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Abstract
The raise estimators are used to reduce collinearity in linear regression

models by raising a column in the experimental data matrix which may be
nearly linear with the other columns. The raising procedure has two com-
ponents, namely stretching and rotating which we can analyze separately.
We give the relationship between the raise estimators and the classical
ridge estimators. Using a case study, we show how to determine the per-
turbation parameter for the raise estimators by controlling the amount of
precision to be retained in the original data.
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1 Introduction

A technique to mitigate the existence of collinearity is constrained estimators
such as ridge estimators and Stein estimators. In both cases, the goal is to di-
minish the Mean Square ErrorMSE and to mitigate the problems inherent with
collinearity. These estimators improve the effect of collinearity by constraining
the Mahalanobis distance of the estimator β̂ under the constraint β′Qβ = δ2

with Q a positive definite matrix and δ > 0.
From the model y = Xβ + u with uncorrelated, zero-mean, and homoscedas-

tic errors, we know that the OLS estimators β̂ are given by

β̂ = (X
′
X)
−1

X′y. (1)

1



A direct application of Lagrange multipliers gives the constrained estimator
β̂cs with β̂

′
csQβ̂cs = δ2 as

β̂cs = (X
′
X+kQ)

−1
X′y, (2)

where k is the Lagrange parameter chosen to satisfy the constraint β̂
′
csQβ̂cs =

δ2.
From the Loewner partial ordering X′X �LX′X+kQ, the inverses will have

the opposite partial order (X′X+kQ)−1�L(X′X)−1. When Q and X′X com-
mute, for example with Q = kIp or Q = kX′X, the two cases considered
below, the pair (X′X, X′X+kQ) can be simultaneously diagonalized into the
pair (Ip, Λ) with Λ the diagonal matrix containing the characteristic roots of
X′X+kQ. From the Loewner partial ordering X′X�LX′X+kQ, the Loewner
partial ordering Ip�LΛ follows, and thus I2p�LΛ2 so (X′X)2�L(X′X+kQ)2,
and it follows that ||β̂cs||2 ≤ ||β̂||2 with the constrained estimators shown to
have decreased in length. We note that in general, A �LB does not imply that
A2�LB2, Puntanen et al. (2011, p. 316). From this idea, we consider two types
of constrained estimators:

1. Stein estimators: From Q = X′X the expression (2) becomes:

β̂s = (X
′X+ kX′X)−1X′y =

1

1 + k
β̂. (3)

For a detailed study of the Stein estimators we recommend the original
reference of Stein (1960). These estimators were also studied by Mayer
and Willke (1973). These estimators, which satisfy expression (3), define
a whole class of biased estimators, the so called shrinkage estimators.
They are obtained by shrinking the least squares estimator towards the
origin, and they satisfy the MSE Admissibility Condition which assures
an improvement (decrease) in MSE for some k ∈ (0,∞).

2. Ridge estimators: From Q = Ip, the expression (2) becomes:

β̂r = (X
′X+ kIp)

−1X′y, (4)

where Ip is the matrix identity. Hoerl and Kennard (1970) established that
the ridge estimators also satisfy the MSE Admissibility Condition assur-
ing an improvement in MSE for some k ∈ (0,∞). The earliest detailed
expositions of these estimators are found in Marquardt (1963) and Hoerl
and Kennard (1970) with Marquardt (1963) acknowledging that Leven-
berg (1944) had observed that a perturbation of the diagonal improved
convergence in steepest descent algorithms. The history of the early use
of matrix diagonal increments in statistical problems is given in the article
by Piegorsh and Casella (1989).

Numerous papers have been written justifying the need to find values 0 < ki
(1 ≤ i ≤ p) to perturb each of the characteristic roots of the matrix X′X to
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improve the condition number of the inverse (X′X)−1. For a positive definite
matrixA, we define the condition number κ as the ratio of the largest to smallest
of the eigenvalues of A. From this, the generalized ridge estimator is established
as

β̂r = (X
′
X+K)

−1
X′y,

where K is the diagonal matrix diag(k1, ..., kp) containing these perturbations.
This regression was briefly commented on by Hoerl and Kennard (1970) and
Goldstein and Smith (1974). As the ridge estimator is not equivariant under
scaling, the common convention is to scale (X′X)−1 to correlation form with
the explanatory variables centered and scaled to unit length and allowing for
a constant term in the linear model. With (X′X)−1 in correlation form, the
estimated variances v̂ar(βi) of the estimates are equal, and the perturbation
matrix is usually taken to be K =kIp with k > 0.
The attempts to find the basis of the ridge estimator have been numerous; for

example, by using the constrained regression imposing the constraint β′β ≤ δ2,
Davidov (2006) used the Kuhn-Tucker Theorem to show that the conditioned
least squared solution agrees with the ridge solution with constraint β′β = δ2.
Some anomalies of the ridge methodology can be found in Jensen and Ramirez
(2008), Kapat and Goel (2010), and Jensen and Ramirez (2010a).
Using the notation from García et al. (2015) define the augmented matrix for

X and the augmented vector for y by XA = [X
′,
√
kIp]

′ and yA = [y
′, 0′p]

′, re-
spectively. The least squared solutions for the constrained model (X′X)β = X

′
y

subject to β′β = δ2 and the unconstrained model (X′AXA)β = X′AyA both
have solution β̂ = (X

′
X+kIp)

−1
X′y. Augmenting the matrix and the re-

sponse vector is similar in spirit to imposing identifiability constraints on the
parameters as in Seber (1977). Hoerl and Kennard (1970, Eq. 2.3) sug-
gested the relationship between the ridge estimator and the OLS estimator
as β̂r = [Ip + k(X

′X)−1]−1β̂. However, note that since β̂r is constrained to lie
on the sphere β′β = δ2, β̂r has a joint singular distribution in Rn with rank
n − 1 while β̂ has a joint non-singular distribution in Rn with rank n. These
and other anomalies with ridge regression are discussed in Jensen and Ramirez
(2010a).
To avoid problems of singularity in the distribution of β̂r, one can consider

a perturbation of the data X→ XS with X′SXS = X′X+kIp as in Jensen and
Ramirez (2008). They call XS the surrogate matrix, and it is defined using a
perturbation of the singular values of X, and yields the surrogate estimator β̂S
from (X

′
SXS)β = X

′
Sy. Similarly, the raised estimators, discussed below, also

improve the ill-conditioning X→X̃ with X̃ used on both sides of the normal
equation (X̃′X̃)β =X̃′y, an importance difference with ridge estimators. Some
authors bypass the constrained optimization foundation of ridge estimators and
adopt the view, from numerical analysis given in Riley (1955), that perturba-
tions of the diagonal improves the stability for matrix inverses.
For the augmented model yA = XAβ+u the error terms cannot be centered.

This could be understood as a critique to ridge estimator obtained from the
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augmented model. Minimizing the sum of the squared errors ei = yi− ŷi for the
augmented rows

∑p
i=1 e

2
i = kβ̂

′
β̂ replaces the constraint β′β = δ2. Case studies

in García et al. (2015) show that the variance inflation factors V IFi (1 ≤ i ≤ p)
computed for the surrogate model y = XSβ + u and for the augmented model
yA = XAβ + uA are asymptotically equal (n→∞).

To conclude, by using the words of Marshall and Olkin (1979) it seems
that the ridge estimator can find a justification in the result provided by Riley
(1955) where it is shown that the matrix X′X+ kIp is better conditioned than
the matrix X′X.
In this paper, we present some properties of the raised estimators originally

presented by García et al. (2011) and its varieties: the stretched and the rotated
estimators. We focus on finding an explication about the basis of the ridge and
Stein estimators. Raised regression is similar to ridge estimator. One difference
is that the ridge procedure seeks stability of (X′X)−1 on the left-hand side of
the normal equations (X′X)−1β̂= X′y, transforming the normal equations into
the ridge equations (X′X+kIp)

−1
β̂= X′y. Our procedure is in the spirit of the

surrogate estimators of Jensen and Ramirez (2010b) whereX is modifiedX→X̃
and the modified matrix is used on both sides of the normal equations. Thus
the raised procedure allows the user to visualize the perturbed design matrix
X̃, a feature not available with ridge regression.

The paper is organized as follows: Section 2 presents the generalized raised
estimator for two variables. Section 3 presents the Stretched and the Rotated
estimators as varieties of the raised estimator. Section 4 studies the raised es-
timators in the case of two variables and shows the way to obtain (X′X+kIp)
by using the successive raising procedure. Section 5 studies the variance infla-
tion factors and the metric number. Section 6 gives the relation between the
raise and ridge estimators. Our case study is presented in Section 7. Finally,
Section 8 contains the conclusions. Some technical results are shown in the two
appendices.

2 The generalized raise method for two vari-
ables

We consider the linear model y = Xβ+u where E(u) = 0, E(uu′) = σ2In and
X is a full rank matrix n×p. For convenience, we have taken σ2 = 1.We assume
that the variables are centered and standardized, that is, X′X is in correlation
form.
For the n × k matrix A = [a1,a2 , ...,ap], the columns span is denoted by

Sp(A), with A(j) denoting the jth column vector aj , and A[j] denoting the
n × (p − 1) matrix formed by deleting A(j) from A. For the linear model
y = Xβ + u, central to a study of collinearity is the relationship between X(j)

and Sp(X[j]). Indeed, there is a monotone relationship between the collinear-
ity indices κj of Stewart (1987), the variance inflation factors V IFj , and the
angle between (X(j), Sp(X[j])), see Jensen and Ramirez (2013, Theorem 4).
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Let P
[j]
= X

[j]
(X′

[j]
X

[j]
)−1X′

[j]
be the projection operator onto the subspace

Sp(X
[j]
) ⊂ Rn spanned by the columns of the reduced (or relaxed) matrix X

[j]
.

From the geometry of the right triangle formed by (X(j),P[j]
X(j)), the squared

lengths satisfy

||X(j)||2 = ||P[j]
X(j)||2 + ||X(j) −P

[j]
X(j)||2,

where ||X(j) − P
[j]

X(j)||2 = RSSj is the residual sum of squares from the
regression X(j) = X[j]α+v with α̂ = P

[j]
X(j). The angle θj between X(j) and

Sp(X[j]) is given by the angle between X(j) and P
[j]

X(j) and satisfies

cos(θj) =
X′(j)P[j]

X(j)

||X(j)|| ||P[j]
X(j)||

=
||P

[j]
X(j)||

||X(j)||
.

We show the details leading to the raise method with p = 2.
In the case of two variables, X = [x1,x2], the model is given by y = β1x1 +

β2x2+u where the matrixX′X is defined asX′X =

(
1

∑
x2ix1i∑

x2ix1i 1

)
=(

1 ρ
ρ 1

)
with ρ the correlation coeffi cient between the exogenous variables.

On the other hand, the matrix X′y is given by X′y = (
∑
x1iyi,

∑
x2iyi)

′.
The collinearity problem occurs when the vectors x1 and x2 are very close; that
is, when the angle between the vectors is very small.
To correct this problem, we will try to separate both vectors. The raise

method begins with the regression between x1 and x2 in the following way.
Pick one of the columns of X, say X(1), and regress this column using the
remaining column(s):

X(1) = X[1]α+ v

x1 = αx2 + v.

The matrix X(2) is X′(2) = (x21, x22,..., x2n), with X′(2)X(2) =
∑
x22i = 1 and

X′[1]X(1) = X′(2)X(1) =
∑
x2ix1i = ρ. Thus,

α̂ = (X′[1]X[1])
−1X′[1]X(1) =

[
X′(2)X(2)

]−1 [
X′(2)X(1)

]
= ρ. (5)

Summarizing, with ||x1||2 = 1 = ||x2||2, we can write that x1 = ρx2 + e1 with
the estimated errors e1 orthogonal to Sp(X[1]

); and, in particular, e1 ⊥ x2 with
e1 = x1 − ρx2 with

||x1||2 = ||P
[1]

x1||2 + ||e1||2

||x1||2 = ||ρx2||2 + ||e1||2.

As ||x1||2 = ||x2||2 = 1, the raise method transforms x1 → x̃1 by the rule

x̃1 = x1 + λe1 = x1 + λ(x1 − ρx2) = (1 + λ)x1 − λρx2
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with

||x̃1||2 = (1 + λ)2||x1||2 − 2(1 + λ)λρx′1x2 + (λρ)2||x2||2

= (1 + λ)2 − ρ2(λ2 + 2λ). (6)

Equivalently with ||x̃1||2 = 1+2λ(1−ρ2)+λ2(1−ρ2) with inner product x̃′1x2 =
(x1 + λe1)

′x2 = ρ+ λe′1x2 = ρ.

Denote X̃ = [x̃′1,x
′
2]
′. With λ > 0, ||x̃1||2 > ||x1||2, and we say x1 has

been raised from an angle θ1 to an angle θ̃1 with cos(θ1) = ||P[1]
X(1)||/||x1||

and cos(θ̃1) = ||P[1]X(1)||/||x̃1||. The Variance Inflation Factor V IF1 for X̃ is

functionally related to the angle θ̃1 by the rule θ̃1 = arccos(
√
1− 1/V IF1),

for example Jensen and Ramirez (2013). Thus as λ → ∞, θ̃1 → 90◦ and the
variance inflation factor V IF1 converges to one indicating that collinearity is
being eliminated, as in García et al. (2011, Theorem 4.2).
If we replace x1 by x̃1 in the original linear regression from Eq. (1), the

raised model will be y = β1(λ)x̃1+β2(λ)x2+u where the estimated parameters
depend on λ and will be denoted as β1(λ) and β2(λ).

Summarizing, in the case of two variables, X = [x1,x2], we regressed the
first column using the remaining second column from X(1) = X[1]α + v with
x1 = ρx2 + e1 and x̃1 = x1 + λe1. With the first column raised, the raised
transformation X→ X<1> has the raised design matrix given by

X<1> = (x̃1,x2) = ((1 + λ1)x1 − λ1ρx2,x2), (7)

using < 1, ..., k > to indicate the column(s) that have been raised, notation that
will be helpful in the general case. We note that

X′<1>X<1> =

(
1 + 2λ(1− ρ2) + λ2(1− ρ2) ρ

ρ 1

)
, (8)

with only the (1, 1) element of X′X being effected by raising the first column of
X. We consider additional columns to be raised in Section 4.
With ridge regression, the coeffi cient of determination R2(k) monotonically

decreases as k →∞,MacDonald (2010). We give the parallel result for surrogate
regression for R2S(k) in Appendix A. The importance of these results is that it
allows the user to set a lower bound for changes to the original model, such
as R2(k) ≥ 0.95 or R2S(k) ≥ 0.95. One very desirable property of the raised
regression method is that the coeffi cient of determination does not change with
R̃2(λ) = R2(0) for all λ ∈ (0,∞). Additionally, the predicted values with the
OLS regression Xβ̂ and the predicted values with the raised regression X̃β̂(λ)
are the same:

Xβ̂ = X̃β̂(λ). (9)

Thus raising a column vector in X is not effecting the basic OLS regression
model. These results follow from noting that the raised vector remains in the
original Sp(X), ej = X(j) −P

[j]
X(j) ∈ Sp(X) so Sp(X̃) = Sp(X), as shown in

García et al. (2011).
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3 The stretched and rotated estimators

The raised column x̃j = xj + λej with λ ≥ 0 has two effects; namely, stretching
the column and rotating the column. We study the effects separately with a
case study. Set X0= [1,x1,x2,x3] the 20× 4 matrix from Rawlings (1998, Ex.
11.11) which has been designed to be highly collinear. The pattern has x1 as
the sequence from 20 to 29 and repeated; x2 is x1 − 25 with the 1st and 11th
term changed from −5 to −4; x3 is the repeated sequence 5, 4, 3, 2, 1, 2, 3, 4, 5, 6.

The eigenvalues for X′0X0 are [12439, 152.4, 40.11, 0.001515] with condi-
tion number for X′0X0 as λmax/λmin = 0.8212 107. Scaling X0 → Xu to
have unit length reduces the eigenvalues for X′uXu to [2.898, 1.007, 0.09505,
0.00003872] with condition number for X′uXu as 0.7486 105. Centering and
rescaling Xu → Xc into correlation form without the constant term reduces
the eigenvalues for X′cXc to [2.167, 0.8301, 0.002898] with condition number for
X′cXc as 0.7477 103. The correlation between column 1 of Xc(1) and column
2 of Xc(2) is ρ(Xc(1),Xc(2)) = 0.9956. The variance inflation factors V IFj for
Xc are the diagonal elements of (X′cXc)

−1 and are [169.4, 175.7 , 1.688] from
which the angles in radians between the column vector Xc(j) and the span of the
remaining columns Sp(Xc[j]) can be computed by θj = arccos(

√
1− 1/V IFj),

for example Jensen and Ramirez (2013). Converting to degree measure, the an-
gles are [4.407◦, 4.327◦, 50.34◦] supporting that one should first try to improve
collinearity by modifying the second column.
Following the case study in García et al. (2011), the responses are generated

for the linear model

y = X0


10.0
0.4
−0.2
0.4

+ u,

with ui generated from a normal N(0, 1) distribution. Using this data set, the
centered and standardize model is

y − y1n = Xcβc + u = Xc

 5.138
−2.440
2.683

+ u,

with OLS estimates β̂ = (14.48, −13.18, 4.493)′. The raised column will be the
second column of the centered and standardized Xc with x̃c2 = xc2 + λe2 with
λ ≥ 0. The empirical risk for the OLS estimator given the true value βc is (β̂−
βc)
′(β̂−βc) = ||β̂−βc||2 = 205.79. The goal is to improve, that is decrease, the

empirical risk by using the raised estimators and its two components separately;
namely, the stretched estimators and the rotated estimators.
Following the Stein procedure, we consider the stretched estimators based

on the transformation Xc(2) → (1 + λ)Xc(2); that is, the second column of
Xc will be stretched by the factor (1 + λ) with λ ≥ 0. Denote the stretched
estimators by β̂st(λ). They are given by β̂st(λ) = (β̂1, β̂2/(1 + λ), β̂3)

′ with
||β̂st(λ)||2 monotonically decreasing to ||(β̂1, 0, β̂3)′||2. For this case study, the
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empirical risk for the stretched estimators ||β̂st(λ)− βc||2 can be reduced from
||β̂st(0) − βc||2 = 205.79 to minλ≥0 ||β̂st(λ) − βc||2 = 90.64 for 1 + λ = 5.402,
noting that 5.402 = (−13.18)/(−2.440). Using the Jackknife procedure, the
minimum for the average empirical risk for the stretched estimators over the
n = 20 replications is minλ≥0 avgn=20(||(β̂st(λ)−βc||2) = 96.87 for 1+λ = 5.58.
As this is a scaling procedure, the angle between (1+λ)Xc(2) and Sp(Xc[2]) has
not changed, and thus the V IFs have not changed.
The rotated estimators are similar to the raised estimators with the added

constraint that the columns length remains at unit length. This allows one to
track the improvement in ill-conditioning without confounding with a change
in scale. The rotated estimators are based on the transformation Xc(2) →
[Xc(2) + λe2]/||Xc(2) + λe2|| with λ ≥ 0; that is, the second column of Xc is
raised, but then scaled back to unit length. For the same λ, both the rotated
model and the raised model will have the same correlation matrix, the same
angle between the second column of the design matrix and the span of the
remaining columns, and the same variance inflation factors. Denote the rotated
estimators by β̂rot(λ). As the second column is perturbed by a multiple of e2,
and since e2 is orthogonal to the other columns, both the rotated estimators
β̂rot(λ) and the raised estimators β(λ) have the same values except in the row
corresponding to the raised column. For this case study, the empirical risk for
the rotated estimators ||β̂rot(λ)−βc||2 can be reduced from ||β̂rot(0)−βc||2 =
205.79 to minλ≥0 ||β̂rot(λ) − βc||2 = 2.365 for λ = 3.502. For λ = 3.502, the
V IFs are [9.394, 9.618, 1.121] with associated angle θ2 = 18.81◦. Using the
Jackknife procedure, the minimum for the average empirical risk for the rotated
estimators over the n = 20 replications is minλ≥0 avgn=20(||β̂rot(λ) − βc||2)
= 2.950 for λ = 3.501.
For this case study, the empirical risk for the raised estimators ||β(λ) −

