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Abstract

An algorithm for computing the noncentral generalized F distribution is
discussed. This distribution is required to compute the power of tests of multi-
ple outliers in linear models based on shifts of location and scale. Applications
to joint outlier detection are given.

1 Special Distributions

Designate by L(Y ) the distribution of Y ∈ <n, and by pdf and cdf its probability
density and cumulative distribution functions respectively. In particular, Nn(µ,Σ)
is the Gaussian distribution on <n having E(Y ) = µ, dispersion matrix V (Y ) =
Σ, and variance V ar(Y ) = σ2 on <1. The standard distributions on <1 and <1

+ are
t(ν, λ), χ2(ν, λ), and F (ν1, ν2, λ) - the noncentral Student’s, chi-squared and Fisher
distributions, having degrees of freedom {ν, (ν1, ν2)} and noncentrality parameter
λ. The cdf ′s corresponding to the chi-squared and Fisher distributions are denoted
by G(·; ν, λ) and F (·; ν1, ν2, λ), whereas t(ν), χ2(ν), and F (ν1, ν2) will denote the
central distributions.

Let V be a central chi-squared random variable with degrees of freedom ν having
the cdf G(·, v). Let {U1, . . . , Us} be mutually independent {N1(ωi, 1); 1 ≤ i ≤ s}
noncentral normal random scalars, assumed to be independent of V ; consider α′ =
[α1, . . . , αs] as fixed positive weights; let ω′ = [ω1, . . . , ωs]; and let

W =
(α1U

2
1 + · · ·+ αsU

2
s )/s

V/ν
, (1)

having the cdf Fs(w; α1, . . . , αs; ω1, . . . , ωs; ν) = Fs(w; α′; ω′; ν). Series expansions
for the latter and its density, and bounds for errors accrued on truncating the series,
are found in Ramirez and Jensen (1991) for the central case where ω = 0.

This paper discusses the corresponding expansions and error bounds for the non-
central distributions with ω 6= 0. The case α1 = . . . = αs = α gives Fs(w; α, . . . , α;
ω1, . . . , ωs; ν) = F (w/α; s, ν, λ) with λ = ω′ω, the noncentral Fisher F distribu-
tion. The case α1 = . . . = αs = 1 with λ = ω′ω = 0 gives the central Fisher F
distribution.

2 Generalized F Distribution

Let T = α1U
2
1 + · · ·+ αsU

2
s , with weights satisfying {αs ≥ αs−1 ≥ · · · ≥ α1 > 0}.

Note that α1 is the minimum of the set {αs ≥ αs−1 ≥ · · · ≥ α1 > 0}. For the
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central case with ω = 0, the pdf for Fs(w; α1, . . . , αs; 0, · · · , 0; ν), expanded as a
weighted series of central F pdf s, is found in Ramirez and Jensen (1991), together
with bounds on truncation errors. The series is based on expanding L(T ) as a
mixture of central chi-squared pdf s, as given in Ruben (1962) and Kotz, Johnson,
and Boyd (1967a). The Fortran code to evaluate Fs(w; α1, . . . , αs; 0, · · · , 0; ν) is
given in Ramirez (2000). This Fortran code requires the IMSL Fortran library. To
make the algorithm discussed in this paper more accessible, this paper will present
the companion code in Appendix 1 for the noncentral generalized F distribution
using Maple.

For the general case with ω 6= 0, we may expand L(T ) as a mixture in terms of
either noncentral or central chi-squared pdf s as in Ruben (1962) and Kotz, Johnson,
and Boyd (1967b). We will use the expansion in terms of central chi-squared pdf s
since these distributions are available in Maple. To these ends recursively define
the sequences

c0 = e−
1
2 λ

s∏

i=1

(β/αi)
1
2 ,

cj =
1
2j

j−1∑

i=0

dj−ici, j = 1, 2, · · · , (2)

dk =
s∑

i=1

(1 − β/αi)k + kβ

s∑

i=1

ω2
i

αi
(1 − β/αi)k−1, k = 1, 2, · · · .

