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Anomalies in the Foundations of Ridge 
Regression 

Donald R. Jensen and Donald E. Ramirez 

Department of Mathematics, University of Virginia, Charlottesville, Virginia 22904-4137, USA 
E-mails: djensen@vt.edu, der@virginia.edu 

Summary 

Errors persist in ridge regression, its foundations, and its usage, as set forth in Hoerl & Kennard 

(1970) and elsewhere. Ridge estimators need not be minimizing, nor a prospective ridge parameter 
be admissible. Conventional estimators are not LaGrange's solutions constrained to fixed lengths, 
as claimed, since such solutions are singular. Of a massive literature on estimation, prediction, 
cross-validation, choice of ridge parameter, and related issues, little emanates from constrained 

optimization to include inequality constraints. The problem traces to a misapplication of LaGrange's 
Principle, unrecognized singularities, and misplaced links between constraints and ridge parameters. 
Alternative principles, based on condition numbers, are seen to validate both conventional ridge and 

surrogate ridge regression to be defined. Numerical studies illustrate that ridge regression as practiced 
often exhibits pathologies it is intended to redress. 

Key words: Constrained optimization; incomplete use of LaGrange's method; non-singular distributions; 
alternative foundations. 

1 Introduction 

For a model = X? + e with zero-mean, homoscedastic, and uncorrelated errors, the 

ordinary least squares (OLS) solutions ? solve the equations { 
' 
? 

? 
} minimizing 

Q(?) = ( 
? 

X?)f(Y 
? 

X?). In ill-conditioned models, ? may exhibit excessive length, 
inflated variances, instability, and other intrinsic deficiencies, prompting Hoerl (1962, 1964) to 
consider /3r = [?Rk = (X'X + kIp)~xX'Y\k 

> 0}, with ridge parameter k, for use in chemical 

engineering. These are labeled ridge regression in statistics, despite earlier usage in numerical 

analysis (Levenberg, 1944; Riley, 1955). In view of excessive lengths of ? , and that OLS 
"does not have built into it a method for portraying sensitivity of the solutions to the estimation 

criterion," Hoerl & Kennard (1970) sought foundations for ridge regression beyond limitations 
intrinsic to Gauss's Principle and OLS. They assert (i) that ?Rk minimizes Q(?) constrained to 

{0 ? = c2}; (ii) that constrained solutions are linear in ?L \ (iii) that the analysis may proceed 
on choosing k = I and ? ri as the solution; and (iv) that the implied constraint may be recovered 
as {c\ 

= 
?fRi?Ri\. Confusion nonetheless persists. Bunke (1975), Hocking (1976), Tibshirani 

(1996), and others claim the constraints {?f? 
< 

c2} adopted by Balakrishnan (1963) in control 

theory, despite the disclaimer of Hoerl & Kennard (1970, p. 64). These topics are addressed 

subsequently. 
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90 D. R. Jensen & D. E. Ramirez 

Ridge estimators abound, based on estimative, predictive, cross-validative, graphic, and other 

criteria, offering widely disparate choices for k and ? to be noted. A vast literature, spanning 
four decades, rests ostensibly on constrained optimization, as claimed in Hoerl & Kennard 

(1970). Unfortunately, these premises are false. Our purposes here are to review essential 

literature; to document critical errors; to disenfranchise ridge regression from constrained 

optimization; to reveal its intrinsically ad hoc character; and to advance other approaches having 
attractive properties. At issue are misuse of LaGrange's Principle; unrecognized singularities; 
and misplaced links betweern:onstraints and ridge parameters, mistaken to be one-to-one. To 
the contrary, ridge solutions ?j& need not be minimizing, whereas admissible values for thus 

?Rk, must be sought. These misconceptions pervade much of the literature and are explicit in 

Marquardt (1970), Marquardt & Snee (1975), Golub et al (1979), and Nostrand (1980), for 

example. In short, the collective body of ridge regression rests on little more than heuristics, 

despite its pervasive use in practice. Accordingly, we seek to supplant the discredited foundations 

using conditioning of linear systems. An outline follows. 

Supporting materials comprise Section 2, to include notation, basic matrices and vectors, 
and a concise canonical form. Section 3 reviews essentials of ridge regression; it retraces 
critical anomalies and their consequences; and it re-examines an ill-conditioned data set treated 
elsewhere. Section 4 seeks rationale alternative to constrained optimization, specifically, the 

conditioning of linear systems. These approaches then are compared and illustrated through 
a continuing case study. Section 5 offers a summary and conclusions. A survey of LaGrange 
optimization is relegated to an Appendix. 

2 Preliminaries 

2.1 Notation 

Vectors and matrices are set in bold type; rp designates Euclidean /7-space; the Euclidean 
norm of e rp is ||jc||; and the transpose, inverse, trace, and determinant of A are A',A~l, 
tr(A), and \A\. Groups of note include O(p) as the real orthogonal group; special arrays are the 

( p) identity Ip and the diagonal matrix Da 
? 

Diagli,..., ap). Given X(n ) of rank 

p<n, its singular decomposition is X = PD?: Qf = ?=\ H?P?Q'? ? where = Diag(? ,..., ), 
? 

[ > ? ? ? ?> ] is semi-orthogonal with P'P = 
Ip, and Q e O(p). Here { \ > ? ? ? > > 

0} are ordered singular values of X, and columns of = [p\,..., pp] and Q = [q\,..., qp] 
comprise its left- and right-singular vectors. If Y e w1 is random, designate its mean vector, 

dispersion and correlation matrices as E(F), V(F), and C(F), and its law of distribution as C(Y). 

The Solutions: The following glossary identifies continuing notation: 

. ?L= (XfX)-xX'Y : The OLS estimators; 

?Rk 
= ?R(k) = (X'X + klp^X'Y : Solutions of Hoerl (1962, 1964); 

?y. Solutions satisfying [?^?c^= c2}; 
?? : Solutions satisfying [??c '??c 

< c2}. 

This notation is intended (i) to distinguish genuinely different solutions^and (ii) to enable 

unambiguous quotations from the literature. In contrast, use of ̂ generic ?, as is often done, 
is ambiguous, on occasion as our ?Rk, and other times as our ?c. Failure to recognize these 
distinctions appears in part to explain entrapment in the critical errors of logic documented here, 
which we seek to avoid. Details emerge subsequently. 

International Statistical Review (2008), 76, 1, 89-105 
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2.2 Canonical Form 

Subsequent developments rest on the following. The singular decomposition X=PD^ Q with 
P'P = 

Ip, together with = Q'? as an orthogonal re-parametrization, give = X? + e -> 

Y = ) ? + e -> U = Y = + 
' e as a succinct and equivalent model on W. 

Gauss-Markov assumptions regarding Y = X? + e stipulate that E(e) = 0 e W1 and V(e) = 
2 . From these it follows that E(P'e) = 0gF and V(P'e) = 2 = 2 

, so that 

E(U) = and V(t/) = 2 as in subsequent usage. ^ 
A critical property of residuals emerges subsequently. Beginning with ?]i(k), define the 

residual sum of squares as SS(k) = [Y 
? 

X?R(k)]'[Y 
? 

X?R(k)]. We require the important 
result that 

SS(ki) < SS(k2) for 0 < kx < k2. (1) 
On applying the foregoing canonical form, we find 

dSS(k)_^ U^k 
dk 

= 
2T^^1>0 (2) 

i=\ fe2 + ̂ ) 
to complete the argument. 