βc||2 can be reduced from ||β(0) − βc||2 = 205.79 to minλ≥0 ||β(λ) − βc||2
= 2.772 for λ = 3.410. For λ = 3.410, V IFs are [9.744, 9.981, 1.122] with
associated angle θ2 = 18.45◦. Using the Jackknife procedure, the minimum for
the average empirical risk for the raised estimators over the n = 20 replications
is minλ≥0 avgn=20(||β(λ) − βc||2) = 2.772 for λ = 3.410. These values are
comparable to those using the rotated estimator.
Summarizing, the raised estimators are based on stretching and rotating

the column to be improved. Both effects should be positive as shown with the
stretching estimators and the rotating estimators. Computationally, the raised
estimators are easier to compute lacking the square root in the denominator
of the transformed columns. For this case study, the rotated and raised meth-
ods yielded comparable results and both performed better than the stretching
method. The Jackknife procedure showed that the average over the replica-
tions for the raised estimators was smaller (better) than the average over the
replications for the stretched estimators.
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4 The MSE risk for two variables

We consider the linear model y = Xβ + u where E(u) = 0, E(uu′) = σ2In
and X is a full rank matrix n × p. In this section p = 2. For convenience,
we often take σ2 = 1, however, for these calculations we need to track the
value of σ2. We assume that the variables are centered and standardized, that
is, X′X is in correlation form. With respect to the MSE risk, Risk(θ̂) =
(E(θ̂)− θ)′(E(θ̂)−θ)+ tr(var(θ̂)), we compare the three estimators: the raised
β(λ), the stretched β̂st(λ), and the rotated β̂rot(λ).
For the raised model with column 1 raised with X → X<1>, the design

matrix and moment matrix are given in Eqs. (7) and (8). The calculations follow
from standard results for OLS estimators and where we denote E(β̂) = δ. From
Eq. (9) the predicted values using OLS estimators and raised estimators are
the same with β̂1x1 + β̂2x2 = Xβ̂ = X̃β(λ) = β1(λ)x̃1+ β2(λ)x2 = β1(λ)[(1 +
λ)x1 − λρx2] + β2(λ)x2 = (1 + λ)β1(λ)x1 + [β2(λ)− λρβ1(λ)]x2 and thus

β1(λ) =
1

1 + λ
β̂1

β2(λ) = β̂2 +
λρ

1 + λ
β̂1.

A more general result is given in García et al. (2011). It follows that E(β1(λ)) =
1

1+λδ1, E(β2(λ)) = δ2 +
λρ
1+λδ1, with squared bias (E(β(λ))− δ)

′
(E(β(λ)) −

δ)) = λ2(1+ρ2)
(1+λ)2 δ21. The variances are given by

var(β̂1(λ))

σ2
=

(
1

1 + λ

)2(
1

1− ρ2

)
var(β̂2(λ))

σ2
=

(
1

1− ρ2

)
+ 2

(
λρ

1 + λ

)(
−ρ
1− ρ2

)
+

(
λρ

1 + λ

)2(
1

1− ρ2

)
.

The minimum value for Risk(β(λ)) can be shown to be

λ̃ =
σ2

(1− ρ2)δ21
.

For the stretched estimator β̂st(λ),

β̂st,1(λ) =
1

1 + λ
β̂1

β̂st,2(λ) = β̂2,

with E(β̂st,1(λ)) =
1

1+λδ1, E(β̂st,2(λ)) = δ2, with squared bias (E(β̂st(λ)) −
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δ)
′
(E(β̂st(λ))− δ)) = λ2

(1+λ)2 δ
2
1, and with variances

var(β̂st,1(λ))

σ2
=

(
1

1 + λ

)2(
1

1− ρ2

)
var(β̂st,2(λ))

σ2
=

(
1

1− ρ2

)
,

with the minimum value for Risk(β̂st(λ)) when

λst =
σ2

(1− ρ2)δ21
.

We note that this is the same λ value as with the raised estimator.
For the rotated estimator β̂rot(λ) the calculations are more tedious. The de-

sign matrix isX<1>rot = ((x1+λe1)/||x1+λe1||,x2) = (((1+λ)x1−λρx2)/||x1+
λe1||,x2) with moment matrix

X′<1>rotX<1>rot =

(
1 ρ

||x1+λe1||
ρ

||x1+λe1|| 1

)
,

recalling that e1 ⊥ x2. As the predicted responses are the same for both the
OLS model and the rotated model, β̂1x1 + β̂2x2 = Xβ̂ = X<1>rotβ̂rot(λ) =

β̂rot,1(λ)x̃1/||x1+λe1||+β̂rot,2(λ)x2 = β̂rot,1(λ)[((1+λ)x1−λρx2)/||x1+λe1||]+
β̂rot,2(λ)x2 =

1+λ
||x1+λe1|| β̂rot,1(λ)x1+[β̂rot,2(λ)−

λρ
||x1+λe1|| β̂rot,1(λ)]x2. And thus

β̂rot,1(λ) =
||x1 + λe1||
1 + λ

β̂1

β̂rot,2(λ) = β̂2 +
λρ

(1 + λ)
β̂1,

with E((β̂rot,1)) =
||x1+λe1||

1+λ δ1, E(β̂rot,2(λ)) = δ2 +
λρ
1+λδ1, with squared bias

(E(β̂rot(λ))− δ)
′
(E(β̂rot(λ))−δ) =

(
1− ||x1+λe1||1+λ

)2
δ21 +

(
λρ
1+λ

)2
δ21, and with

variances

var(β̂rot,1(λ))

σ2
=

(
||x1 + λe1||
1 + λ

)2(
1

1− ρ2

)
var(β̂rot,2(λ))

σ2
=

(
1

1− ρ2

)
+ 2

(
λρ

1 + λ

)(
−ρ
1− ρ2

)
+

(
λρ

1 + λ

)2(
1

1− ρ2

)
.

The value of λrot for the minimum of Risk(β̂rot(λ)) was found using Maple.
First one solves for the positive root t0 of the quartic polynomial p4(t) = a0t

4+
a1t

3 + a2t
2 + a3t+ a4 with a0 = 1− ρ2, a1 = 2(1− ρ2), a2 = (1− ρ2)2 − 4(1−

ρ2+( σδ1 )
2)2, a3 = −2ρ2(1− ρ2), a4 = −ρ2(1− ρ2). Appendix B establishes that
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real roots exist for p4(t). The value of λrot is then given by

λrot =
(t0 − 1)(1− ρ2) + 2t0

(
σ
δ1

)2
(t0 + 1)(1− ρ2)

.