Here β satisfies 0 < β < α1; this assures that {0 < 1 − β/αi < 1; 1 ≤ i ≤ s} and
that

∑∞
i=0 ci = 1 with {ci > 0; i = 0, 1, · · ·}. In a manner similar to arguments sup-

porting Theorem 3.1 of Ramirez and Jensen (1991), we can establish the following
series expansions for the pdf for Fs(w; α1, . . . , αs; ω1, . . . , ωs; ν) generally as follows.

Theorem 1 With the foregoing notation, the pdf for Fs(w; α1, . . . , αs; ω1, . . . , ωs;
ν) has the representation in terms of gamma functions as

hF (w) =
∞∑

i=0

ci

β

s

ν

Γ[(s + 2i + ν)/2]
Γ[(s + 2i)/2]Γ(ν/2)

( s
ν

w
β )(s+2i−2)/2

(1 + s
ν

w
β )(s+2i+ν)/2

, (3)

and in terms of pdfs fF (·; ν, γ) for central F distributions as

hF (w) =
∞∑

i=0

ci

β

s

s + 2i
fF (

s

s + 2i

w

β
; s + 2i, ν). (4)

A global error bound for truncating at the τ th partial sum of the pdf for W from
(3) and (4) is given by

eτ (w) =
∞∑

i=τ+1

ci

β

s

s + 2i
fF (

s

s + 2i

w

β
; s + 2i, ν)

≤ s

β[s + 2(τ + 1)]
[1− (c0 + · · ·+ cτ )] = eτ . (5)

A global error bound for truncating at the τ th partial sum of the cdf for W is also
given by eτ .
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To compute the cdf of W , the series in Equation (3) is truncated and then
integrated numerically. The probabilities to be reported subsequently were com-
puted using this procedure, where the error tolerance was set to be 10−5 and τ was
increased until eτ was less than the prescribed error tolerance.

Appendix 1 shows the Maple code with

s = 2
ν = 15
α = [1.6335, 1.9300]′ (6)
ω = [1.2757, 1.3537]′

y0 = 3.6823.

These values are from the outlier example that appears in the applications section.
The value chosen for y0 corresponds to the 95-percentile value for the central F
distribution. The program uses the error tolerance eτ = 10−5. The output includes
the number of terms N required to achieve this error tolerance and the p-value
Pr[W > y0] as follows

N = 10
Pr[W > y0] = 0.5518.

A plot of the corresponding noncentral generalized F distribution also is shown.
In the applications section, we will interpret the p-value as the power of a test for
misspecification of a linear model due to shifts in location and scale.

3 Misspecified Linear Models

To fix ideas, consider the model

{Yi = β0 + β1Xi1 + · · ·+ βkXik + εi; 1 ≤ i ≤ n} (7)

relating a response Yi to k nonrandom regressors {Xi1, Xi2, . . . , Xik} through p =
k + 1 unknown parameters β = [β0, β1, . . . , βk]′. Written as Y 0 = X0β + ε0, each
row x′

i of X0 is a point in the design space. The experimental design matrix X0

may be assumed to have full rank p. The reduced model Y = Xβ + ε follows on
deleting from X0(n × p), s rows to be indexed by I = {i1, . . . , is} ⊂ {1, 2, . . ., n},
to comprise the matrix Z(s × p), and deleting corresponding elements from Y 0.

Here the matrices X0, X , and Z are fixed nonrandom matrices. Then (β̂, S2) and
(β̂I , S

2
I ) are Gauss-Markov estimators and residual mean squares from the full and

reduced data.
The leverage of an individual design point x′

i of the fixed design X0 is the
element (hii) on the diagonal of the matrix H = X0(X′

0X0)−1X ′
0. For subset

deletions, the natural leverages emerge on letting HII = Z(X′
0X0)−1Z′. Apply

the spectral decomposition Q′HIIQ = Dλ = Diag(λ1, . . . , λs). We will denote

{λ1 ≥ . . . ≥ λs > 0} (8)

as canonical leverages following the notation of Jensen (2001). To assess the joint
influence of points in Z, and to identify outliers at those points, consider the row-
partitioned forms Y ′

0 = [Y ′, Y ′
I ], X ′

0 = [X′, Z′], and ε′
0 = [ε′, ε′I ]. The full data

give (β̂, S2) as before, as well as Ŷ 0 = X0β̂, and e0 = (Y 0− Ŷ 0), to be partitioned
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as e′
0 = [e′, e′

I ], where S2 = e′
0e0/(n − p). Corresponding values from the reduced

data are (β̂I , S
2
I ) as before, and Ŷ I(I) = Zβ̂I , where

S2
I =

(Y − Xβ̂I)′(Y − Xβ̂I)
n − p − s

. (9)

The connection between S2
I and S2 is given by S2

I /S2 = (n− p)/[sFI + (n− p− s)],
with FI as the R-Fisher statistic to be defined in the next section.