3 Ridge Regression 

3.1 Essentials 

We recall basics as set forth principally in Hoerl & Kennard (1970), Marquardt (1970), and 

Marquardt & Snee (1975). Following those authors, write the residual sum of squares as 

= (Y 
- 

XB)\Y 
- 

XB) = <i)min + ( ), (3) 
where = (Y 

- 
X?L)'(Y 

- 
X?L) and ( ) = ( 

- 
?L)'XfX(B 

- 
?L). 

Various assertions critical to the foundations of ridge regression have been made. These are 

enumerated here for subsequent reference and critique. 

Assertions: 

Al. Hoerl & Kennard (1970, p. 57), note that 

?=[lp+k(XfX)-iYX?L (4) 

with ? = ?Rk. 
A2. Hoerl & Kennard (1970, pp. 58-59): "The ridge trace can be shown to be following a path 

through the sums of squares surface so that for a fixed a single value for is chosen 

and that is the one with minimal length." Precisely: Fix and minimize B'B subject to 

( -? )' 
, 

( -? ) = 0. (5) 

Next proceed to minimize the LaGrangian function 

F0(?, k) = B'B + (l/k)[(Y 
- 

XB)\Y 
- 

XB) 
- 

0]. (6) 

This reduces to 

= ?R(k0) = (XrX + hl)~lXfY (7) 

where ko is chosen to satisfy the constraint (5). 

International Statistical Review (2008), 76, 1, 89-105 
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92 D. R. Jensen & D. E. Ramirez 

A3. Hoerl & Kennard (1970, p. 59): "A completely equivalent statement ofjthe problem is 
this: If the squared length of the regression vector 2? is fixed at R2, then ? is the value of 

that gives a minimum sum of squares. That is, ? is the value of that minimizes the 
function 

Fi(B, k) = (Y- XB)(Y 
- 

XB) + k(BB 
- 

R2)." (8) 

Again the solution is = ?R(fa) = (XfX-\- koI)~lXfY, choosing ko to satisfy the 
constraint {?'? 

= 
R2}. Here we have replaced their (l/k) by k to conform with 

conventional notation. 
A4, (a) Hoerl & Kennard (1970, p. 59), regarding F0(2?, k): "Of course, in practice it is easier 

to choose a k > 0 and then to compute 0o" at expression (5). ^ 

(b) Marquardt & Snee (1975^ p. 5), regarding the dual F\(B, k): "If ? is the solution 
of (XfX + kl)? = g9 then ? minimizes the sum of squares^of residuals on the sphere 
centered at the origin whose radius is the length of ? Here ? 

? 
?Rk and g = . 

3.2 A Critique 

The foregoing assertions are critical, and their validity must be reassessed. Clearly Fo(B9 k) 
and Fi ( , k) are in keeping with LaGrange's Principle; F\ (B9 k) is dual to Fq(B, k); and solutions 

{?, } of {(X'X + )? = X'Y\?f? = 
c2} are necessary; moreover, that they are minimizing 

remains to be determined. ^ ^ 
Assertion Al: True, but strictly for the unconstrained solutions ? = ?Rk. Al is false if 

misapplied taking ? = ?c, as in section^} of Hoerl & Kennard (1970). The fallacy is that 
since ̂necessarily lies on the spherej/3?/3c 

= c2}, there is no one-to-one linear transformation 

taking ?L onto that sphere, so that ?c [Ip + k(X'X)~l]~l?L as asserted. This error again 
appears to stem from ambiguous use of notation. 

Assertion A2: Incomplete. It is necessary that (7) hold at a stationary point by LaGrange's 
Principle; however, the solution need not be minimizing. Specifically, for a solution of minimal 

length on the sum of squares surface at level \, there may be a solution of the same length on 
the surface aUevel < \. If there are values < \ such that \\?i?ko) || = || ?dk\) || and 
ko < k\, then ?j^ko) must be preferred from (1) for its smaller residual SS(k). 

Assertion A3: Incomplete. From duality between (8) and (6), solutions constrained to the same 

length may occur at distinct values^o < k\. Since SS(k) is monotone increasing, the minimization 
of Fi ( , k) requires the choice of ?R(ko) at the smaller value. Further details appear subsequently. 

Assertions A4: False. Assertion (a) pertains to F0(B, k) and (b) to its dual F\(B, k). As 
in the Appendix, LaGrange minimization requires solving (X'X + klp)? = (A3) and 
{?'? 

= 
c*2} (A.4) for the + 1 unknowns (? 9...9 ? 9 k). Assertions A4 are to 

fix^A: 
= 

l> 0; to solve (A.3) as/3R?; and then to discover the implied constraint on evaluating (?Ri 
? 

?L)fX'X(?Rg 
- 

?L) = at (5) under F0(B, k\ or evaluating (?'Ri?Ri 
= c2} under FX(B9 k\ 

as appropriate. These assertions are tantamount to claiming that solutions of {(X'X + klp)? 
= 

} tacitly embody the^constraints (5) and {?'? 
? 

c2} as well, which clearly they cannot. 

Nonetheless, the solution ? ^ length q, need not minimize the residual sum of squares 
SS(k) = (Y 

? 
X?Rk)f(Y 

? 
X?Rk), as claimed. The fallacy stems from the false supposition 

that k and c2 correspond one-to-one. To the contrary, in Section 3.3 we demonstrate solutions 
at different Ar's having the same length, say || ?dk\) II = II ? ?fa) II with k\ < fa. But then ?i?fa) 
cannot be minimizing, as SS(fa) > SS(k\) from monotonicity of SS(k) as in (1). The dual 
assertions (a) and (b) often are misconstrued as equivalent statements regarding solutions ?Rk 
of (A.3) alone. See Nostrand (1980), for example. Remedial developments follow. 

International Statistical Review (2008), 76, 1, 89-105 ? 2008 The Authors. Journal compilation ? 2008 International Statistical Institute 

This content downloaded from 128.143.23.241 on Sat, 29 Mar 2014 20:38:58 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Anomalies in the Foundations of Ridge Regression 93 

To continue, for fixed c define the set 

A(c) = {k:\\?R(k)\\=c}, (9) 

and let kc ? min{A(c)}, as identified explicitly in Section 3.3. Then Assertion A4(b) may be 
amended as follows.^ ^ 
Assertion A4*. lf?R(k) is a solution of {(X'X + kl)? = } having length || ?R(k) \\ = c*, 

then ?R(k*) minimizes thesum of squares of residuals on the sphere centered at the origin whose 

radius is the length c* of ?i?k), where = 
min{A(c*)}. 

Consequences of Assertions A4 are profound: Their failure exposes an irreparable void in the 
foundations of ridge regression. Moreover, the implications of A4* are similarly far reaching. 
Of the many schemes on record for choosing k, it then is incumbent on the user to examine the 
set (9) for each such k. If a singleton set, then the solution is minimizing. That the algorithm 

A4* is required otherwise, has been neither recognized nor implemented heretofore. Further 
clarification emerges through a case study in Section 3.3. 

A Referee draws parallel to Draper ( 1963) on "ridge analysis," as distinct from ridge regression, 
regarding (i) variational properties of second-order response surfaces on spheres of radius R in 
the predictor variables x, and (ii) evolution of these as R varies. The basic relation is ( 

? 
XI)x 

? 
? 

\b, where is a LaGrange multiplier; is the matrix of second-order coefficients, with pure 
quadratic terms on the diagonal; and b the vector of linear coefficients of the model. That and 
R are not one-to-one is noted by Draper (1963). The parallel, that k and c2 are not one-to-one in 

ridge regression, becomes clear on comparing our (A.3) with the basic relation of Draper (1963) 
as cited. 

