ B, then S = A ∧ B.

Theorem A.2 Given (X, Z) ∈ (Fn×k , �) and X ∧ Z and X ∨ Z as in Definition 2. Then

(i) X ∧ Z � {X, Z} � X ∨ Z;
(ii) φ(X ∧ Z) ≤ {φ(X), φ(Z)} ≤ φ(X ∨ Z) for each φ ∈ 	(Fn×k , �); and

(iii) X ∧ Z and X ∨ Z are determined up to equivalence under O(n) acting from the left. Moreover, the bounds are tight
in the sense that

(iv) if {X, Z} � T and T � X ∨ Z, then T is equivalent to X ∨ Z, and
(v) if {X, Z} � S and S � X ∧ Z, then S is equivalent to X ∧ Z.

Appendix 2

Table A1. Design matrix for the DS-optimal design X of order (18 × 3), for the AS-optimal Z, and for ZM = Z ∨ X
of orders (18 × 3).

Design matrices

DS-optimal X XContinued

− 1.0805 − 0.9195 − 0.9195 1.1442 − 1.1442 0.0805
− 1.0805 − 0.9195 1.0805 − 0.0805 0.0805 − 1.6515
− 1.0805 1.0805 − 0.9195 − 0.0805 0.0805 1.8126
− 1.0805 1.0805 1.0805 − 0.0805 − 1.6515 0.0805

0.9195 − 0.9195 1.0805 − 0.0805 1.8126 0.0805
0.9195 1.0805 − 0.9195 − 1.8126 0.0805 0.0805
0.9195 1.0805 1.0805 1.6515 0.0805 0.0805

− 0.0805 − 1.1442 − 1.1442 − 0.0805 0.0805 0.0805
1.1442 0.0805 − 1.1442 − 0.0805 0.0805 0.0805

AS-optimal Z ZM = Z ∨ X
−0.9445 −0.9444 −0.9444 −0.9354 −0.9500 −0.9500
−0.9445 −0.9444 −0.9444 −0.9354 −0.9500 −0.9500
−0.9445 −0.9444 1.0556 −0.9354 −0.9653 1.1391
−0.9445 1.0556 −0.9444 −0.9354 1.1391 −0.9653
−0.9445 1.0556 1.0556 −1.0554 1.1239 1.1238

1.0556 −0.9444 −0.9444 1.1654 −1.0121 −1.0121
1.0556 −0.9444 1.0556 1.1054 −1.0274 1.0771
1.0556 1.0556 −0.9444 1.1054 1.0771 −1.0274
1.0556 1.0556 1.0556 1.0454 1.0618 1.0618

−1.6765 0.0556 0.0556 −1.7643 0.1097 0.1097
1.7876 0.0556 0.0556 1.8743 0.0021 0.0021
0.0556 −1.6765 0.0556 0.1070 −1.7534 0.0691
0.0556 1.7876 0.0556 0.0031 1.8652 0.0427
0.0556 0.0556 −1.6765 0.1070 0.0691 −1.7534
0.0556 0.0556 1.7876 0.0031 0.0423 1.8652
0.0556 0.0556 0.0556 0.0550 0.0559 0.0559
0.0556 0.0556 0.0556 0.0550 0.0559 0.0559
0.0556 0.0556 0.0556 0.0550 0.0559 0.0559
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