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Summary: Complete stochastic properties are given for regression 
diagnostics on a comprehensive list under shifts in location and scale at 
designated design points under Gaussian errors. These are enabled by a unified 
approach to deletion diagnostics through recent studies to be cited. Findings 
are reported under single-case and subset deletions, and these are quantified 
through selected case studies from the literature. 

1. Introd uction 

Regression diagnostics are concerned with validating the assumptions central 

to models in linear statistical inference. Prominent among these are diagnostics 

for identifying influential and outlying observations. Influence refers to 

disturbances in an estimator rendered through perturbations in tlle data. 

Specifically, an influence measure ~ (8,8), as a deletion diagnostic, is 

STMA (2001) SUBJECT CLASSIFIC4TJON: 07:020(03:100) 
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182 JENSEN & RAMIREZ 

intended to quantify disturbances in estimating some parameter () before 

(0) and after (0) deleting individual records or subsets of records from 

the data. References include books by Belsley, Kuh and Welsch (1980), Cook 

and Weisberg (1982), Barnett and Lewis (1984), Atkinson (1985), Rousseeuw 

and Leroy (1987), Chatterjee and Hadi (1988), Myers (1990) and Fox (1991). 

For a recent survey see Fung (1995). 

Here we investigate a comprehensive list of deletion diagnostics, to include 

single-case and subset deletions, under outliers resulting from shifts in location 

and scale at designated design points. Earlier studies considered translation 

shifts only. Under such disturbances a complete assessment of their stochastic 

properties is given for mlny diagnostics on the list. These findings are enabled 

by recent work, to be cited, serving to unify the study of diverse diagnostic tools 

in current usage. An outline follows. 

Preliminary developments in Section 2 include a survey of nonstandard 

distributions and a computational supplement to cover noncentral cases. 

Section 3 consolidates recent work unifying the study of diverse deletion 

diagnostics. The principal findings are reported in Section 4. These in tum 

are quantified through selected case studies from the literature as reported in 

Section 5. Section 6 offers a brief summary and conclusions, and proofs are 

deferred to an Appendix. 

2. Preliminaries 

2.1 Notation 

Symbols identify ~n as Euclidean n-space, ~+ as its positive orthant, and §n 

as the real symmetric (n x n) matrices. \ectors and matrices are set in bold 
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DETECTING SHIFTS IN LOCATION AND SCALE IN REGRESSION 183 

type; the transpose, inverse, trace, and detenninant of A are AI, A -I, tr(A), 

and IA I; In isthe(n X n) identity; the unit vector on !Rn is In = [1, ... ,1]'; 

Diag(A 1 , ... ,Ak ) is a blockdiagonal array; and the spectral decomposition of 

A in §n is A=QD",QI = L~=I aiqiq;, with Dcr. = Diag (ai, ... , an). A 

reflexive g-inverse A- of A satisfies both AA- A =A and A-AA- = A-. 

Given an array a E !R1I ordered as {al;::::"';:::: arl } , and similarly for h 

E !R1I, then a is said to be majorized by h, i.e., a -< b, if and only if, for 

each 1 ~ k < n, L~=I ai ~ L7=1 bi, whereas L~=I ai = L~=1 bi. 

2.2 Special distributions 

Designate by £( Y) the distribution of Y E !Rn , and by pdf and cdf 

its probability density and cumulative distribution functions. In particular, 

Nn (IL, L.) is Gaussian on !Rn having E(y) = IL, dispersion matrix V (Y) = 

L., and variance Var(Y) = a 2 on !R1 . Distributions of note on !R1 and 

!R~ are t(v, "\), X2 (v, "\), and F (VI, V2'..\) as the noncentral Student's, 

chi -squared and Fisher distributions, having degrees of freedom {v, (v I, V2)} 

and noncentrality ..\, The cd/, s corresponding to the latter are G (-; v, ..\) 

and FC; VI, V2, "\), whereas t(v),X2(v), and F(VI' V2) refer to central 

distributions, 

Let {U I , "" Us} be munlally independent {Nl (Wi> 1); 1 ~ i ~ s} 

random scalars, assumed to be independent of V having the cdf G (v; "() ; 

consider a l = [a I> '" > as 1 as fixed positive weights; let WI = 

[W1> "" ws]; and let W = "( (alUl + ," + asU?) /sV> having the cdf 

Fs(w; a1, "" as; WI, "" Ws; "() = F. (w; a l ; WI; "(), Series expansions 

for the latter and its density, and bounds for errors accrued on truncating the 

series, are found in Ranlirez and Jensen (1991) for the central case where w =0, 

Corresponding expansions and error bounds are given next to account for the 
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184 JENSEN & RAMIREZ 

noncentral distributions to be encountered subsequently., The case al = ... = 
as = a gives Fs (w; a, ... , a: WI, ... , W.; ')') = F(wja; 5, ,)".A) with 

.A == w'w. Moreover, W increases stochastically in each ai and I Wi I as 

other parameters are held fixed. 