3.3 Case Studies: Minimizing Solutions 

We reexamine the Hospital Manpower Data as reported in Myers (1990). Records at = 

17 U. S. Naval Hospitals include: Y : Monthly man-hours; X\ : Average daily patient load; X2 : 

Monthly X-ray exposures; X3 : Monthly occupied bed days; X4 : Eligible population in the area 
divided by 1000; and X5 : Average length of patients' stay in days. The basic model is 

{Yi =?0 + ? + ?2 2 + ?sXs + + ?$ 5 + t 1 < i < }. (10) 

Following Hoerl & Kennard (1970), Marquardt (1970), Marquardt & Snee (1975), Myers (1990), 
and others, we center and scale so that = ? + e with 

1 
in "correlation form" having unit 

diagonals, the central focus being the rates of change ? = [?\9 ?2, ?^, ?^, ?s]r. The data are 

given in Table 3.8, pp. 132-133, of Myers (1990), and our computations rely heavily on PROC 
IML of the SAS Programming System. The data are exceedingly ill-conditioned, with singular 
values 

% = Diagf?i, ?2,k,?4, ?5) 
= Diag(2.048687, 0.816997, 0.307625, 0.201771, 0.007347) 

for . 

Widely diverse criteria have evolved for choosing k, often with deeply diverging consequences 

regarding ridge estimators, predictors, and their properties. Five criteria in common use are 

reported in Table 1, together with definitions and their values for the Hospital Manpower 
Data. These include DFk = tr(Hk) with Hk = 

[Z(Z'Z + kIp)~lZ']; the cross-validation 

PRESSk statistic of Allen (1974); a rotation-invariant Generalized Cross Validation (GCVk) 
of Golub et al. (1979); C* to achieve variance-bias trade-off as in Mallows (1973); and HKBk as 

recommended by Hoerl et al. ( 1975) from simulations. As listed in Table 1, SSRes? is the residual 
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94 D. R. Jensen & D. E. Ramirez 

Table 1 
Choices for k in the Hospital Manpower Data corresponding to conventional criteria 

DFk, GCVk, Ck,PRESSk, andHKBk._ 
Name Definition Value for k 

DFk tr(Hk) = Ef=i 0.0004 

GCV* ?-004787 

Ck 
- + 2 + 2tr(?/?)] 0.0050 

HKBk J?L 0.616964 

Table 2 _ ] 
Lengths of ?Rk in the Hospital Manpower Data, and mean root residuals R(k) 

= 
[(Y 

? 
Z?Rk)'(Y 

? 
? Rk)]1, for designated 

values of k. 

k 0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 

\\?Rk\\ 394.67 137.82 33.14 31.50 70.02 99.19 122.10 140.73 

R(k) 2,129.53 2,474.87 2,735.75 2,914.38 3,057.54 3,184.84 3,305.00 3,422.13 
k 0.32 0.36 0.40 0.48 0.56 0.60 0.64 0.68 

\\?Rk\\ 156.25 169.40 180.69 199.00 213.09 218.93 224.11 228.70 

R(k) 3,538.22 3,654.22 3,770.58 4,004.70 4,240.27 4,358.28 4,476.26 4,594.06 
k 0.72 0.76 0.80 0.84 0.88 0.92 0.96 1.00 

\\?Rk\\ 232.79 236.42 239.65 242.53 245.08 247.34 249.33 251.09 

R(k) 4,711.56 4,828.65 4,945.23 5,061.20 5,176.49 5,291.03 5,404.77 5,517.64 

sum of squares using ridge regression; 
2 is the OLS residual mean square; and {e2t k)} 

are the 
PRESS residuals for ridge regression. Further details are given in Myers (1990, pp. 392-A?1), 
including numerical values for DFk, Ck, and PRESSk as reported here. Further choices include 
k {0.01,0.03,0.05,0.07,0.09} and others to be noted. 

Are Solutions Minimizing? We have claimed Assertions A4 to be false. Evidence is provided 
in Table 2, where lengths || ?Rk\\, and mean root residuals R(k) = [(F 

? 
Z?Rk)\Y 

? 
Z?Rk)p, 

are reported as k ranges over [0? 1 ], as stipulated byJEloerl & Kennard ( 1970) and others when 'Z 
is in correlation form. Here ?Rk 

? 
[?\, ? , ? , ?$, ?s]f are rates of change; similar trends are 

exhibited when ? is expanded to include the intercept. It is seen that || ?Rk \\ decreases initially to 
a minimum, then increases beyond k = 1.0, but eventually decreases tojzero through shrinkage. 

In greater detail, the canonical form^pf Section 2.2 asserts that ?Rk = Q0Rk\ that Q is 

orthogonal; and thus, letting g?R(k) 
= \\ ?Rk\\2, that g$R(k) 

= 
gsR(k). It follows that g$R(k) 

= 

?=\ 
2 

2/( 
2 + k)2. This is differentiable; its derivative is 

BgSK(k)/dk = -2 
? + h)'3; (11) 

i=l 

and its path traces evolution of the derivative as k varies. Moreover, as k 0, we have 

[dg0R(k)/dk]k=o 
= 

-2J2?=\ U2/%f. Accordingly, in the Hospital Manpower Data the length 
of 0R(k) is seen to drop precipitously away from OLS at k = 0, since = 5 = 0.007347 and 
its fourth power appears in the denominator. ^ 
A detailed local view is r^ovided^injable 3, to include not only || ?Rk\\ and R(k), but also 

the ridge estimates ?Rk = [?i9 ?2, ?4, ?s]' in rows identified with k. Values of ?Rk for k e 

{0.08,0.11,0.12} duplicate those in Table 8.9 of Myer?(1990), who reports ridge estimates for 
k e [0,0.24] by increments of 0.01. It is seen that \\?Rk\\ takes its minimal value, 12.46150, 
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Table 3 _ 1 
Ridge estimators ?Rk, lengths of ?Rk, and mean root residuals R(k) 

= [(F 
? 

?^)'( 
? 

Z?jik)]1 ,for designated values 

ofk._ 

k_?l_?_l_%,_&_%_\\?Rd_R(k) 
0.08 10.6354 0.065428 0.359139 6.3206 -30.7471 33.1448 2,735.75 

0.08095 10.6118 0.065432 0.358279 6.3674 -28.9649 31.5000 2,740.68 
0.08797 10.4475 0.065444 0.352298 6.6903 -16.4728 20.6250 2,775.83 
0.0981 10.2378 0.065414 0.344681 7.0942 -0.3156 12.4645 2,823.03 
0.09829 10.2342 0.065413 0.344548 7.1012 -0.0308 12.4615 2,823.89 
0.0983 10.2340 0.065413 0.344541 7.1015 -0.0159 12.4615 2,823.93 

0.11 10.0248 0.065325 0.336955 7.4935 16.3900 20.6251 2,874.22 
0.12 9.8679 0.065217 0.331280 7.7785 28.8834 31.5000 2,914.38 

at ?min = 0.09829. Moreover, both ?R(0A2) and /3#(0.08095) have the same length, namely 
31.500, so that (31.500) = 

{0.08095,0.12} as in (9). Were a user to choose ?R(0A2) from 
Table 3, then this solution is not minimizing of length 31.500, as may be seen from R(0A2) = 

2,91438 > 2,740.68 = ?(0.08095). It is likewise clear that (20.625) = 
j0.08797,0.11}, and 

that ?R(0Al) of Table 3 is not minimizing, to be replaced instead by ?R(0.08797). Further 
violations of Assertion A4(b) follow on reflecting k asymmetrically about km{n = 0.09829: The 
smaller k of each pair designates the minimizing solution, to demonstrate how Assertion A4* 

may be implemented. 
To continue regarding Assertion A4(a), we have found = 2,740.682 < 2,914.382 = \ such 

that the corresponding minimal solutions of Fo(B, k) are /3#?0.08095) and ?R(0A2), having 
identical squared lengths. The preferred solution necessarily is ?R (0.08797) with smaller residual 
sum of squares SS(k). To summarize, in regard to A4(b) we have just seen that there are two 
solutions of Fi (2?, k) at ||/3^|| = 31.500, namely, those corresponding to k e (31.500) = 

{0.08095,0.12} from (9). Clearly some values for k are inadmissible. 