To consider misspecified scale, we use the notation Ξ(σ2, σ2
1) = Diag(σ2Ir,

σ2
1Is), with r + s = n. Assumption A1 below allows for misspecification due to a

shift δ in location, and A2 allows for misspecification due to a shift in scale at the
design points in Z.
Assumptions A.

A1. E(ε) = 0 ∈ <r and E(εI) = δ ∈ <s;
A2. V (ε0) = Ξ(σ2, σ2

1); and
A3. L(ε, εI − δ) = Nn(0, Ξ(σ2, σ2

1)).

4 R-Fisher Statistic FI

The R-Student ratio ti = ei/Si

√
1 − hii is pivotal in single case deletion diagnostics

in testing for a mean shift of δ units in Yi at design point x′
i. This statistics is

often called the studentized deleted residual or the externally studentized residual.
For subsets, we use the generalization of the R-Student statistic, which we call the
R-Fisher statistic, with

FI =
e′

I(Is − HII)−1eI

S2
I

. (10)

This statistic will be used for our tests for a mean shift of δ units in Y I at design
points in Z. Under standard assumptions, where σ2

1 = σ2 in A2 and A3, L(FI) =
F (s, n − p − s, λ) the noncentral F distribution with noncentrality parameter λ =
δ′(Is − HII)δ/σ2, yielding exact α-level tests for H0 : δ = 0 against H1 : δ 6= 0.

Following the notation of Jensen and Ramirez (2001), we classify as Group
I statistics the single case s = 1 statistics: R-Student statistic ti, and influence
diagnostics DFTi and DFBij , known also as DIFFITs and DFBETAs.

Group II outlier diagnostics are the multiple case s > 1 statistics: R-Fisher
statistic FI and OUTI of Barnett and Lewis (1984); subset influence diagnostics
include API of Andrews and Pregibon (1978), CRI (COV RATIOI) and FVI

(FV ARATIOI) of Belsley et al. (1980). Corresponding diagnostics {t2i , OUTi, APi,
CRi, FVi} refer to the case s = 1.

Group III influence diagnostics encompass multiple case s > 1 statistics:
{CI, WKI , WI , DI} as in Cook (1977), Welsch and Kuh (1977), Welsch (1982),
and Jensen and Ramirez (1998), for gauging disturbances in the vector β̂. Corre-
sponding diagnostics {Ci, WKi, Wi, Di} refer to the case s = 1. The forms for Di

and DI use any reflexive g-inverse V − of V = V (β̂ − β̂I ) as

DI =
(β̂ − β̂I)′V −(β̂ − β̂I )/s

S2
I

. (11)

It is now known that all single case deletion diagnostics of Groups 1, 2, and 3
are equivalent; each represents either a scaling of the R-Student ti or corresponds
one-to-one with its square. These facts were established in Jensen (1998), with an
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abridged version appearing as Jensen (2000). Each diagnostic thus supports a test
equivalent to testing for a mean-shift outlier at x′

i using ti. Similar conclusions were
reported for {DFTi, DFBij , CRi, Ci} by LaMotte (1999) using different methods.

The multiple case diagnostics {FI, OUTI , API , CRI , FVI , DI} from Groups II
and III also yield equivalent tests for outliers. Each diagnostic thus supports a test
equivalent to testing for a mean-shifted vector outlier at design points in Z using
the R-Fisher statistic FI . For further details and proofs see Jensen (2001).

5 Applications of the Noncentral Generalized F

In what follows we identify κ = σ2
1/σ2 as the misspecified shift in scale with Ξ(κ)

= Diag(I r, κIs), in which case V (ε0) = Ξ(σ2, σ2
1) = σ2Ξ(κ) as in Assumptions

A2 and A3. The misspecified shift is location will be δ 6= 0. The following is the
principal result from Jensen and Ramirez (2001).

Theorem 2 Consider the R-Fisher diagnostic FI under Assumptions A; let {λ1 ≥
. . . ≥ λs > 0} comprise the canonical subset leverages; set κ = σ2

1/σ2 ≥ 1; let θ =
Q′δ, such that Q′HIIQ = Diag(λ1 , . . . , λs); and identify ν = n− p− s. The cdf of
FI is given by Fs(w; α′; ω′; γ), with weights

αi = κ − (κ − 1)λi; 1 ≤ i ≤ s (12)

satisfying {αs ≥ . . . ≥ α1 ≥ 1}, and with location parameters

ωi =
θi

σ
[κ + λi/(1− λi)]1/2; 1 ≤ i ≤ s. (13)

Appendix 2 will give the Maple code to implement Theorem 2.

6 The Data Set

Data regarding the administration of Bachelor Officers Quarters (BOQ) were re-
ported for sites at n = 25 naval installations. Monthly man-hours (Y ) were related
linearly to average daily occupancy (X1), monthly number of check-ins (X2), weekly
service desk operation in hours (X3), size of common use area (X4), number of build-
ing wings (X5), operational berthing capacity (X6), and number of rooms (X7). The
data are reported in Myers (1990), p. 218 ff, together with detailed analyses using
single case deletion diagnostics. Subset deletion diagnostics are not reported there.

In Jensen and Ramirez (2002), we determined the subset influence for selected
pairs of observations (I = {i, j}) in the BOQ data arising through shifts in location
only. We focused on sites {15, 20, 21, 23, 24}, having individual leverages {0.5576,
0.3663, 0.0704, 0.9885,0.8762}. For our example on computing power using FI , we
select the subset S1 = {20, 21} so s = 2. Appendix 2 shows how to compute the
power of this test for outliers using FI at the 0.05 level against a misspecification
with δ = 2 due to a location shift of δσ = 2σ units with δ = 2 1s = (2, 2)′, and
additionally against a misspecification due to a scale shift with ratio κ = σ2

1/σ2 = 2.
For this data set, the canonical leverages (the eigenvalues of HII) are computed

to be
{λ1, λ2} = {0.3665, 0.0702}.

(The canonical leverages should be close in value to the corresponding leverages
0.3663, 0.0704.)
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Next the standardized shift in location is computed as

Q′1s=[1.0243, 0.9751]′.

(Since Q is an orthogonal matrix, 1.02432 + 0.97512 = 2.) We seek the power of
the R-Fisher diagnostic FI with scale shift κ = σ2

1/σ2 = 2 and with location shift

θ = Q′δ = 2Q′1s.

Using Theorem 2 and the Maple code from Appendix 2, we compute the associated
weights and noncentrality parameters as

α = [1.6335, 1.9300]′

ω = [1.2757, 1.3537]′.

These values are the values used in the first example from Equation 6 where we
showed how to compute p-values for the noncentral generalized F distribution.
To compute the power of the R-Fisher diagnostic FI we are comparing the null
hypothesis H0 : κ = 1 and δ = 0 against the alternative hypothesis H1 : κ > 1 and
δ 6= 0. The power is

Pr[W > 3.6823] = 0.5518,

where 3.6823 is the 95% critical value of the central F distribution with degrees of
freedom (s, n − p − s) = (2, 15). The values 3.6823 and 0.5518 are computed from
the Maple code in Appendix 2.

7 Conclusions

This paper gives the computer codes using Maple for computing the noncentral
generalized F distribution. Appendix 1 gives the code for computing the p-values
for this distribution. The noncentral generalized F distributions have been used to
compute the power for the R-Fisher outlier diagnostic FI , and thus for all equivalent
diagnostics, under shifts in location and shifts of scale at selected subsets of the BOQ
data.

Consultants are urged to consider the use of the outlier diagnostic FI for detect-
ing subsets of outliers based on shifts of location and scale. Using the Maple codes
contained in this paper, the p-values are easy to compute (Appendix 1) as well as
the power of this test (Appendix 2).
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