As an example, with {ρ = 0.95, δ1 = 2, σ = 1}:
(1) for the raised estimator the Risk(β(0)) = 20.51 and decreases to

Risk(β(λ̃)) = 6.475 with λ̃ = 2.564
(2) for the stretched estimator, the risk decreases to Risk(β̂st(λ)) = 13.13

with λst = 2.564 and
(3) for the rotated estimator p4(t) = 0.0975t4+0.1950t3−0.4735t2−0.1760t−

0.08799 with positive root t0 = 1.691, λrot = 3.479, and Risk(β̂st(λrot)) =
6.651.
In summary, the raised and stretched estimators have their minimum risk

at the same λ value; the raised and rotated estimators have comparable results;
and the rotated estimators are more complex to compute.

5 Variance inflation factors and the metric num-
ber

We consider the linear model y = Xβ + u where E(u) = 0, E(uu′) = σ2In
and X is a full rank matrix n × p. We assume that the variables are centered.
Reorder X = [X[p],X(p)] with X(p) = xp the pth column and X[p], the design
matrix X without the pth column, the resting columns. The problem in this
section is to measure the effect of adding the last column X(p) to X[p]. An ideal
column would be orthogonal to the previous columns with the entries in the off
diagonal elements of the pth row and pth column of X′X all zeros. Denote by
Mp the idealized moment matrix

Mp =

[
X′[p]X[p] 0 1p−1
0 1′p−1 x′pxp

]
.

The metric number associated to xp is defined by

MN(xp) =

√
det(X′X)

det(Mp)
.

The metric number is easy to compute and has been used in García et al. (2011)
as a measure of collinearity. A similar measure of collinearity is mentioned in
Footnote 2 in Wichers (1975) and Theorem 1 of Berk (1977). The geometry for
the metric number has been shown in García et al. (1999). The case study in
García et al. (2011) suggests the functional relationship between MN(xp) and
the variance inflation factor for β̂p as

V IF (β̂p) =
1

MN(xp)2
. (10)
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We note that this relationship holds, and so the metric number MN(xj) is
also functionally equivalent to the collinearity indices κj of Stewart (1987), the
variance inflation factors V IFj , and the angle between (X(j), Sp(X[j])).

To evaluate V IF (β̂p) = V IFj , transform X′X into correlation form R with
S = diag(x′1x1, ...,x

′
pxp) the diagonal matrix with entries from the diagonal

of X′X with R = S−1/2(X′X)S−1/2. The V IFs are the diagonal entries of
R−1 = S1/2(X′X)−1S1/2. It remains to note that the inverse R−1 can be
computed using cofactors Ci,j , and, in particular,

V IF (β̂p) = R−1p,p = [S
1/2(X′X)−1S1/2]p,p

= (x′pxp)
1/2 det(Cp,p)

det(X′X)
(x′pxp)

1/2

=
det(Mp)

det(X′X)
=

1

MN(xp)2
.

With the example in the previous section with {p = 2, ρ = 0.95}, V IF2 is
easy to compute from Eq. (10) with:
(1) for the raised estimator V IF (β2(0)) = 10.26 and decreases to

V IF (β2(λ̃)) = 1.729 with λ̃ = 2.564
(2) for the stretched estimator, V IF (β̂st,2(λst)) = 10.26 for any λst ∈ (0,∞)

since there is no change in the angle between (X(2), Sp(X[2]))

(3) for the rotated estimator V IF (β̂rot,2(λrot)) = 1.080 for λrot = 3.479,
noting that V IF for the rotated estimator is smaller than the raised estimator
since the rotated estimator has the larger angle between (X(2), Sp(X[2])) as

λrot > λ̃.

6 How to overcome the ill-conditioned of the
matrix X′X by successive raises

We will focus on finding a natural way to get the perturbation matrix X′X+kIp
from the raised estimators as this matrix is an essential component in ridge
regression. We will show that the raised estimators allow an estimation by
OLS which retains the coeffi cient of determination. Firstly, we will present the
estimation for two variables and, secondly, to the general case.

6.1 For two variables

In the case of two variables,X = [x1,x2] with the first column raised,X→ X<1>

with the raised design matrix given by X<1> = (x̃1,x2) = ((1 + λ1)x1 −
λ1ρx2,x2) and

X′<1>X<1> =

(
1 + 2λ1(1− ρ2) + λ21(1− ρ2) ρ

ρ 1

)
.
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After having raised column 1 with λ1 > 0, we will raise column 2 with λ2 > 0.
First regress the second column of X<1> using the remaining column(s) as
X<1>(2) = αX<1>[2] + v; that is, x2 = αx̃1+ v. Scaling x̃1 to unit length gives
x2 = (α||x̃1||)(x̃1/||x̃1||) + v with (α||x̃1||) = ρ as in Eq. (5); and with ‖x̃1‖2
= (1 + λ1)

2 − ρ2(λ21 + 2λ1) from Eq. (6). Thus

x̂2 =
ρ

‖x̃1‖
x̃1 =

ρ

‖x̃1‖
((1 + λ1)x1 − λ1ρx2),

with residual e2 from x2 = x̂2 + e2 =
ρx̃1
‖x̃1‖ + e2 so e2 = x2 − ρx̃1/‖x̃1‖ with

e2 ⊥ x̃1.
We now raise the vector x2 using the residual e2 by the rule

x̃2 = x2 + λ2e2 = x2 + λ2

(
x2 −

ρx̃1
‖x̃1‖

)
= (1 + λ2)x2 −

λ2ρx̃1
‖x̃1‖

.

The doubly raised matrix is given by

X<1,2> =
(
(1 + λ1)x1 − λ1ρx2 (1 + λ2)x2 − λ2ρx̃1

‖x̃1‖

)
.

For any values k1 > 0, k2 > 0, it is possible to show that there exist raising
parameters λ1 > 0, λ2 > 0 such that

X′<1,2>X<1,2> =

(
1 + k1 ρ
ρ 1 + k2

)
, (11)

the matrix used in generalized ridge regression. This follows from noting that
||x̃1||2 = 1+2(1−ρ2)λ1+(1−ρ2)λ21 viewed as a polynomial in λ1 has positive co-
effi cients so it can achieve any value greater than one; and similarly for ‖x̃2||2 =
1+2(1− ρ2√

1+k1
)λ2+

(
1− ρ2( 2√

1+k1
− 1)

)
λ22. The off-diagonal entries in Eq. (11)

are not effected by raising column 2 since x̃′1x̃2 = x̃′1(x2 + λ2e2) = x̃′1x2 since
e2⊥x̃1; and earlier we had established that x̃′1x2 = (x1 + λ1e1)

′x2 = x′1x2 = ρ
since e1⊥x2. Thus, in particular, given k > 0 there are raising parameters λ1
and λ2 such that

X′<1,2>X<1,2> =

(
1 + k ρ
ρ 1 + k

)
= X′X+ kIp,

the perturbation matrix usually used in ridge regression.
Some advantages of the raise method for addressing the problem of collinear-

ity are:

• The raise estimators are estimated by OLS and thus confidence intervals
can be computed.

• It retains the coeffi cient of determination of the initial regression.

• The V IFs associated with the raise estimators are monotone functions
decreasing with k, see García et al. (2015).
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6.2 For the general case

In the general case we start with a standardized matrix X with the following
column vectors X =

(
x1,x2, ...,xp

)
, and the raising procedure will be given by

the following steps:

• Step 1: Firstly, we raise the vector x1 from the regression of x1 with the
resting vectors X[1] = (x2,x3, ...xp). For this, we take the residual e1
from x̃1 = x1 + λ1e1 such that e1 ⊥ Sp(X[1]). The raised design matrix
is denoted X<1> =

(
x̃1,x2, ...,xp

)
.

• Step 2: Next, we raise the vector x2 from the regression of x2 with the
resting vectors from X<1>, namely X<1>[2] =

(
x̃1,x3, ...,xp

)
. Then, we

get the residual e2 from x̃2 = x2+λ2e2 such that e2 ⊥ Sp(X<1>[2]). The
raised design matrix is denoted X<1,2> =

(
x̃1, x̃2, ...,xp

)
.

• Step j: We raise the vector xj from the regression of xj with the resting
vectors fromX<1,...,j−1>, namelyX<1,...,j−1>[j] =

(
x̃1, ..., x̃j−1,xj+1, ...,xp

)
.

Then, we get the residual ej from x̃j = xj + λjej such that
ej ⊥ Sp(X<1,...,j−1>[j]). The raised design matrix is denoted X<1,...,j> =(
x̃1, ..., x̃j ,xj+1, ...,xp

)
.

• Step p: We raise the vector xp from the regression of xp with the resting
vectors from X<1,...,p−1>, namely X<1,...,p−1>[p] =

(
x̃1, ..., x̃p−1

)
. Then,

we get the residual ep from x̃p = xp+λpep such that ep ⊥ Sp(X<1,...,p−1>[p]).
The raised design matrix is denoted X<1,...,p> =

(
x̃1, ..., x̃p

)
.

Suppose columns 1, ..., j − 1 have been raised to form X<1,...,j−1>. The
jth column of X<1,...,j−1> is raised to define X<1,...,j>, with X<1,...,j−1>[j]
the resting columns, by the rule X<1,...,j>(j) = X<1,...,j−1>(j) + λjej with
ej⊥Sp(X<1,...,j−1>[j]). Noted that X′<1,...,j>X<1,...,j> will differ from
X′<1,...,j−1>X<1,...,j−1> only in the (j, j) entry as the jth raised column is per-
turbed by the vector λjej orthogonal to the span of the remaining columns.
The [j, j] entry for the jth raised moment matrix is

X′<1,...,j>X<1,...,j>[j, j] = X′<1,...,j−1>(j)X<1,...,j−1>(j) +

2λjX
′
<1,...,j−1>(j)ej + λ

2
je
′
jej ,

with the surplus term denoted by kj = 2λjX′<1,...,j−1>(j)ej + λ2je
′
jej . We view

X′<1,...,j>X<1,...,j>[j, j] as a quadratic polynomial in λj ; and since the coeffi -
cients of λ2j and λj are both positive, the quadratic polynomial can achieve any
value larger than the original value X′<1,...,j−1>(j)X<1,...,j−1>(j). Let P

[j]
be the

projection matrix for Sp(X<1,...,j−1>[j]). That the coeffi cient of λj is positive
follows from
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X′<1,...,j−1>(j)ej = X′<1,...,j−1>(j)(Ip−P[j])X
′
<1,...,j−1>(j) (12)

= X′<1,...,j−1>(j)(Ip−P[j])
2X′<1,...,j−1>(j)

= ||(Ip−P[j])X
′
<1,...,j−1>(j)||2 = ||ej ||2 > 0.

We started withX′X in correlation form and with final raising matrix having
moment matrix

X′<1,2,...,p>X<1,2,...,p> =


1 + k1 ρ12 ρ12 ... ρ1p
ρ12 1 + k2 ρ23 ... ρ2p
ρ13 ρ23 1 + k3 ... ρ3p
... ... ... ... ...
ρ1p ρ2p ρ3p ... 1 + kp


= X′X+K,

with K the diagonal matrix K = diag(k1, ..., kp) with kj ≥ 0 for 1 ≤ j ≤ p.
Thus the raised regression perturbation matrix is equivalent to a generalized
ridge regression perturbation matrix. And conversely, any generalized ridge
regression matrix has a corresponding raised regression matrix.
Given ridge parameters (k1, ..., kp), the associated raised parameters are

given from Eq. (12) by kj = 2λjX
′
<1,...,j−1>(j)ej + λ2je

′
jej = 2λj ||ej ||2 +

λ2j ||ej ||2 = (2λj + λ2j )||ej ||2, and thus

λj =

√
1 +

kj
||ej ||2

− 1 (13)

kj = ||ej ||2(λ2j + 2λj). (14)

7 Empirical application

We have chosen the following data set for an empirical application because it
is relatively recent and presents a high level of collinearity. In the course of
the financial crisis in the United States and over the whole world there is a big
discussion about the life of the American people on credit. The original data set
is presented in Table 1 and it is taken from the Economic Report of the President
(2008) where y is the outstanding Mortgage Debt (in trillions of dollars) and
the three independent variables are X1 Personal Consumption (in trillions of
dollars), X2 Personal Income (in trillions of dollars), and X3 Consumer credit
outstanding (in trillions of dollars).
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Table 1. y Mortgage debt, X1 Personal Consumption,
X2 Personal Income, and X3 Consumer Credit.

year y X1 X2 X3

1990 3.8051 4.7703 4.8786 808.23
1991 3.9458 4.7784 5.0510 798.03
1992 4.0579 4.9348 5.3620 806.12
1993 4.1913 5.0998 5.5585 865.65
1994 4.3585 5.2907 5.8425 997.30
1995 4.5453 5.4335 6.1523 1140.7
1996 4.8149 5.6194 6.5206 1253.4
1997 5.1286 5.8318 6.9151 1324.8
1998 5.6151 6.1258 7.4230 1420.5
1999 6.2249 6.4386 7.8024 1532.1
2000 6.7864 6.7394 8.4297 1717.5
2001 7.4944 6.9104 8.7241 1867.2
2002 8.3993 7.0993 8.8819 1974.1
2003 9.3951 7.2953 9.1636 2078.0
2004 10.680 7.5614 9.7272 2191.3
2005 12.071 7.8036 10.301 2284.9
2006 13.482 8.0441 10.983 2387.5

The ridge procedure perturbs the moment matrix X′X while the raised and
surrogate procedures perturbs the design matrix X. This second approach has
the distinct advantage of allowing the user to specify, for each of the variables, a
precision that the data will retain during the perturbation stages by restricting
the mean absolute perturbations

λj
1

n

n∑
i=1

|ej,i| = πj . (15)

For the case study, we set the precision πj = 0.005 in the first trial, and for
the second trial we set the precision πj = 0.05. Thus given a specified precision
πj > 0, we raise column j in X<1,...,j>to x̃j = xj + λjej where λj is solved
from Eq. (15). The precision values should be based on the researcher’s belief
in the accuracy of the data. The raised parameters λj are constrained to assure
that the original data has not been perturbed more than what the researcher
has permitted.
The original data X0 is centered and standardized X0 → X. For conve-

nience, the columns are raised in sequence 1, 2, 3. In Table 2 (with precision
πj = 0.005 for all j) and in Table 3 (with precision πj = 0.05 for all j), we report
the raised parameters λj , the corresponding generalized ridge parameters kj the
V IFs, the associated angles θ, the condition number κ for the moment matrices
as the ratio of the largest to smallest eigenvalue for the moment matrices, and
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the squared length of the coeffi cient vector ||β(λj)||2. Recall from Eq. (7) that
the final raised matrix X<1,..,p>has moment matrix X′X+ diag(k1, ..., kp).

Note that the initial V IFs present high values, and this fact justifies the
need to correct the collinearity. With precision π = 0.05, after the successive
raising process all the V IFs fromX<1,2,3> are less than 10, namely 7.063, 6.121,
5.244. But what is more important is that the matrix we need to invert, namely
X′X+ diag(k1, ..., kp), is better conditioned than the initial matrix X′X ; and
it has been obtained by adding a parameter ki ≥ 0 in the main diagonal of the
matrix X′X, in a way similar to ridge estimation, and where we can preserve
the original data to a specified precision.
It is important to note that our methodology offers a concrete method to

determine the perturbation parameter λj for the raise estimators, and therefore
of k, while the choice of the ridge paramater remains an open problem. As noted
by one of the referees, "the authors have obtained, by using an intuitive way,
the matrix X′X+kIp with the sucessive raising estimator, while other proposed
justications, are a posteriori."

Table 2. With precision πj = 0.005, raised parameters λj ,
ridge parameters kj , V IFj , associated angles θj ,
condition numbers κ = λmax/λmin and ||β(λj)||2.

X X<1> X<1,2> X<1,2,3>

λj 0 0.6145 0.3433 0.2541
kj 0 0.002724 0.005021 0.004676

V IF

 589.8
281.9
189.5

  226.9
160.2
124.7

  179.0
89.23
122.5

  145.6
88.47
78.23


θ

 2.360◦

3.415◦

4.166◦

  3.807◦

4.532◦

5.137◦

  4.286◦

6.077◦

5.185◦

  4.754◦

6.103◦

6.492◦


κ 2676 1033 819.2 654.3

||β(λj)||2 998.1 556.6 301.1 287.0
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Table 3. With precision πj = 0.05, raised parameters λj ,
ridge parameters kj , V IFj , associated angles θj ,
condition numbers κ = λmax/λmin and ||β(λj)||2.

X X<1> X<1,2> X<1,2,3>

λj 0 6.145 2.477 1.010
kj 0 0.08488 0.1258 0.1675

V IF

 589.8
281.9
189.5

  12.53
88.32
86.51

  12.03
8.222
18.15

  7.063
6.121
5.244


θ

 2.360◦

3.415◦

4.166◦

  16.41◦

6.108◦

6.172◦

  16.76◦

20.41◦

13.58◦

  22.10◦

23.84◦

25.89◦


κ 2676 509.4 82.99 25.87

||β(λj)||2 998.1 227.8 106.4 46.49

8 Conclusions

The ridge procedure perturbs the moment matrix X′X→ X′X+ λIp but does
not allow the user to compute the perturbed design so the changes to X will be
unknown to the user.
The surrogate procedure has the advantage of allowing the user to explicitly

compute the surrogate design XS in terms of the singular values of X. Thus
the Mean Absolute Deviation ||X−XS ||MAD =

1
nk

∑
i,j |X(i, j)−XS(i, j)| can

be computed showing the average change in the design X→ XS . However, the
surrogate procedure does not allow for varying perturbations for the varying
explanatory variables. The surrogate procedure is based on perturbating the
singular values of X and thus it is not intuitive nor geometric. On the other
hand, the raise procedure it both intuitive and geometric.
It is important to note that the raise procedure does yield the explicit new

design with X→X̃, and that the mean absolute perturbations given in Eq. (15)
are permitted to be different for each explanatory variable. Thus the user can
set the mean absolute deviation to be smaller for variables which are known to
be accurate and allow larger deviations for variables which are known to be less
accurate.
The raised estimator β̂(λ) = (X̃′X̃)−1′X̃′y obtained from the successive

raising process in Section 4 improves collinearity. The raised regression retains
the value of the coeffi cient of determination, contrary to what happens with the
ridge and surrogate estimators. In this way, we can affi rm that the successive
raising estimator has improving the collinearity similar to the improvement with
ridge regression.
The estimator obtained from the successive raising process is given by β̂(λ) =

(X′X+K)−1X̃′y with K a diagonal matrix. If we want K =kIp to be a
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constant diagonal matrix then this can be achieved with the proper choice of
λ = (λ1, ..., λp) using Eq. (13). To conclude, if the user wants a better con-
ditioned matrix than X′X, the proposed methodology offers a procedure to
improve the collinearity in the spirit of Levenberg (1944) with a perturbation
matrix similar to the perturbation matrix used in ridge regression. Unlike ridge
regression, the user can visualize the perturbations of the underlying model
and easily control the amount of perturbations to the original data retaining a
specified precision in the data.
Unlike ridge regression where the choice of the ridge parameter remains an

open problem, our methodology offers a concrete procedure for determining the
perturbation parameter for the raise estimators.

9 Appendix A

In a full—rank model {Y = Xβ + ε} having zero—mean, uncorrelated, and ho-
moscedastic errors, the Ordinary Least Squares OLS estimator β̂ solves the
p equations {X′Xβ = X′y}. These solutions are unbiased with dispersion ma-
trix V (β̂) = σ2(X′X)−1. Near—dependency among the columns of X, as ill—
conditioning, often causes the OLS solutions to have inflated size ||β̂||2, and of
questionable signs, and “very sensitive to small changes in X”(Belsley, 1986).
Among standard remedies are the ridge system {(X′X + kIp)β = X′y; k ≥ 0}
(Hoerl and Kennard, 1970) with solutions {β̂R(k); k ≥ 0}. The OLS solution at
k = 0 is known to be unstable with a slight movement away from k = 0 giving
completely different estimates of the coeffi cients.
McDonald (2009, 2010) showed that the square of the correlation coeffi cient

R2(k) of the observed values y and the predicted values ŷR(k) = Xβ̂R(k) for the
ridge regression estimators β̂R(k) is a monotone decreasing function of the ridge
parameter k. We show the corresponding result for the surrogate estimators,
Jensen and Ramirez (2008, 2010b).
The singular decomposition X = PDξQ

′, with P ′P = Ip, together with
θ = Q′β as an orthogonal reparametrization, give y = Xβ + ε → y =
PDξQ

′β + ε → U = P ′y = Dξθ + P ′ε as a canonical and equivalent
model on Rp. Gauss—Markov assumptions regarding y = Xβ + ε stipulate
that E(ε) = 0 ∈ Rn and V (ε) = σ2In. From these assumptions, it follows that
E(P ′ε) = 0 ∈ Rp and V (P ′ε) = σ2P ′InP = σ2Ip, so that E(U) = Dξθ and
V (U) = σ2Ip.
Specifically, the singular decomposition X = PDξQ

′, and the surrogate
Xk = PDiag((ξ

2
1 + k)

1
2 , . . . , (ξ2p + k)

1
2 )Q′ with singular values {ξ21 ≥ ξ22 ≥ ... ≥

ξ2p > 0}, give X ′kXk = (X ′X + kIp) with {X ′kXkβ = X ′y} for the ridge
estimators. For the surrogate model, {y = Xkβ + ε} is taken as an approxi-
mation, or surrogate, for the ill—conditioned model {y = Xβ + ε} itself with
{X ′kXkβ =X

′
ky} for the ridge estimators.
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The canonical estimators {θ̂, θ̂R, θ̂S} in terms of {k, ξi} are given by

Estimator Definition
θ̂ D( 1ξi

)U

θ̂R D( ξi
ξ2i+k

)U

θ̂S D( 1√
ξ2i+k

)U

Following McDonald (2009, 2010), we assumed the model has been stan-
dardized with 1′y = 0 and y′y = 1 and with X′X having correlation form;
in particular, 1′X = 0 with 1′ŷR = 1′Xβ̂R = 0 = 1′Xβ̂S = 1′ŷS . It follows
that the squared correlation coeffi cient R2S(k) of the observed values y and the
predicted values ŷS(k) = Xβ̂S in terms of the canonical variables is

R2S(k) =
[(y − y)′

(
ŷS(k)− ŷS(k)

)
]2

[(y − y)′(y − y)]

[(
ŷS(k)− ŷS(k)

)′ (
ŷS(k)− ŷS(k)

)]

=
(y′ŷS(k))

2

ŷ′S(k)ŷS(k)
. =

(
y′Xβ̂S

)2
β̂
′
SX′Xβ̂S

=

(
U′D

(
ξi√
ξ2i+k

)
U

)2
U′D

(
ξ2i
ξ2i+k

)
U

,

with R2S(0) = (U
′U)2/(U′U) = 1. For ridge estimators, McDonald (2010) gives

the parallel result for ridge estimators

R2R(k) =

(
U′D

(
ξ2i
ξ2i+k

)
U
)2

U′D
(

ξ4i
(ξ2i+k)

2

)
U

,

with dR2R(k)/dk < 0 for k > 0.
For the surrogate estimators,

dR2S(k)

dk
=
(2G)(− 12H)

J
− G2(−K)

J2
=
G(−HJ +GK)

J2

with
G =

∑p
i=1 u

2
i

ξi√
ξ2i+k

H =
∑p
i=1 u

2
i

ξi
(ξ2i+k)

3/2

J =
∑p
i=1 u

2
i

ξ2i
ξ2i+k

K =
∑p
i=1 u

2
i

ξ2i
(ξ2i+k)

2

We show that −HJ +GK < 0 for k > 0 :

−HJ +GK = −
(

p∑
i=1

Hi

) p∑
j=1

Jj

+( p∑
i=1

Gi

) p∑
j=1

Kj


with −HiJi +GiKi = 0. For i 6= j, we consider
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−HiJj −HjJi +GiKj +GjKi

= −
(
u2i

ξi
(ξ2i + k)

3/2

)(
u2j

ξ2j
ξj + k

)
−
(
u2j

ξj

(ξ2j + k)
3/2

)(
u2i

ξ2i
ξi + k

)

+

u2i ξi√
ξ2i + k

(u2j ξ2j

(ξ2j + k)
2

)
+

u2j ξj√
ξ2j + k

(u2i ξ2i
(ξi + k)

2

)

=
u2iu

2
jξiξj

√
ξ2i + k

√
ξ2j + k

(ξ2i + k)
5/2(ξ2j + k)

5/2

[(
ξ2i − ξ2j

)(
ξj

√
ξ2i + k − ξi

√
ξ2j + k

)]

=
u2iu

2
jξiξj

√
ξ2i + k

√
ξ2j + k

(ξ2i + k)
5/2(ξ2j + k)

5/2

[(
ξ2i − ξ2j

)(√
ξ2i ξ

2
j + kξ

2
j −

√
ξ2i ξ

2
j + kξ

2
i

)]
,

with the term in the brackets negative as the two terms in parentheses will have
opposite signs.

10 Appendix B

With p = 2, to find the minimum MSE risk for the rotated estimators required
solving for the roots of the quartic polynomial p4(t) = a0t

4+a1t
3+a2t

2+a3t+a4

with a0 = 1 − ρ2, a1 = 2(1 − ρ2), a2 = (1 − ρ2)2 − 4
(
1− ρ2 +

(
σ
δ1

)2)2
,

a3 = −2ρ2(1−ρ2), a4 = −ρ2(1−ρ2). Yang (1999) has given the root classification
for quartic polynomials with general coeffi cients. Following his notation, we
compute

D4 = 256a30a
3
4 − 27a20a43 − 192a20a3a24a1 − 27a41a24

−6a0a21a4a23 + a22a23a21 − 4a0a32a23 + 18a2a4a31a3
+144a0a2a

2
4a
2
1 − 80a0a22a4a1a3 + 18a0a2a33a1 − 4a32a4a21

−4a31a33 + 16a0a42a4 − 128a20a22a24 + 144a20a2a4a23.

A quartic polynomial has two distinct roots when D4 < 0. For p4(t), this
follows from factoring D4 with A, B, C, D, E, F , G, H, I > 0 as

D4 = AB(−C − 4σ2D − 4σ4E − 16σ6F − 16σ8G− 64σ10H − σ12I)
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where

A =
64(1− ρ2)2ρ2

δ161
> 0

B = (δ21 − δ21ρ2 + σ2)2 > 0
C = 27δ121 (1 + ρ

2)2(1− ρ)4(1 + ρ)4 > 0
D = 54δ101 (1− ρ2 + ρ4)(1− ρ)3(1 + ρ)3 > 0
E = 9δ81(19− 35ρ2 + 19ρ4)(1− ρ)2(1 + ρ)2 > 0
F = 68δ61(1− ρ)3(1 + ρ)3 > 0
G = 57δ41(1− ρ)2(1 + ρ)2 > 0
H = 6δ21(1− ρ)(1 + ρ) > 0
I = 64 > 0.
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