Specifically, admissible values for k, for which solutions of given length c* are minimizing, 
are subject to rigid but yet undocumented constraints. To fix ideas, suppose that 

{g^(0.00) 
> 

~*2 > &? > 
gpR(0.09829) 

= 12.461502 = 155.2877}. Then the only feasible values for k are in 

[ming^ V), 0.09829]. For example, for c2 in {33.144812 = 1,098.5784 > c2 > 155.2877}, 
the feasible values from Table 3 are k e [0.08,0.09829]. Instead, for c2 in 

{g^(0.00) 
> c2 > 

g^R(0.09829)}, the feasible values are k e [0.00,0.09829]. These are the only feasible values for 
k e [0,1], so that PRESSk and HKBk, as reported in Table 1, are not viable choices whenever 
c2 > 155.2877. Conversely, choosing {0 < c2 < g?R(0.09829) 

= 155.2877} requires k in the 

interval 
(mingle2), oo), where ming~1(155.2877) > 158. Thus for c2 < 100, the feasible 

values are k e (?98, oo), far surpassing the recommended interval [0,1], so that constraints c*2 
G (0,155.2877) are inadmissible in the Hospital Manpower Data. Values reported for {0 < c2 < 

g* (0.09829) = 155.2877} andming^(i55.2877) > 158 are supported by Maple software. 

Origins of these anomalies may be traced as follows: (i) Evolution of | ?s(k) \ is down-up-down, 
beginning with /35(0.00) = ?394.3280, decreasing to zero between k = 0.09 and k = 0.10, 

increasing to ?s(\.00) = 250.8307 and beyond, but ultimately vanishing through shrinkage, (ii) 
I ?s(k) I dominates other estimates by factors ranging from one to four except near its minimum, 

(iii) Other coefficients exhibit much narrower ranges for k e [0,1 ]. (iv) In consequence, || ?Rk \\ is 
determined largely by | ?s(k) \ . That A(c*) takes two values in these examples may be attributed 
to the down-up-down character of || ?Rk\\ . More elements could emerge in A(c*), for example, 

were a dominant estimate to undergo multiple sign changes, and other coefficients change signs 
as well. Such properties of ridge traces are studied in Zhang & McDonald (2005), and references 

cited, under further structure of Z'Z. Sign changes, crossings, rates-of-change of individual 
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ridge estimates, and bounds on the number of sign changes, are determined by those authors 
on identifying zeros and derivatives of polynomials in k of degree k ? 1. Those studies in turn 

suggest the cardinality of A(c*) at (9) to be finite. 
In short, imbedded in the Hospital Manpower Data are hidden feasible constraints {?1 ? 

= 
c2} 

with c2 > 155.2877. These would remain hidden, as in the past four decades, absent the foregoing 
detailed analyses. Corresponding constraints in other data sets may be unmasked accordingly. 

3.4 Ridge in Retrospect 

Many claims in ridge regression are attributed mistakenly to constrained solutions. Examples 
follow in varying detail. 

The Variance-BiasJTradeoff. Hoerl & Kennard (1970, Section 4), purport (i) to assess 

variance and bias of ?, asserted in Section 3 as subject to {?'? 
= 

c2}, and (ii) to prove in 

theorem 4.3 existence of k > 0 suchthat ? dominates ? in expected mean square (EMS). They 
claim the EMS decomposition E[(? 

? 
?)'(? 

? 
?)] = y\(k) + y2(k)^identifying y\(k) asjthe 

sum of variances, and y2(k) as "the square of a bias introduced when ? is used rather than ? ." 

Graphs of y \ (k), decreasing in k, of y 2(A), increasing in k, and of y \ (k) + y 2(A), are reported for 
k e [0,1] from a case study by those authors. The foregoing claims, including theorem 4.3, are 

validkmly for the unconstrained ridge solutions, i.e. for ? 
? 

?Rk satisfyingJA.3) alone, but not 
for ?c as intended. The facts diverge critically when constrained solutions ?c are taken properly 
into account. ^ ^ ^ 

Specifically, for {?'c?c 
= c2} let E(?c) = 

?c 
= [?ci, ?c2,..., ?cp]'\ then ?c is in the inte 

rior of B? = {u W : u u < c2} from convexity of E (?). Since E(^) 
= var(/Td) + ?2ci and 

E(#&) = Ef=i varG8c/) + ?'c?c = c2 is fixed, it follows that ?f=i M?a) = c2 - ?'c?c > 0. 
Accordingly, on small spheres the total variance is necessarily small^but increasing with c, 

contradicting for ?c that y\(k) is decreasing. For example, ]Tf_j var(j?c/) = c2 when C(?c) is 
uniform on the c-sphere. Similarly, the squared bias E [(?c 

? 
?)'(?c 

~ 
?)] need not be monotone, 

as asserted for X2(k). To continue, a collection of ridge traces, as graphs of the individual 

components of ?Rkask evolves, are advocated by Hoerl & Kennard ( 1970) for use in choosing k. 

Following Hoerl & Kennard ( 1970), the EMS decomposition E(? 
? 

?)'(? 
? 

?) = y\(k) + y2(k) 
is always depicted in the literature as continuous in A:, as are the ridge traces. However, neither can 
be continuous in the case of ?c, owing to admissibility constraints on k as in Section 3.3. These 

lapses appear to be further detritus stemming from ambiguity in the use of ?, since asserted 

properties were derived under the mistaken notion that constrained solutions are linear in ?L. 
Other Anomalies. Numerous authors, expressly concerned with constrained minimization, 

take solutions ?R = {?Rk = (XfX_+ kIp)~xX'Y\ k > 0}, solving (A.3) alone, as the estimators 

in ridge regression, despite ?c or ??c as constrained minimizers. Examples are Hoerl & Kennard 

(1970), Marquardt (1970)JVlarquardt & Snee (1975), Golub et al. (1979), and others. In short, 
ridge regression rests on {?Rk\ k > 0} essentially through an accident of history. 

Specifically, expressions for variances and biases; solutions for k purporting to minimize 

expected mean squares; prediction, validation, and cross-validation; and other aspects of ridge 
regression: All are predicated on the unconstrained solutions [?Rk\k > 0} and their linearity 
in ?L. If instead either {?c; c> 0} or {??c \ 0 0} were taken, in keeping with proper LaGrange 
constraints, then the ensuing fridge regressions" would differ dramatically, both inter se, and 
from extant results based on {?Rk;J^> 0}. Thesediscrepancies necessarily^ would encompass (i) 
the stability of the solutions ?c or ??c instead of?Rki in comparison with fi? ; (ii) the inflation or 

deflation of variances, taking into account actual momentsjo be reckonedjrom constrained 

distributions; (iii) prediction using Yc = X?c or Y? = X??c, instead of YRk = X?Rk\ (iv) 
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the use, meaning, and properties of cross-validative and predictive criteria; (v) discarding or 

rethinking {DFk, GCVk, Q, PRESS k, HKBk} and other means for choosing a particular solution; 

(vi) ridge traces^as modified to take into account {??\c > 0} and singularity of the joint 
distribution of {?c\ c > 0} for fixed^c; and (vii) the trade-off between bias and variance of 
the constrained estimators ?c and ??, to be determined using their actual moments. Other 

discrepancies may be noted. All such issues beg to be examined anew, if indeed constrained 

optimization is to remain a viable foundation. However, any such re-examination might be 

preempted by insurmountable intricacies owing to discontinuities in admissible values for k, and 
to the corresponding nonstandard distributions. These examples demonstrate unequivocally that 
little of ridge regression, as currently practiced, rests on constrained solutions. 

Extensive simulations, beyond the scope of this review but exemplified in Dempster et al. 

(1977), have compared numerous ridge and shrinkage solutions inter se and with OLS. The 

meaning, and the practical implications of all such studies, are largely obscured by the fact that 
the solutions ?Rk need not be minimizing. Careful reworking would require algorithms based 
on Assertion A4* together with admissible values for k. 

By analogy to earlier sections, Hoerl & Kennard (1970, Section 8) posed generalized ridge 
solutions invoking the equations (X'X + ) ? = X'Y, with non-negative ridge parameters 

= Diagli,..., kp). This, too, is incompatible with {?2 
? 

c\,...,?2p 
? 

c2p}, 
in continuation 

of their equality jconstraints, for then the data can serve only to determine signs of the roots 

{?x = ?c\,..., ?p 
= 

?Cp}. On the other hand, correct solutions constrained by {?\ 
< 

c\,..., 

?2p 
< e2 } are provided by Myoken & Uchida (1977), akin to those of Balakrishnan (1963) where 

{ki 
= ? ? ? = 

kp 
= 

k}. 

4 Foundations via Conditioning 

We have seen that ridge solutions {?Rk; k > 0} are neither constrained nor necessarily 
minimizing, and therefore little more than ad hoc contrivances. We turn instead to conditioning of 
the linear systems {?Rk; k > 0} for a re-appraisal of ridge regression and a promising alternative. 

As in Section 3.3, the model { 
= ? + e} often is featured after scaling and centering X as a 

first step towards improved conditioning. Much that follows pertains to both. 

4.1 Ills of Ill-Conditioning 

Ill-conditioning of = ? e is characterized by (i) non-orthogonality^ of columns 
of X; (ii) excessive lengths of ?L\ (iii) excessive dispersion parameters V(/3?); and (iv) 
instability of solutions ?t(X) = (X'X)~lX'Y owing to disturbances inX, when considered as 
a transformation of Y. Let W = X'X and V = (X'X)~l. A number of concepts have emerged. 

(i) Conditioning of X: Non-orthogonality of columns of X is gauged directly through 
condition numbers c<f>(X), and indirectly through c(/)(X'X), to be defined. 

(ii) Excessive Length: Hoerl^& Kennard (1970, p. 57), correctly note for k > 0 the 

attenuation ?'Rk?Rk < ?'L?i of ridge solutions relative to OLS. These accordingly are 

called "shrinkage estimators.'^ ^ 

(iii) Variance Inflation: Since V(J3l) = alY^ the variance inflation factors (VIFs) of ? ? 
. ?., ??lp? are defined as {VIF(?Lj) 

= 
vjj/wjji 1 <j <p), i.e. the ratio of the 

actual to the "ideal" variance attained when columns of X are orthogonal, in which case 

W = Diag (w\ ,..., Wpp). If instead { 
= ? + e}, with 'Z in "correlation form," then 

V = (Z'Z)~~l and {VIF(?L ) 
? 

Vjj\ \ <j <p} from scale-invariance of VIFs. Designate 
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{V\ > V2 > 
? ? ? > 

Vp} as the ordered diagonal elements of V = (Z'Z)~~X; Marquardt 
& Snee (1975) identify V\ to be "the best single measure of the conditioning of the 

data," thus a critical diagnostic tool. See also Marquardt (1970), Beaton et al (1976), 
and Davies & Hutton (1975), for example. To continue, following standard usage in 

ridge regression, define the condition number c\(Z' Z) = 
2/ 2, with { \ 

> 
\ 
> ? ? ? 

> 2 > 0} as the ordered eigenvalues of Z'Z. A basic connection between VIF s and 
condition numbers is due to Berk (1977): V\ < ci(Z'Z) < p(Vx + ? ? ? + Vp). Since 

c\(A) = c\(A~x), Berk's result may be expressed equivalently for OLS as 

Vi<ci[V(?L)]<ptv[V(?L)l (12) 
a statement about conditioning of V(/3?). 

(iv) Stability and Conditioning: Stability of the system Az = b refers to the propagation of 
small perturbations in elements of A to disturbances in the solution. This is gauged by the 
condition number cg(A) 

= 
g(A)g(A~x) when A is invertible, where g(-) ordinarily is a 

norm. A system is well conditioned at A = Ip with cg(Ip) 
= 1.0, larger values reflecting 

greater ill-conditioning. In particular, c\(A) as defined belongs to the class {c>(-); e 

} generated by the matrix norms invariant under orthogonal congruence; see Marshall 
& Olkin (1979) and Horn & Johnson (1985). Since for k > 0, ( 

' 
) > ( 

' + 
kip) improves conditioning, Marshall & Olkin (1979, p. 273), cite this as justification 
for taking { 

' 
? = } -> {(X'X + klp) ? = } in ridge regression. 

If instead Az = b is consistent, A is non-invertible and not necessarily square, we have 

cg(A) 
= g(A)g(A t) with A t as the Moore-Penrose inverse, whereas c\(A) now is the ratio of its 

largest to smallest singular value. To study the stability of solutions to disturbances inX, begin 
with ?L(X) = (XfX)~lX'Y\ observejhat conditioning of [(X'X)-1 Xf] gauges the propagation 
of disturbances inX to the solution ?L; infer from its canonical form that /3?(X) = Q0L{D^) 
with 9L(D?) 

= 
D?2D^U 

= D~XU as in Section 2.2; and, from the orthogonal invariance of 

condition numbers, infer that stability of ? ,( ) is gauged through conditioning by 

a [? ( )] = c0[??(Z^)] 
= 

( ^) 
= a ( ). (13) 

This approach conforms with that of Belsley et al ( 1980). After scaling columns of X to having 
(approximately) equal lengths and improved conditioning, those authors invoked the concept of 
elasticities in order to link sensitivities of solutions ? = 

(Z'Z)~XZ'Y, and their variances, to 
disturbances in Z, as gauged by its condition number c\(Z). 

4.2 Critical Issues 

Ridge regression seeks redress for deficiencies in OLS. By the same standards, it is essential 
to gauge progress of ridge regression towards these goals, a matter largely unaddressed in the 
literature. Clearly the system {{XfX + klp) ? 

? 
} itself is not orthogonal: The solutions 

?Rk are themselves subject to variance inflation; their VIF s necessarily exceed unity; and these 

quantities continue to remain at issue for ?Rk. The capacity of ridge regression to ameliorate the 
excessive dispersion of OLS thus hinges on improving VIFs and condition numbers for V(/3^). 
Similarly, the stability of ridge solutions rests on conditioning oi?Rk(X) = {X'X + kIp)~xX'Y 
to perturbations inXwhen considered as a data transformation, i.e. on c\ [(X'X + klp)~x X']. 
These concerns for ?Rk emerge precisely for the same reasons as for OLS, prompting questions 
to be considered subsequently. Silence on these matters may attribute to the following dismissive 
assessment of the system {(Z'Z + klp) ? = } by Hoerl & Kennard (1970, p. 65): "At a 
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certain value of k the system will stabilize and have the general characteristics of an orthogonal 
system." This assertion remains to be examined, seeming more plausible with increasing k. 

Questions pertaining to these matters are listed next. 

Ql: Does the system stabilize sufficiently for k e (0,1] that VIF s for elements of ?Rk are no 

longer excessive? ^ 
Q2: With regard to V(?Rk) = 

2( 
' 

+ klp)~x Z'Z(Z'Z + klp)~x, is its condition number 

c\ [V(?Rk)] diminished and stable at some A: e (0,1] in comparison with OLS1 

Q3 Do the solutions ?Rk(X) stabilize as data transformations owing to disturbances in X for 
some k e^(0, 1]? 

Q4 Does E(?Rk) = (?) become well-conditioned as a parameter transformation for some 
ite (0,1]? 

Regarding the latter, the conditioning of E(?Rk) = (?) is at issue in transforming parameters, 
as in assessing the trade-off between variance and bias. Observe for completeness that the 
listed itemsj>ertain not only to ridge estimators {?Rk\ k > 0}, but also to other biased solutions 

including {?sk; k > 0} of Section 4.4. 

4.3 Ridge Regression 

Taking W = X'X (X'X + klp) informally serves to ease apparent dependencies 
among columns of X when ill-conditioned, in that elements = 

wij//>/w??w]j} 
-> {nj(k) 

= 

Wij/y/(wu + k)(wjj + k)} decrease in magnitude with increasing k. More formally, that 

{X'X 
? 

(X'X + klp)} explicitly reduces condition numbers for k > 0 is cited by Marshall & 
Olkin (1979) as grounds for ridge regression, as noted. Moreover, for condition numbers ci(-), 
the improvement is quantified directly on comparing c\(X'X) = 

\/ 
2 with c\(X'X + klp) 

= 

( \ + k)/(%2p + k), where { \ > >?'> } are singular values of X. 

4.4 Surrogate Models 

Closer inspection sees the correspondence Az ? b <?> ' 
? 

? X'Y fail in linear inference, 
since A = X'X and b = X'Y both are subject to disturbances in X, rather than disturbances only 
in A. While {X'X ?> (X'X + klp)} does improve conditioning on the left, the conditioning 
of X, and its consequent effects on solutions, persists on the right in {(X'X + klp) ? = 

}. To continue, observe that {X'X (X'X + klp)} is tantamount to modifying X itself 
as a means to enhanced conditioning. Specifically, the singular decomposition X = Q\ 
and the recomposition Xk = 

7>Diag((?12 + k)$,..., ( 
2 + k)?)Q', give XkXk 

= (X'X + klp); 
these together show that ridge regression entails the system {XkXk? 

= 
X'Y}. Instead, we take 

{Y 
= Xk? + e} as an approximation, or surrogate, for the ill-conditioned model {Y 

= X? + 

e} itself, as in the following. 

Definition 1 : Given an ill-conditioned model { Y = X? + e}, its ridge surrogate is a modified 
model {Y 

= Xk? + e}. The surrogate estimator ?sk, solving XkXk? 
= 

XkY, is OLS for 

the surrogate model. Moreover, the order of approximation of Xk for X may be gauged by the 

squared Frobenius distance ||AT?= ?f=1(?i 
~ 

y^2 
+ k)2. 

We motivate these developments through condition numbers. Take X into its column 
scaled form Z; let { \ > 2 > ? ? ? > > 0} be ordered singular values for Z; let 

Zk = 
PDiag((^2 + k)l2,..., ( 

2 
+ k)L2)Q', and invoke elasticities as in Belsley et al. (1980). 
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Table 4 

Properties of canonical estimators Or/?, Osk), where = 

DU = DP'Y and D ( /) 
= 

Diag ( u..., ). 

Estimator_D_E(0) 
= ( )_V(fl) 

dL=DLU D^ a2Df 

?Rk = DRU Dfa) (^) ?>D(^) 
dsk=dsu 

?(^? d(-^> ?2d(w*) 

We now may link the sensitivities of solutions ?sk = 
(Z'kZk)~lZkY, and of their variances, 

to the condition number c\(Zk) = ( + k)? /( 
2 
+ kp. It remains to study properties of the 

surrogate estimators {?sk\ k > 0}, in comparison with OLS and ridge solutions {?Rkl k > 0}. 

4.5 Properties of ?Rk and ?sk 

Direct comparisons among {/3?, ?Rk, ?sk} become more transparent in the canonicaHorms of 
Section 2.2. Specifically, arguments leading to (13) demonstrate that 0? = 

DJlU, E(0?) = 0, 

and V(0?) = 2 2 
under OLS, as reported in Table 4 under Gauss-Markov assumptions. 

Parallel developments for the ridge estimators [0Rk\ k > 0}, and the surrogate ridge estimators 

{Qsk\k 
> 0}, each in canonical form, are reported also in Table 4. Both {6Rk;k > 0} and 

{Osk',k > 0} are seen to shrink stochastically towards the origin with increasing k, as do their 
means and variances, and similarly for {?Rk\k > 0} and {?sk\k > 0}. Moreover, for each 
k > 0, d?k achieves lesser shrinkage, both in expectation and variance, than 0#?. Since the 
relations ? = 

QQ, E(/3) = ?E(0), andV(/3) = ?V(0) ?' apply for all three estimators, moment 

properties of {/3?, ? m, ?sk) follow directly. Moreover, the conditioning of {?L, ?Rk, ?sk), 
considered asjinear data transformations subject to disturbances in X, and^of theirjdispersion 

matrices {V(/3?), V(?Rk), V(?sk)}, are established directly from those of {0?, 0Rk, 0^}, from 
the orthogonality of ? and invariance of condition numbers. These facts will see repeated use 

with little further comment. ̂ 
For example, with D\ 

= Diag(? /( \ + ?),..., /( ̂ + k)\ it follows from 6Rk = D\U that 
its condition number gauges sensitivity of the solution 0Rk, considered as the function 

6Rk(D^) 
of 

D?, 
to disturbances in the singular values of X, and thus of ?Rk = Q0Rk to disturbances in 

X. Thesejind further condition numbers are given in Table 5 for {0?, 0^, 0^}. Expressions 
defining 0(D), as linear in U with coefficients D, are given in the second column of Table 4. 

These in turn give condition numbers c\(D) gauging the stability of the solutions to disturbances 
in X through itsjringular values, as reported in the second column of Table 5. Further condition 

numbers, for E(0) = (0) as a parameter transformation, and for the dispersion matrix V(0), 
occupy the third and fourth columns of Table 5. Moreover, entries in Table 5 follow directly from 
Table 4 and the definition of ci(-), on recalling that elements of D? are 

ordered^as { \ > ? - > 

> 0}. Moreover, equivalent labels for the rows of Table 5 are {?i, ?Rk, ?sk}, and for its 

columns are [c\[?(X)], c\[T(?)], c\\y(?)]}, for reasons cited. ^ 
Note that condition numbers c\[?sk(Xk)] = c\(Xk), and c\[V(?sk)] = c\(Xf1^Ck\ parallel 

those for ? , as both are OLS in their respective models. Moreover, the condition number 

c\[?sk(Xk)] = ( \ +k)?/(i;2 + k)2, and its square c\[V(?sk)], both decrease monotonically 
with increasing k, thus assuring incremental improvement in conditioning for surrogate 
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Table 5 
Condition numbers c\(D) for data transformations 0(D) = DU, for 

parameter transformations E(0) 
= ( ), and for V(6),for each of 

{dL,dRk,dSk}-_ 

Estimator_cx(D)_c\ [ ( )]_ci[V(?)] 

9L ? 
1.00 

? 
- 

max&/(?2+?:)} 
tf?2p+k) 

max{|2/(?2+A:)2} 
Rk 
min{^/(^2+?:)} ?^f+k) min{?2/(?2+?)2} 

Table 6 
Condition numbers c\(?Rk) and c\(?sk) far ?RkiZ) and ?sk(Z), as data transformations subject to disturbances in Z; and 

for V(?Rk) and V(?sk)', the maximal VIFs V^C?Rk) and Vini?sk)', and the Frobenius distance Dz(Zk) 
= \\ 

? 
Z? || , under 

various choices for k. 

k_cij?Rk) di?sk) VMi?Rk) VMi?sk) ciW?Rk)] dW?sk)] Dz(Zk) 
0.0004 33.1584 96.1565 141.5345 1,146.399 1,099.4770 9,246.064 0.0140 
0.005 9.0537 28.8348 10.8874 108.0918 81.9695 831.4473 0.0654 
0.010 8.1707 20.4561 9.2481 56.6915 66.7610 418.4530 0.0974 
0.030 11.6724 11.8596 21.2905 21.2197 136.2440 140.6508 0.1847 
0.050 15.1539 9.2114 34.0995 13.6552 229.6392 84.8507 0.2511 
0.070 17.8166 7.8046 42.5990 10.2639 317.4320 60.9119 0.3083 
0.090 20.4222 6.8997 51.7827 8.3166 417.0673 47.6061 0.3598 
0.230 29.6720 4.3868 100.5675 3.9338 880.4276 19.2438 0.6429 
0.616964 53.4183 2.7932 250.4309 2.0374 2,853.5130 7.8022 1.1769 
1.000 66.6915 2.2797 451.5788 1.5976 4,447.7550 5.1968 1.5745 

estimators. By contrast, condition numbers for {6Rk\k > 0} and {?Rk\k > 0} are more con 
voluted and will be examined next in Section 4.6. 

4.6 Case Studies: Continued 

Returning again with Z'Z in correlation form, we find the Hospital Manpower Datajto be 

exceedinglyill-conditionediciiZ'Z)^ 77,754.86; the maximal VIF for OLS is Vx = VIF(?x) 
= 

9, 595.685; and other VIFs are listed in Table 7 at k = 0. Using the data at hand, we next examine 
the ridge and surrogate ridge solutions with regard to issues raised in Section 4.2. Table 6 lists 
condition numbers and other quantities affiliated with {?Rk'Jc 

> 0} and {?sk> k > 0}, for values 
of k as listed. The table heading identifies ?Rk(fZ) and ?sk(Z) both in terms of Z, so that 
the cited condition numbers cx[?Rk(Z)] and cx[?sk(Z)] refer to the sensitivity of solutions to 
disturbances in Z. To gauge effects of excessive dispersion in?Rk, the maximal VIFs, namely 
VM(?Rk), initially decrease to 8.1707 at k = 0.010 and increase thereafter. Similarly, cx [V(/3Rk)] 
temporarily decreases over k e [0,0.015] to 55.4470, but then increases. By comparison, both 
the maximal VIFs for ?sk, and condition numbers cx[V(?sk)], decrease monotonically with 

increasing k. Although initially larger, VM(?sk) approximates VM(?Rk) at k = 0.030, whereas 
the ratio KM(/3/?^)/^M(/3^Xescalates markedly thereafter. 

Stability of the solutions ? Rk,Jis indexed by cx [? R?IZ)], initially improves, achieving maximal 

stability at k = 0.015, where cx [? RilZ)] 
? lAAt? is minimal, butthen erodes. In contrast, despite 

higher beginning values, the surrogate condition numbers cx\?siZ)\ decrease monotonically 
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Table 7 
Variance inflation factors for ?Rk\ condition numbers for correlation matrices C(? Rk) andfor (?) 

- 

values of k. 
E0Rk), for designated 

VIF1 VIF2 VIF3 VIF4 VIF5 ci[C(?Rk)] ci [T(?)] 
0.000 
0.0004 
0.005 
0.010 
0.030 
0.050 
0.070 
0.090 
0.230 
0.616964 
1.000 

9,595.68 
141.5345 
7.1047 
8.0001 
19.7743 
32.0013 
42.5990 
51.7827 
100.5675 
250.4309 
451.5788 

7.9406 
7.8481 
7.1379 
6.4919 
4.7268 
3.6885 
3.0187 
2.5598 
1.3868 
1.0879 
1.2184 

8931.449 
133.0221 
7.8349 
8.8456 

21.2905 
34.0995 
45.0695 
54.4589 
102.4723 
243.2535 
430.5957 

23.2887 
13.0512 
10.8874 
9.2481 
5.6339 
4.0168 
3.1473 
2.6269 
1.6364 
1.8791 
2.4738 

4.2794 
3.3997 
2.9972 
2.6830 
2.0003 
1.6988 
1.5363 
1.4377 
1.2446 
1.3541 
1.5386 

5,4756.83 
576.8409 
89.50392 
75.66936 
109.4703 
177.2545 
227.9178 
267.3171 
441.9639 

1,047.931 
2,174.418 

1.0000 
8.4095 

93.5175 
185.8150 
552.8219 
916.3722 

1,276.515 
1,633.297 
4,040.511 
9,965.795 
1,4961.96 

Table 8 
Variance inflation factors for ?sk\ condition numbers for correlation matrices C(?sk) andfor (?) 

= 
E(?sk),for designated 

values of k. 

k_VIF?_V1F2__Vm__VIFj__VIF5 d[C(?sk)] c\ [T(?)] 

0.000 9,595.68 7.9406 8,931.449 23.2887 4.2794 54,756.83 1.0000 
0.0004 1,146.399 7.8846 1,068.211 14.2203 3.5089 5,091.248 2.8999 

0.005 108.0918 7.5147 101.7946 12.0488 3.2099 440.5738 9.6704 
0.010 56.6915 7.1607 53.8459 11.0379 3.0219 233.7461 13.6314 
0.030 21.2197 6.0737 20.5412 8.4506 2.5374 93.1862 23.5122 
0.050 13.6552 5.3181 13.3380 6.9511 2.2606 63.4167 30.2716 
0.070 10.2639 4.7584 10.0777 5.9605 2.0792 48.8365 35.7284 
0.090 8.3166 4.3258 8.1934 5.2538 1.9500 39.9124 40.4141 
0.230 3.9338 2.8218 3.9092 3.1133 1.5493 17.9102 63.5650 
0.616964 2.0374 1.7669 2.0330 1.8380 1.2710 7.5371 99.8288 
1.000 1.5976 1.4635 1.5957 1.4981 1.1781 5.0614 122.3191 

with increasing k, the trends cx [?Rk(Z)] = 11.7723 = cx [?Sk(Z)] crossing at k = 0.03045. The 
Frobenius error in approximating by is tabulated as the final column of Table 6. Relative 

changes, given by ||Z 
? 

Z?||f/||Z||/7, are 0.1123 at k = 0.05, ranging up to 0.5263 at k = 

0.616964, where the denominator takes the value \\Z\\F = 2.236068. 
Finer details, in Tables 7 and 8, support several entries in Table 6. Specifically, Table 7 

examines the evolution with k of VIF s and conditioning of correlation matrices for ?Rk. Values 
for cx[C(?Rk)] are included, as the cited inequality of Berk (1977) applies in each case. It is 
found that the value cx[C(?Rk)] = 61.4449 at k = 0.0173 is minimal. Condition numbers for 

E(?Rk) = (?), as listed in the last column of Table 7, increase explosively with increasing k. 

Corresponding values appear in Table 8 for ?sk, to include the evolution of VIFs, c\[C(?sk)], 
and E(J3Sk) 

= (?). Further computations show that the crossing cx[C(?Rk)] = 99.56217 = 

cx[C(?Sk)] occurs at k = 0.02750. 
In summary, the following trends may be noted from the Hospital Manpower Data. 

(i) Condition numbers and maximal VIF s evolve erratically with k for {?Rk\k > 0}, de 

creasing to a minimum and then increasing; however, these decrease monotonically for 
the surrogate solutions {?skl k > 0}. ^ 

(ii) Ridge solutions {?Rk\k > 0} hold an early advantage over {?skl k > 0} in maximal VIFs 
and condition numbers, dropping away from OLS more quickly up to about k = 0.030, 
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where ?Rk and ?sk are comparable. Thereafter, condition numbers and maximal VIFs 
for ?Rk escalate, sometimes explosively, whereas corresponding values for ?sk decrease 

monotonically. ^ 
(iii) VIFs for individual estimators in ?Rk initially decrease, then increase, but changes occur 

at differing values of k across the five estimators, as seen in Table 7. By contrast, for ?sk 
Table 8 shows the maximal VIF to be VM(?sk) 

? 
VIF(?\) for all cases, independently of 

k. 

(iv) As noted, Hoerl & Kennard (1970, p. 65), postulate that the system {{ZfZ + klp)? 
= 

Z' F; k > 0}, at a certain value of k, "will stabilize and have the general characteristics of 
an orthogonal system." However, if one takes VIFs and condition numbers near unity as 

hallmarks of an orthogonal system, their claim is not supported in the Hospital Manpower 
Data. On these same grounds, however, the surrogate system {Z'kZk? 

= 
Z^Y; k > 0} 

does appear to progress monotonically with k towards orthogonality. 

5 Conclusions 

A vast and expanding compendium continues to masquerade as the theory, methodology, 
and confirmation of ridge regression as a palliative for ill-conditioned models. Mathematical 
foundations long have been alleged to rest on LaGrange's constrained optimization. However, 
little of the collective body of ridge regression coheres logically with this claim. Contrary to 
conventional wisdom, we have shown (i) that solutions of given length need not be minimizing; 
(ii) that constraints on admissible values for k lurk within each problem; (iii) that total variance of 
constrained solutions is increasing in k, rather than decreasing, as claimed; (iv) that the squared 
bias is not necessarily increasing in k\ and (v) that neither variance plus squared bias, nor the ridge 
traces, need be continuous in k, as assumed throughout the literature. These facts alone challenge 
the meaning of numerous simulation studies scattered throughout the literature, purporting to 

compare alternative criteria for choosing k inter se and with OLS, when such choices have 

ignored constraints on k. Thus aggregates of minimizing/non-minimizing solutions have been 

compared with other such aggregates, to the effect of total obfuscation. These anomalies trace 
to misuse of LaGrange's Principle; failure to identify singularities; falsely linking k one-to-one 

with c2; and asserting incorrectly that a solution ?Rk of given length is minimizing. 
Constrained minimization having failed, principles based on conditioning of linear systems^are 

developed in Section 4. One type of conditioning traditionally has been cited in support for ?Rk. 
Its limitations prompt the use of surrogate ridge solutions instead, to adjust for ill-conditioning of 

X on both sides of the OLS equations. Extensive numerical studies in Section 4.6 re-examine the 

Hospital Manpower Data in a manner complementary to Myers (1990). Citing varianeejnflation 
factors and several condition numbers as critical to the pedigree of ridge solutions ?Rk, jt is 

demonstrated that none stabilizes on increasing k. In contrast, for the surrogate solutions ?sk, 
these properties are uniformly enhanced as k evolves, excluding E(?Sk) = (?). It is seen that 

?Rk is better within a narrow range for small k, but its VIFs and condition numbers then become 
excessive. In short, ridge regression often exhibits some of the very pathologies it is intended to 

redress. 

In retrospect, the Hoerl & Kennard (1970) criticism that OLS "does not have built into it 
a method for portraying sensitivity of the solutions to the estimation criterion," apparently 

prompted their turning to constrained solutions. Their ridge traces then would link such matters 
as stability, sign changes, and other features of the analysis as k evolves, to be linked in turn 

with the constraint criterion {?'? 
? 

c2}. Our developments show conclusively that even these 

aspirations, however well intended, have failed. 
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R?sum? 

Les erreurs persistent dans la r?gression ridge, ses bases, et son utilisation, comme d?termin? en Hoerl et Kennard 

(1970) et plus tard. Il ne faut ni que les estimateurs ridge se r?duisent au minimum ni qu'un param?tre ridge soit 

admissible. Les estimateurs conventionnels ne sont pas les solutions de Lagrange contraintes aux longueurs fixes, 
comme souvent pr?tendu, car de telles solutions sont singuli?res. D'une litt?rature vaste?sur l'?valuation, la pr?vision, 
la validation crois?e, le choix du param?tre ridge, et sujets alli?s, sujets collectivement connus sous le nom de r?gression 

ridge?peu est issu de la minimisation contrainte, m?me vis ? vis les contraintes d'in?galiti?. Le probl?me remonte 

? une mauvaise application du principe de Lagrange, au manque d'identifier des singularit?s, et aux liens mal plac?s 
entre les contraintes et les param? tres ridge. Des principes alternatifs, bas?s sur des num?raux de condition, peuvent 
?tre vus comme validant ridge conventionnelle et la r?gression de ridge succ?dan?e, ce dernier ? ?tre d?fini. Les 
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?tudes num?riques illustrent que la r?gression ridge, comme practiqu?e, montrent souvent des pathologies qu'il vise ? 

redresser. 

Appendix 

LaGrange's Principle. Given differentiable functions f(u\,..., up) and g(u\,..., up) such 
that the gradient V g(u\,..., up) 0 on Go = {u <E Rp : g(u) = 0}, the problem is to minimize 

f(u\,...,Up) subject to the constraint g(u\,..., up) 
= 0. Define the Lagrangian L(u\,..., up, 

X) =f(u\,..., up) + X[g(u\,..., Up) 
? 

0], and consider the equations 

V/(i*i, ...,up) 
= AVg(wi, ...,up) (A.l) 

dL(u\,..., Wp, )/3 = [g(u\,..., w^) 
? 

0]. (A.2) 

It is necessary that gradient vectors be parallel, i.e. (A.l), whereas (A.2) recovers the given 
constraint. LaGrange's Principle requires solving these equations in the k + 1 unknowns {u\,..., 
Up, }. If minimizingXwi,..., up) subject to inequality constraints g(u\,..., up) 

< 0, necessary 
conditions for u to be a solution are C\\g(u) < 0; C2 : VM L(u\ *) = 0 ; ?3 : 

* 
g(u) = 0; 

and C4 : 
* 
> 0. For reference see Stoer & Witzgall (1970), for example. It remains to determine 

that solutions thus obtained are minimizing. 
For constrained least squares, the Lagrangian is nowL(/3i,..., ? , X) = Q(?) + X{?'? 

? 
c2) 

with Q(?) as before, where 

( 
' 
+ )? = 

' 
(A3) 

?'? = c2 (A.4) 
are to be solved for the k + 1 unknowns (?\,..., ? , X). Designate these as {?c, Xc} such that 

{?'c?c 
= c2}, as apparently intended by Hoerl & Kennard (1970). Conditions corresponding 

to C1-C4 apply under inequality constraints {?'? 
< 

c2}. Again it remains to determine that 
solutions are minimizing. 
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