2.3 Computations: Generalized F 

To continue. let T = Q1 Ur + ... + as U;, with weights satisfying 

{as 2:: as - 1 2:: ... 2: a 1 > a} in subsequent applications. For the central 

case with w = 0, the pdf for Fs (w; a1, ... , a,; 0, ... ,0; ')'), expanded 

as a weighted series of central F pdfs, is found in Ramirez and Jensen 

(1991), together with bounds on truncation errors. The series is based on 

expanding £(T) as a mixture of central chi-squared pdfs, as given in Ruben 

(1962) and Kotz, Johnson and Boyd (I 967a). The Fortran code to evaluate 

Fs(w; a1, ... ,.Q,; 0, ... ,0; ')') is given in Ramirez (2000). 

For the general case with w # 0, we may expand £(T) as a mixture 

of central chi-squared pdfs as in Ruben (1962) and Kotz, Johnson and Boyd 

(196 7b ) To these ends recursive \y define the sequences 

Co == e-ptrC6jai)~' 
i=1 

== 
j-1 

1 " . 2j ~dj-iCi' J = 1,2, ... , 
t=O 

Here {3 satisfies 0 < {3 < al; this assures that {o < 1 - j3 j Qi < 1; 1 :::; i :::; 5} 

and that L~o ci = 1 with {Ci > 0; 'i = 0, 1, ... }. In a manner 

similar to arguments supporting Theorem 3. 1 of Ramirez and Jensen 
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DETECTING SHIFTS IN LOCATION AND SCALE IN REGRESSION 185 

(1991), we establish the following series expansions for the pdf for 

Fs(w; aI, ... , as; WI, ... , Ws; ')') generally as follows. 

Theorem 1: 

WWI the foregoing notation, thepdJfor Fs (w; 0'1, ... , as; WI, ... ,ws;')') has 

the representation in temlS of gamma functions as 

( ) 
(s+2i- 2)/2 

~Ci S r[(s+2'i+,),)/2j ~* 
h F ( w) = ~ 13 ::y r [( s + 2i) /2] r ('Y /2) -( --'l +'---'--~.L..*_)-;-( s-:-+=2i+-:-,--;-) /=2 ' 

(2.1) 

and in temlS of pdfs .f p(.; v. ')') for central F distributions as 

00 c. s (s w ) hF{w) = "" ....:--. iF ---; s + 2i, ')' . 
~ 13 s + 2'£ s + 2'£ 13 ,=0 

(2.2) 

A global error bound for truncating at the Tth partial sum of the pdf for W at 

both (2.1) and (2.2) is given by 

< 

A global error bound for truncating at the Tth partial sum of the cdf for W is 

also given bye.,.. 

To compute the cdf of W, the series in Equation (2.1) is truncated and then 

integrated numerically. The probabilities to be reported subsequently were 

computed using this procedure, where the error tolerance was set as 10- 5 and 

T was increased until e.,. was less than the prescribed tolerance. 

2.4 The models 

To fix ideas. consider the model 
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186 JENSEN & RAMIREZ 

relating a response Yi to k nonrandom regressors {Xii, Xi2, ... , Xid 

through p = k + 1 unknown parameters j3 = [,80, /31, ... , {J kl' Written as 

Yo = Xo{J +~o, each row x( of Xo is a point in the design space. The reduced 

model Y = Xj3 + ~ follows on deleting from Xo (n x p) , s rows to be indexed 

by I={-i 1 , ... ,is }C{1,2, ... ,n}, tocomprisethematrixZ(sxp), and 

deleting corresponding elements from Yo. Here the matrices Xo, X, and Z 

are fixed nonrandom matrices. Then (/3, S2) and (/3], Sf) are Gauss

Markov estimators and residual mean squares from the full and reduced data. 

Deleting x( from Xo and Y; from Yo gives (/3i' S;) for the case s = 1, 

together with values Y; and Yi(i) predicted at x; as elements of Yo :::: 
Xo/3 and Y(i) :::: XO/3i' respectively, where /3 = [,Bo,t\, ... , ,8kJ' and 

/3;:::: [,80(i), ,81(i), ,Bk(i)], 
The leverage of an individual design point x; of the fixed design Xo 

is the element (h ii ) on the diagonal of the matrix H=Xo (XhXo)·· lXb. 

For subset deletions, the natural leverages emerge on letting Hll 

Z(XbXo r 1 Z', then taking Q from the spectral decomposition Q' Hll Q:::: 

D>. :::: Diag (A l, ... , As), to find that Q'YI serve as principal predictors, 

Q' Y] as principal responses, and {AI ;:: ... ;:: As > O} as canonicalleverages, 

the canonical coleverages having vanished. as shown in Jensen (200 I). To 

assess the joint influence of points in Z, and to identify outliers at those 

points, consider the row-partitioned fomls YO :::: [Y', Yj 1 , Xb :::: [X', Z'] , 

and ~b :::: [~', ~~l· The full data give (/3, S2) as before, as well as 

Yo = