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Variations on Ridge Traces in Regression
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Ridge regression, perturbing the design moment matrix via a parameter k, persists
in the study of ill-conditioned systems. Ridge traces, exhibiting solutions as functions
of k, are intended to reflect stability as k evolves, in contrast to transient instabilities
in ordinary least squares. This study examines derivative traces as analytic tools
regarding stability, and develops rational representations for them. Two further
gauges of stability are derivatives of variances of the ridge solutions, and the
variances of the derivative traces. In contrast to ridge traces and their derivatives,
neither of the latter depends on observed responses, and both support deterministic
assessments.
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1. Introduction

1.1. Overview

In a full–rank model �Y = X� + �� having zero–mean, uncorrelated, and
homoscedastic errors, the Ordinary Least Squares �OLS� estimators �̂L solve
the p equations �X ′X� = X ′Y�. These solutions are unbiased with dispersion
matrix V��̂L� = �2�X ′X�−1. Near–dependency among the columns of X , as ill−
conditioning� engenders “crucial elements of X ′X to be large and unstable,”
“creating inflated variances,” the OLS solutions often inflated in size and of
questionable signs, and “very sensitive to small changes in X ;” (Belsley, 1986).
Among continuing palliatives are the ridge system ��X ′X + kIp�� = X ′Y� k ≥ 0�
(Hoerl and Kennard, 1970a) (hereafter H&K, 1970a) with solutions ��̂R�k�� k ≥ 0�.
The OLS solution at k = 0 is known to be unstable: “A slight movement away
from this point can give completely different estimates of the coefficients” (H&K,
1970b). Letting �̂R�k� = �	̂1

R�k�� 
 
 
 � 	̂
p
R�k��

′ and taking the ridge trace as graphs
of �k → 	̂i

R�k�� 1 ≤ i ≤ p�, this provides “a two–dimensional graphical procedure
for portraying the complex relationships in multifactor data” (H&K, 1970b).
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266 Jensen and Ramirez

Of particular concern is the stability of solutions as k evolves, and the use of
evidential stability in choosing k. As a staple in the analyst’s toolbox, it thus is
germane to reexamine the use of ridge traces for gauging stability, and the role of
diverse other choices for k as advocated in the literature.

In particular, since �	̂i
R�k�� 1 ≤ i ≤ p� not only are continuous but are

differentiable in k, their derivatives hold promise in regard to stability and other
such features as local maxima and minima. Gibbons and McDonald (1984) showed
that ridge estimators may be expressed as rational functions of the parameter k,
and critical properties emerge on examining polynomials in those representations.
Specifically, sign changes, crossings, and rates–of–change of ridge coefficients,
as functions of k, emerge on examining derivatives and identifying zeros of
polynomials, where locations of those changes coincide with the positive roots.
“These characterizations, in the aggregate, serve to ‘quantify’ the rationale (such as
‘stability’ and ‘reasonable’ coefficient signs) for selecting a specific ridge estimator
in a specific application;” see Zhang and McDonald (2005) and, for a recent survey,
McDonald (2009). Parallel developments are given subsequently for derivative
traces.

Moreover, ridge traces and their derivatives, depending on Y , are stochastic and
thus subject to the vagaries of experimental variation. It remains to ask whether
evidence towards stability might reside exclusively in the matrix X , signaling
stability “in distribution” of a ridge trace or its derivative. This question is answered
in the affirmative, giving a deterministic assessment of the attenuation of those
attributes as k evolves. Connections are drawn to other aspects of ridge regression
from the literature. Unfortunately, ridge traces on occasion have been misconstrued,
as noted in the following.

1.2. Case Study: A First Look

The Hospital Manpower Data of Myers (1990), detailed subsequently, exhibits p =
5 highly ill–conditioned regressors. In support of an algorithm for choosing k, Table
8.12 (Myers, 1990) gives sections of the ridge traces in the original coordinates,
extracted here in part as the first three rows of Table 1. Based on these, Myers
asserts that the ridge coefficients have stabilized at k = 0
0004, taking this to be a
viable choice for k based on ridge traces.

Unfortunately, these conclusions are flawed: Nearness of ridge coefficients for
nearby k in the first three rows of Table 1 reflects continuity of the ridge traces, not
stability; even better agreement would accompany smaller increments in k.

On the other hand, the divergences ��	̂i
R�ku�− 	̂i

R�kv��/�ku − kv�� 1 ≤ i ≤ 5�, as
changes in 	̂i

R�k� per unit change in k, accurately portray the local variation in
�	̂i

R�k�� 1 ≤ i ≤ 5� as k ranges from kv to ku. Values for these divergences are listed in
the midsection of Table 1, categorically rejecting any prospects that stability might
have been achieved across these values for k. These facts in part motivate ensuing
developments in which instantaneous rates of change, i.e., derivatives as limits of
divergences, are germane in assessing stability of ridge traces as k evolves. Looking
ahead, these derivatives are listed in the bottom portion of Table 1.
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Ridge Traces 267

Table 1
Ridge solutions �̂R�k�= �	̂1

R�k�, 
 
 
 , 	̂
5
R�k��

′ from Table 8.12 of Myers (1990);
divergences ��	̂i

R�ku�− 	̂i
R�kv��/�ku − kv�, with ku > kv� and derivatives �d	̂i

R/dk};
for �1 ≤ i ≤ 5� and coefficient values in the natural variables at selected k

k 	̂1
R�k� 	̂2

R�k� 	̂3
R�k� 	̂4

R�k� 	̂5
R�k�

Ridge Solutions
k1 = 0
00030 11.4767 0.0564 0.7201 −5
4163 −416
42
k2 = 0
00035 12.0761 0.0564 0.7004 −5
4238 −416
32
k3 = 0
00040 12.5411 0.0565 0.6849 −5
4249 −416
09

Divergences ��	̂i
R�ku�− 	̂i

R�kv��/�ku − kv�� 1 ≤ i ≤ 5�
�k1� k2� 11988 0 −394 −150 2000
�k2� k3� 9300 2 −310 −22 4600

Derivatives �d	̂i
R/dk� 1 ≤ i ≤ 5�

k1 = 0
00030 13710.4027 0.6414 −448
3150 −234
5197 376.4642
k2 = 0
00035 10478.0469 0.6007 −345
9388 −78
4742 3441.5818
k3 = 0
00040 8253.7726 0.5722 −275
4801 28.5845 5540.9055

2. Preliminaries

2.1. Notation

Designate �n and �n
+ as Euclidean n–space and its positive orthant. Matrices and

vectors are set in bold type; the transpose, inverse, and trace of A are A′, A−1,
and tr�A�. Special arrays include the identity In, the unit vector 1n = �1� 1� 
 
 
 � 1�′ ∈
�n, the diagonal matrix D�ai� = Diag�a1� 
 
 
 � ap�, and Bn = �In − n−11n1

′
n�. Let

Z�n× p� have rank p < n� its singular decomposition is Z = PD�Q
′, with D� =

Diag��1� 
 
 
 � �p� as its ordered singular values ��1 ≥ �2 ≥ · · · ≥ �p > 0�, and with the
columns of P = �p1� 
 
 
 � pp� and of Q = �q1� 
 
 
 � qp� comprising the left– and right–
singular vectors of Z , such that P′P = Ip and Q is orthogonal.

2.2. A Canonical Form

Successive transformations yield a basic canonical form; inverse mappings then
recover the original coordinates. Beginning with the standard model �Y = 	01n +
X� + �� with intercept, take Y0 = BnY with Bn = �In − n−11n1

′
n�� observe that

Bn1n = 0 and B2
n = Bn� and let Sc = Diag�S1� 
 
 
 � Sp� comprise reciprocals of square

roots of the diagonals of X ′BnX . This serves to center and scale elements of X ,
so that Z ′Z = ScX

′BnXSc is in the conventional “correlation form.” These changes
support the transitions

�Y = 	01n + X� + �� → �BnY = 	0Bn1n + BnXScS
−1
c � + �� (1)

→ �Y0 = Z� + �� → �Y0 = PD�� + ��
 (2)

The singular decomposition of Z = BnXSc is Z = PD�Q
′; � = S−1

c �� � = Bn��

and � = Q′� = Q′S−1
c � is linear in the original �. From this, our ultimate
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268 Jensen and Ramirez

canonical form is

�Y0 = PD�� + �� → �P′Y0 = P′PD�� + P′�� (3)

→ �W = D�� + ��� (4)

where Y0 → W = P′Y0, P
′P = Ip, and � = P′�.

Ridge regression traditionally is carried out as ��Z ′Z + kIp�� = Z ′Y0�, or
equivalently, ��D2

� + kIp�� = D�W�, giving �̂R�k� = D��i/��
2
i + k��W and �̂R�k� =

Q�̂R�k� as the ridge solutions in correlation form, where

D��i/��
2
i + k�� = Diag��1/��

2
1 + k�� 
 
 
 � �p/��

2
p + k��
 (5)

These in turn map back to the original coordinates through �̂R�k� = A�̂R�k�,
with A = ScQ, i.e., �	̂i

R�k� = a′i�̂R�k�� 1 ≤ i ≤ p� with A′ = �a1� 
 
 
 � ap�. For an
orthogonal system with X ′X diagonal, the orthogonal matrices are P = In and Q =
Ip, with the pull-back matrix A = Ip.

For subsequent reference observe that

V��̂R�k�� = �2D��2i /��
2
i + k�2� �⇒ V��̂R�k�� = �2AD��2i /��

2
i + k�2�A′
 (6)

Moreover, since �d�̂iR�k��/dk = −��i/��
2
i + k�2�Wi� 1 ≤ i ≤ p�, the canonical traces

�k → ̂�k�� 1 ≤ i ≤ p� are monotone in k. On the original scale, however, �k →
	̂i
R�k� = a′i�̂R�k�� need not be monotone, as seen in Sec. 4.

3. The Principal Findings

3.1. Ridge Traces

H&K (1970a,b) promulgate ridge traces as fundamental in identifying values of k
yielding stable solutions. These are stochastic displays; evidence of stability thus
is obscured in part by random disturbances in Y . On the other hand, evidence
of tendencies to stabilize in distribution is provided by their evolving point–wise
variances: Diminishing variances would point to increasing stability of ridge traces
about their evolving means. This concept may be quantified through Chebychev’s
inequalities, for example.

Accordingly, were “variance traces” �k → Var�	̂i
R�k��� 1 ≤ i ≤ p� to be

monitored as adjuncts to ridge traces, this would serve to exhibit stabilizing trends
in their variances, hence their concentrations in probability. Moreover, the latter
entities are deterministic, depending only on X , free of random disturbances in Y .
On the other hand, since instabilities often may be discerned more readily through
derivatives, we further seek to examine derivative variances of ridge traces through
�k → d�Var�	̂i

R�k��/dk� 1 ≤ i ≤ p�. Some properties may be listed as follows.

Theorem 3.1. Consider the ridge traces �	̂i
R�k�� k ≥ 0�, their variances

�Var�	̂i
R�k��� k ≥ 0�, and the derivatives �dVar�	̂i

R�k��/dk� k ≥ 0�, for 1 ≤ i ≤ p.
Then:

(i) variances are given by �Var�	̂i
R�k�� = �2a′iD��2i /��

2
i + k�2�ai� 1 ≤ i ≤ p�, each

monotone decreasing with increasing k;
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Ridge Traces 269

(ii) rates of change in �Var�	̂i
R�k��� 1 ≤ i ≤ p� are given by

�dVar�	̂i
R�k��/dk = −2�2a′iD��2i /��

2
i + k�3�ai < 0� 1 ≤ i ≤ p�

independently of Y ;
(iii) the negative functions �dVar�	̂i

R�k��/dk� 1 ≤ i ≤ p� are monotone increasing as
k ↑ for k ≥ 0, their values progressing from large to small in magnitude.

Proof. Conclusion (i) extracts diagonal elements from (6); differentiation yields
conclusion (ii); and monotonicity in (i) follows from negative slopes and that
�d2Var�	̂i

R�k��/dk
2 = 6�2a′iD��2i /��

2
i + k�4�ai > 0� 1 ≤ i ≤ p� are positive as noted in

H&K (1970a, p. 60). Conclusion (iii) follows on checking signs of their first and
second derivatives, to complete our proof. �

3.2. Derivative Traces

Pursuing the notion that instabilities are revealed through derivatives, we proceed
to examine the derivative traces �k → d	̂i

R�k�/dk� 1 ≤ i ≤ p� and their properties, in
lieu of ridge traces. Principal findings follow.

Theorem 3.2. Consider the ridge trace �k → �̂R�k�� and its derivative as the vector

gradient d�̂R�k�

dk
=

[
d	̂1R�k�

dk
�
d	̂2R�k�

dk
� 
 
 
 �

d	̂
p
R�k�

dk

]′
. Then the following properties hold.

(i) d�̂R�k�/dk = Ad�̂R�k�/dk = −AD��i/��
2
i + k�2�W .

(ii) For each k ≥ 0, the dispersion matrix is V�d�̂R�k�/dk� = �2AD��2i /��
2
i + k�4�A′

independently of Y .
(iii) The ratio of variances of ̂iR�k� to d̂iR�k�/dk is Var�̂iR�k��/Var�d̂

i
R�k�/dk� =

��2i + k�2, for 1 ≤ i ≤ p and each k > 0.

Proof. From �̂R�k� = A�̂R�k� and �	̂i
R�k� = ai1̂

1
R�k�+ · · · + aip̂

p
R�k�� 1 ≤ i ≤ p�,

determine that �d	̂i
R�k�/dk = ai1d̂

1
R�k�/dk+ · · · + aipd̂

p
R�k�/dk� 1 ≤ i ≤ p�. It

follows that d�̂R�k�/dk = Ad�̂R�k�/dk, since d�̂R�k�/dk = dD��i/��
2
i + k��W/dk =

−D��i/��
2
i + k�2�W , to give conclusion (i). To see conclusion (ii), observe that

V��� = �2Bn at Eq. (2) since Bn is idempotent. Accordingly, V�W� = �2P′BnP =
�2P′P = �2Ip, so that V�d�̂R�k�/dk� = V�dD��i/��

2
i + k��W/dk� = �2D��2i /��

2
i +

k�4� and V�d�̂R�k�/dk� = �2AD��2i /��
2
i + k�4�A′. Conclusion (iii) follows from (6)

and the proof for (ii), to complete our proof. �

Ridge traces, and now their derivatives, are subject to chance disturbances
intrinsic to Y as noted and, from conclusion (iii), each may be more or
less variable than the other, depending on the weights �ai� 1 ≤ i ≤ p� and
signs of ����2i + k�− 1�� 1 ≤ i ≤ p�. We next seek versions of traces devoid of
disturbances in Y , depending only on X . As noted, random traces may be
thought to “stabilize in distribution” as their variances diminish. Accordingly,
we focus next on stability of derivative traces in terms of their point–wise
variability, namely, �Var�d	̂i

R�k�/dk�� 1 ≤ i ≤ p�, and derivatives of the latter as
�d�Var�d	̂i

R�k�/dk��/dk� 1 ≤ i ≤ p�, in seeking evidence for evolving stochastic
stability of the ridge solutions. Details may be collected as follows.
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270 Jensen and Ramirez

Theorem 3.3. Consider the derivative traces �k → d	̂i
R�k�/dk� 1 ≤ i ≤ p� and their

variances �Var�d	̂i
R�k�/dk�� 1 ≤ i ≤ p�. Then:

(i) for each k > 0, �Var�d	̂i
R�k�/dk� = �2a′iD��2i /��

2
i + k�4�ai� 1 ≤ i ≤ p�. Moreover,

each decreases monotonically with increasing k > 0 for 1 ≤ i ≤ p;
(ii) rates of change in �Var�d	̂i

R�k�/dk�� 1 ≤ i ≤ p� are given by �d�Var�d	̂i
R

�k�/dk��/dk = −4�2a′iD��2i /��
2
i + k�5�ai < 0� 1 ≤ i ≤ p� independently of Y .

(iii) the negative functions �d�Var�d	̂i
R�k�/dk��/dk� 1 ≤ i ≤ p� are monotone

increasing as k ↑ for k ≥ 0, their values progressing from large to small in
magnitude.

Proof. Conclusion (i) extracts �Var�d	̂i
R�k�/dk�� 1 ≤ i ≤ p� as diagonal elements

from Theorem 3.2(ii); differentiation yields conclusion (ii); and monotonicity in (i)
follows from negative slopes and that �d2Var�d	̂i

R�k�/dk�/dk
2 = 20�2a′iD��2i /��

2
i +

k�6�ai > 0� are positive. Conclusion (iii) follows on checking signs of their first and
second derivatives as in Theorem 3.1, to complete our proof. �

The following deserves emphasis. Whereas the ridge and derivative traces
are random, convergence of their distributions towards stability may be gauged
deterministically through variance and derivative variance traces. Such features
may be assessed beforehand, based on X alone, whereas ridge traces, and now
their derivatives, must await the empirical outcome of Y at the conclusion of an
experiment.

4. Case Studies

4.1. The Setting

The Hospital Manpower Data, as reported in Table 3.8 (Myers, 1990), consist of
records at n = 17 U.S. Naval Hospitals, to include: monthly man–hours (Y ); average
daily patient load (X1); monthly X–ray exposures (X2); monthly occupied bed days
(X3); eligible population in the area ÷ 1000 �X4�; and average length of patients’
stay in days �X5�. The applicable model is

�Yi = 	0 + 	1X1 + 	2X2 + 	3X3 + 	4X4 + 	5X5 + �i ≤ i ≤ 17�
 (7)

Our computations utilize Proc IML of the SAS Programming System and the
symbolic program Maple. The OLS estimates �̂L = �	̂1

L� 	̂
2
L� 	̂

3
L� 	̂

4
L� 	̂

5
L�

′ and their
variances, in the original coordinates, are listed in Table 2. Following convention
(for example the Ridge option of Proc Reg in the SAS system), ridge regression
proceeds on first centering and scaling, taking X ′X → Z ′Z in correlation form;
solving the ridge equations; then mapping back onto the natural coordinates as in
Sec. 2.2. The data are remarkably ill conditioned: singular values of Z are D� =
Diag�2
048687� 0
816997� 0
307625� 0
201771� 0
007347�, and the condition number
is c1�Z

′Z� = 77� 754
86. Throughout 24
30E02 designates 24
30× 102, for example,
in scientific notation.
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Ridge Traces 271

Table 2
OLS estimates �	̂i

L� 1 ≤ i ≤ 5� and their variances for the Hospital Manpower Data

i 1 2 3 4 5

	̂i
L −15
8508 0.0559 1.5896 −4
2196 −394
3280

Var�	̂i
L�/�

2 0.023126 1.096E-9 0.000023 0.000125 0.106589

4.2. Ridge Regression

A striking diversity persists in choices for k as advocated in the literature,
underscoring the problem as less than well posed, often with profound differences
among solutions. We invoke findings reported here as a common lens through which
those choices may be viewed, with special reference to stability of solutions in k.

Choices in wide usage are identified in Table 3, together with their values for the
Hospital Manpower Data. These encompass DFk = tr�Hk� =

∑p
i=1 �

2
i /��

2
i + k� with

Hk = �Z�Z ′Z + kIp�
−1Z ′�� PRESSk =

∑n
i=1 e

2
�i��� as the cross–validation statistic

(Allen, 1974); GCVk = SSRes�k/�n− �1+ tr�Hk���
2, a rotation–invariant analog called

Generalized Cross Validation (Golub et al., 1979); Ck = ��SSRes�k/�̂
2�− n+ 2+

2tr�Hk�� to achieve a variance–bias trade–off (Mallows, 1973); and HKBk = �̂2/�̂′
L�̂L

as in (Hoerl et al., 1975) from simulation studies. Here, SSRes�k and �̂2, respectively,
are the residual sum of squares using ridge and the OLS residual mean square; and
�e2�i���� are the PRESS residuals from ridge regression; see Myers (1990), including
numerical values for DFk, Ck, and PRESSk as reported here. These values are marked
with asteristics in the tables to follow. For further details on estimating k, see Kibria
(2003) and Muniz and Kibra (2009), among others.

Marquardt (1970) noted that the variation inflation factors VIFi�k� for the
ridge estimators are the diagonal elements of �Z ′Z + kIp�

−1�Z ′Z��Z ′Z + kIp�
−1,

and gives the rule of thumb that �VIFi�k� < 10� 1 ≤ i ≤ p� in choosing k. Values for
max�VIFi�k�� 1 ≤ i ≤ p� are shown in Table 3 for k as listed there. We note that
all �VIFi�k� < 10� 1 ≤ i ≤ p� for k > 0
00706. Moreover, Jensen and Ramirez (2010)
gave the cross-over value for the inequality MSE��̂R�k�� < MSE��̂L�� and, for the
Hospital Manpower Data, they estimate the set of admissible values for k to be
�0� 0
007263�.

In the paragraphs to follow, we first present numerical evidence from the
Hospital Manpower Data as it pertains to Theorems 3.1–3.3. We then undertake a
synthesis of these findings with reference to the criteria of Table 3.

Table 3
Choices for k in the Hospital Manpower Data for conventional criteria, DFk,

GCVk, Ck, PRESSk, and HKBk� and corresponding values for
max�VIF�	̂i�� 1 ≤ i ≤ 5�

Name DFk GCVk Ck PRESSk HKBk

Value for k 0.000400 0.004787 0.005000 0.230000 0.616960
max�VIF�	̂i�� 1 ≤ i ≤ 5� 1146.4314 112.6210 108.0925 3.9338 2.0374

D
ow

nl
oa

de
d 

by
 [

D
on

al
d 

Je
ns

en
] 

at
 0

7:
09

 1
1 

O
ct

ob
er

 2
01

1 



272 Jensen and Ramirez

Ridge Traces. Ridge traces for the Hospital Manpower Data are listed in Table
8.9 of Myers (1990) for k ∈ �0
00� 0
24� by increments of 0.01. Companion to those
are the scaled traces �	̂i

R�k�/		i
L	� 1 ≤ i ≤ 5� at selected values for k, as listed in

Table 4. These are intended to adjust for scale. Additional quantities of interest
are �Var�	̂i

R�k��� 1 ≤ i ≤ 5�, and their derivatives �dVar�	̂i
R�k��/dk� 1 ≤ i ≤ 5�, as

parameters of their distributions, thus deterministic.

4.3. Derivative Traces

Turning to derivative traces �d	̂i
R�k�/dk� 1 ≤ i ≤ 5� as schemata for gauging

instabilities, we first note from Table 2 that the ratio of the largest to smallest OLS
values in magnitude is 7054. To adjust for these disparities, we scale the derivative
traces as ��d	̂i

R�k�/dk�/		i
L	� 1 ≤ i ≤ 5�, taking absolute values in the denominators

so as to preserve signs of the derivatives. These appear in Table 5. Suppose instead
that these had been scaled by �	̂i

R�k�� 1 ≤ i ≤ p� or their moduli. Then of the
series ��d	̂i

R�k�/dk�/		̂i
R�k�	� 1 ≤ i ≤ 5�, two would exhibit singularities since their

ridge traces change signs at 	̂4
R�0
0188� = 0 = 	̂5

R�0
0983�. Having obviated those
discontinuities, we see that entries in Table 5, as in Table 4, serve to equilibrate
the unscaled values; moreover, they are scale–invariant, thus dimensionless, and
hence free of �2. Nonetheless, Table 5 entries are random, subject to experimental
variation in Y , if not their variance.

Pursuant to Theorem 3.1, we next examine the derivative variances as k evolves,
but taking ��dVar�	̂i

R�k��/dk�/Var�	
i
L�� to adjust for the widely disparate OLS

variances in Table 2. These appear in Table 6. This scaling serves to equilibrate
entries in the table; more importantly, these ratios are scale–invariant and thus free
of experimental variation in the observed Y . Monotonicity as in Theorem 3.1(iii), is
clearly evident.

Values �Var�d	̂i
R�k�/dk�� 1 ≤ i ≤ 5� and �d�Var�d	̂i

R�k�/dk��/dk� 1 ≤ i ≤ 5�,
companion to these, provide the deterministic traces of Theorem 3.3, as parameters
of the derivative trace distributions, in concert with their stability as k evolves.

Table 4
Scaled traces �	̂i

R�k�/		̂i
L	� 1 ≤ i ≤ 5� from ridge and OLS solutions in the natural
variables at selected values for k

k
	̂1R�k�

		̂1L	
	̂2R�k�

		̂2L	
	̂3R�k�

		̂3L	
	̂4R�k�

		̂4L	
	̂5R�k�

		̂5L	

0.0003 0.72400 1.00852 0.45298 −1
28389 −1
05605
0.0004* 0.79115 1.00960 0.43089 −1
28594 −1
05522
0.004748* 0.95833 1.04279 0.34281 −0
91230 −0
92607
0.0050* 0.95700 1.04417 0.34170 −0
89439 −0
92008
0.0100 0.91956 1.07231 0.32106 −0
51513 −0
79304
0.1000 0.64357 1.16936 0.21600 1
69797 0
00635
0.2300* 0.55670 1.13101 0.18497 2
21637 0
29450
0.4000 0.50949 1.07193 0.16833 2
34183 0
45709
0.61696* 0.47311 1.00649 0.15586 2
32467 0
56011
0.8000 0.45008 0.95911 0.14808 2
27055 0
60702
1.0000 0.42898 0.91359 0.14101 2
20025 0
63612
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Table 5
Scaled derivative traces ��d	̂i

R�k�/dk�/		̂i
L	� 1 ≤ i ≤ 5� from ridge and OLS

solutions in the natural variables at selected values for k

k
�d	̂1R�k�/dk�

		̂1L	
�d	̂2R�k�/dk�

		̂2L	
�d	̂3R�k�/dk�

		̂3L	
�d	̂4R�k�/dk�

		̂4L	
�d	̂5R�k�/dk�

		̂5L	

0.0003 865
0632 11
46946 −282
0610 −55
56690 0
957827
0.0004* 520
7822 10
23025 −173
3220 6
781230 14
05348
0.004787* −6
112760 6
518157 −5
339030 84
42942 28
25171
0.0050* −6
400430 6
439555 −5
180520 83
71277 28
01037
0.0100 −7
614580 4
906354 −3
448770 68
57293 23
02669
0.1000 −1
187950 −0
108010 −0
429810 8
448551 3
721705
0.2300* −0
394430 −0
357500 −0
139640 1
673329 1
379640
0.4000 −0
207680 −0
328640 −0
071870 0
181898 0
666474
0.61696* −0
139630 −0
276540 −0
047420 −0
239400 0
331730
0.8000 −0
114410 −0
242590 −0
038480 −0
333940 0
193578
1.0000 −0
097800 −0
213810 −0
032680 −0
361430 0
104965

Standard deviations are reported in Table 7, scaled again by corresponding
OLS values, once more equilibrating the unscaled values, and assuring their
scale–invariance and freedom from �2. Further, as in Theorem 3.3(i), these
are seen to decrease monotonically with increasing k. In addition, derivatives
�d�Var�d	̂i

R�k�/dk��/dk� 1 ≤ i ≤ 5�, scaled by OLS values but not tabulated here,
stand in further support of trends reported here. Moreover, these increase with
increasing k as in Theorem 3.3(iii), often becoming vanishingly small.

A Synthesis. The variations on ridge traces of this study, identified as Tables 5,
6, and 7, are themselves somewhat disparate yet related. Let �TEi�k�� 1 ≤ i ≤
5� designate tabular entries in the columns of a typical table. Then values of

Table 6
Scaled derivatives ��dVar�	̂i

R�k��/dk�/Var�	̂
i
L�� 1 ≤ i ≤ 5� of variances of ridge

traces �̂R�k�= �	̂1
R�k�� 
 
 
 � 	̂

5
R�k��

′, independently of Y , in the natural variables at
selected k

k
dVar�	̂1R�k��/dk

Var�	̂1L�

dVar�	̂2R�k��/dk

Var�	̂2L�

dVar�	̂3R�k��/dk

Var�	̂3L�

dVar�	̂4R�k��/dk

Var�	̂4L�

dVar�	̂5R�k��/dk

Var�	̂5L�

0.0003 −131
3340 −23
7211 −131
3210 −80
5279 −50
9787
0.0004* −62
2733 −23
4101 −62
2712 −50
1802 −37
0551
0.004787* −0
07166 −19
5799 −0
07696 −17
3429 −18
4984
0.0050* −0
06514 −19
4258 −0
07037 −17
1169 −18
2545
0.0100 −0
02047 −16
2852 −0
02430 −12
8401 −13
6422
0.1000 −0
00075 −2
26490 −0
00093 −0
83550 −1
20534
0.2300* −0
00011 −0
49748 −0
00014 −0
14790 −0
44199
0.4000 −0
00003 −0
14940 −0
00003 −0
04113 −0
22868
0.61696* −9
92E-6 −0
05493 −0
00001 −0
01475 −0
12565
0.8000 −5
55E-6 −0
02987 −6
46E-6 −0
00801 −0
08334
1.0000 −3
54E-6 −0
01770 −4
06E-6 −0
00477 −0
05664

D
ow

nl
oa

de
d 

by
 [

D
on

al
d 

Je
ns

en
] 

at
 0

7:
09

 1
1 

O
ct

ob
er

 2
01

1 



274 Jensen and Ramirez

Table 7
Standard deviations of derivative traces �d	̂i

R/dk� relative to 	̂i
L, namely,

���	̂i� = �Var�d	̂i
R/dk�/Var�	̂

i
L��

1/2� 1 ≤ i ≤ 5�, independent of Y , for solutions in
the natural variables at selected k

k ��	̂1� ��	̂2� ��	̂3� ��	̂4� ��	̂5�

0.0003 430.6650 27.18683 430.6328 285.2097 192.9238
0.0004* 261.8325 19.29229 261.8130 173.8692 118.0531
0.004787* 2.350305 11.00050 2.362574 13.35063 13.86791
0.0050* 2.163111 10.93410 2.176214 13.21852 13.73480
0.0100 0.654137 9.570927 0.682494 10.77608 11.16617
0.1000 0.050908 2.420475 0.056744 1.617668 1.616061
0.2300* 0.014107 0.861670 0.015622 0.490641 0.605443
0.4000 0.005436 0.375612 0.005991 0.201063 0.348502
0.61696* 0.002499 0.186296 0.002743 0.097036 0.225747
0.8000 0.001568 0.120870 0.001715 0.062409 0.169821
1.0000 0.001061 0.083042 0.001156 0.042733 0.130359

�	TEi�k�	� 1 ≤ i ≤ 5�, diminishing as k increases, characterize enhanced stability by
each criterion. There is a plethora of entries; nonetheless, some concensus might
emerge on seeking k†��� such that all entries across columns are dominated by a
given threshold value � > 0. Specifically, take

k†��� = arg
(
min

k
�	TE1	� 	TE2	� 	TE3	� 	TE4	� 	TE5	� < �

)



This undertaking was carried out using Maple software and three threshold values,
namely, � ∈ �1� 10� 100�. Results are compiled in Table 8, showing remarkable
consistency across the three tables, despite their diverse but related origins.

4.4. Polynomial Representations

As noted by Gibbons and McDonald (1984), the ridge traces are rational
functions in k of degree �p− 1� p�. From the canonical form, we use Maple
to calculate the rational functions �k → A�Z ′Z + kIp�

−1Z ′Y0� 1 ≤ i ≤ p� which

Table 8
Minimal values k†��� for k required to achieve �	TEi�k�	 < �� 1 ≤ i ≤ p�,
where �TEi�k�� 1 ≤ i ≤ p� designate typical entries in the columns of

Tables 5, 6, and 7, successively

Threshold values Table 5 Table 6 Table 7

�	TEi�k�	 < �� 1 ≤ i ≤ 5� Minimal k†���

� = 100 0.0009333 0.0003336 0.0006806
� = 10 0.08952 0.02620 0.01292
� = 1 0.29670 0.16120 0.20670
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Ridge Traces 275

Table 9
Coefficients for the normalized function Q0�k� = Q�k�/	Q�0�	 for the scaled ridge

traces �	̂i
R�k�/		̂i

L	 = P0
i �k�/Q0�k�� 1 ≤ i ≤ 5�

c0 c1 c2 c3 c4 c5

1 18,566.2 683,431 5,946,835 8,583,693 1,716,739

computes the ridge estimators in correlation units and transforms them back into
natural units by A. The rational representation of 	̂i

R�k� as Ri�k� = Pi�k�/Q�k�

has degrees �p− 1� p�, all having the common denominator Q�k� of degree p,
such that Ri�k� → 0 as k → 
. To assist in displaying the coefficients, we again
scale the ridge traces as 	̂i

R�k�/		̂i
L	 = Ri�k�/		̂i

L	 = �Pi�k�/	Pi�0�	�/�Q�k�/	Q�0�	� ≡
P0
i �k�/Q0�k�. The coefficients for P

0
i �k� and Q0�k�, to be denoted as �c0� 
 
 
 � c4� and

�c0� 
 
 
 � c5�, are shown in Tables 9 and 10, respectively. Since all the coefficients of
Q0�k� are positive, Q0�k� > 0 for the ridge values k > 0. Applying Descartes Rule
of Signs, we find the maximum number of positive zeroes for �P0

i �k�� 1 ≤ i ≤ p�

to be �1� 0� 0� 1� 1�, respectively. Thus, �	̂2
R�k�� 	̂

3
R�k�� have no sign changes, while

�	̂1
R�k�� 	̂

4
R�k�� 	̂

5
R�k�� each have one sign change.

The foregoing representations support explicit rational functions for
the derivative traces. For the scaled ridge traces we set � d

dk
�	̂i

R�k�/		̂i
L	� =

T 0
i �k�/�Q0�k��

2� 1 ≤ i ≤ p� with T 0
i �k� of degree 2p from the quotient rule for

derivatives, and the common denominator �Q0�k��
2 as above of degree 2p. The

coefficients for the polynomial T 0
i �k�, to be denoted as �d0� 
 
 
 � d8�, are shown in

Table 11 for �T 0
i � 1 ≤ i ≤ p�. From Descartes Rule of Signs, the number of possible

positive zeroes, #�zeroes�, for T 0
i �k�, and their values as zeroes, are shown in the

last two rows of Table 11. The denominator �Q0�k��
2 > 0, so the zeroes of T 0

i �k�

are the roots for the derivative traces, equivalently, the critical values for the ridge
traces. As the ridge traces 	̂i

R�k� → 0 as k → 
, the number of critical values of
	̂i
R�k� provide an upper bound for the number of sign changes for 	̂i

R�k�.
For example, T 0

3 �k� has no zeroes and so 	̂3
R�k� must tend monotonically to

zero; whereas, T 0
1 �k� has one zero (equivalently, one critical value) permitting one

sign change for 	̂1
R�k�, in agreement with the previously noted unique sign change

for 	̂1
R�k�. These developments for derivatives parallel those for traces in Gibbons

and McDonald (1984), Zhang and McDonald (2005), and McDonald (2009).

Table 10
Coefficients for the normalized functions �P0

i �k�� 1 ≤ i ≤ 5� for the scaled ridge
traces �	̂i

R�k�/		̂i
L	 = P0

i �k�/Q0�k�� 1 ≤ i ≤ 5�

c P0
1�k� P0

2�k� P0
3�k� P0

4�k� P0
5�k�

c0 −1 1 1 −1 −1
c1 19�199
5 18�705
1 6�633
4 −25�358
6 −19�986
1
c2 459�002
0 847�501
8 154�394
7 1�033�466
4 −82�833
9
c3 3�106�914
5 7�037�063
0 1�022�197
4 16�573�943
7 2�042�253
5
c4 3�685�419
0 7�581�429
8 1�206�745
1 19�710�531
2 8�842�320
5
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276 Jensen and Ramirez

Table 11
Coefficients for the rational functions T 0

i �k� for derivatives of the scaled ridge
traces � d

dk
	̂i
R�k�/		̂i

L	 = T 0
i �k�/�Q0�k��

2� 1 ≤ i ≤ 5�

c T 0
1 �k� T 0

2 �k� T 0
3 �k� T 0

4 �k� T 0
5 �k�

d0 37.766E03 138.967 −11
933E03 −67
924E02 −14
199E02
d1 22.849E05 32.814E04 −10
581E05 34.338E05 12.012E05
d2 −45
725E08 29.545E08 −16
817E08 36.586E09 12.145E09
d3 −11
294E10 38.825E09 −40
968E09 91.715E10 31.361E10
d4 −89
535E10 −29
002E10 −32
317E10 69.322E11 28.955E05
d5 −29
737E11 −43
151E10 −10
467E11 93.738E11 13.646E12
d6 −71
137E11 −19
683E12 −23
931E11 −30
373E12 35.480E12
d7 −10
668E12 −24
162E12 −35
097E11 −56
906E12 −70
120E11
d8 −6
328E12 −13
015E12 −20
717E11 −33
838E12 −15
180E12
#�zeroes� 1 1 0 2 2
zeroes 0.00301 0.08727 none �0
38484E–3� �0
29507E–3�

0
45904� 1
52119�

4.5. Connections to Other Criteria

As noted, criteria other than stability have driven the wide diversity of choices
for k, including those of Table 3. Nonetheless, on the premise that stability of
solutions has been a staple of (H&K, 1970a,b) from the beginning, our findings offer
a lens through which those other criteria may be gauged. Note that �DFk�GCVk� Ck�
may be grouped as smallest in Table 3. Moreover, DFk = tr�Hk� is identified
(Myers, 1990) as the “perhaps more appealing” df–trace criterion of Tripp (1983),
“namely, the effective regression degrees of freedom.” Moreover, DFk is a factor
in Ck and GCVk. Having plotted DFk vs k as his Fig. 8.4, Myers concludes:
“Certainly tr�Hk� has stabilized before k = 0
0004. Now, in order to illustrate how
this reflects stability in coefficients, consider the information in Table 8.12, reflecting
the coefficients values (in the natural variables) for k in the interval [0, 0.0004]. The
tr�Hk� appears to be a reasonable composite criterion for reflecting stability in the
regression coefficients;” (Myers, 1990). To the contrary, these claims appear not to
be supported by the evidence. To wit, compare the finite Divergences in Table 1 with
rescaled versions of the instantaneous derivatives at k = 0
0004 in Table 5, namely,
�8254
82� 0
572197�−275
52�−28
6143� 5541
69�.

Lesson learned: The similarities of ridge values for nearby k in Table 8.12 reflect
continuity of ridge traces, not their stability, as noted previously. Similarly, from
Tables 5–7 we see that overall stability arguably may be found in the neighborhood
of k = 0
10, so that none of the values for �DFk�GCVk� Ck� would portend stability
in the sense of H&K (1970a,b); see also Table 8. Clearly, these criteria work at
crossed purposes to stability in the context of these data.

Such discrepancies may be found elsewhere. For the Tobacco Data of
Table 8.13 (Myers, 1990), his Table 8.15 gives values for ridge traces of
�	̂1

R�k�� 	̂
2
R�k�� 	̂

3
R�k�� 	̂

4
R�k�� for k ∈ �0
000� 0
010� in increments of 0.001. Based

on separate plots of the �DFk� PRESSk� Ck� criteria and the ridge traces in his
Table 8.15, Myers concludes that “if one were to use ridge regression in this
data set, a value of k from 0.002 to 0.004 would be appropriate.” Again
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Ridge Traces 277

we respectfully disagree. For if, in keeping with our Table 1, we recompute
values for ��	̂i

R�ku�− 	̂i
R�kv��/�ku − kv�� 1 ≤ i ≤ 4�, but now taking ku = 0
004 and

kv = 0
003 together with Table 8.15 (Myers, 1990), we get the Divergences =
�−4195
0� 5066
1� 2501
5�−876
5� as approximate derivatives. In consequence, ridge
traces are seen to diverge wildly for k ∈ �0
002� 0
004�, grossly devoid of evidence
towards stability of ridge traces in the tobacco data. Again, the nearness of ridge
values for nearby k in Table 8.15 reflects continuity, not stability. On the other
hand, a careful examination of derivative traces, in lieu of ridge traces, could serve
to obviate such misleading assertions.

In summary, users are reminded that the stability of solutions serves as the
frontispiece of (H&K, 1970a,b) from the outset. Nonetheless, in that numerous and
disparate other criteria have been advocated in choosing k, our studies caution that
choices for k based on other desiderata need not exhibit the requisite stability.

5. Summary and Conclusions

The widespread use of ridge regression continues apace, prominently now for
calibration in chemical engineering and allied fields; see Frank and Friedman (1993),
Geladi (2002), Kalivas (2005), and Sundberg (1999), for example. The present study
complements those basics through a consolidated approach for tracking the stability
of prospective solutions in particular applications.

Rates of change of ridge traces are studied in assessing the stability of
ridge solutions. Both ridge traces, and their derivatives, are subject to random
disturbances in the observed Y . On the other hand, since ill conditioning resides
exclusively in the matrix X , it is natural to conjecture that critical properties, such
as stability, might trace back to X alone, independently of Y . An affirmative answer
rests on two further metrics, namely, the derivatives of the variances of the ridge
estimators, and the variances of the derivative traces. Both tend to zero as the
ridge parameter increases, and both reflect the stabilizing of those distributions
in a deterministic manner. Case studies in the highly ill–conditioned Hospital
Manpower Data serve to illustrate the essential findings. Quantities in these studies
are standardized so as to free the diagnostics from dependence on the observational
variance �2, typically unknown. Users are cautioned that choices for k based on
other desiderata need not exhibit the stability taken as the frontispiece of (H&K,
1970a,b). It is noted further that, although ridge traces have been misconstrued on
occasion as documented, a careful examination of derivative and allied traces could
serve to circumvent any false and misleading assertions based on ridge traces.
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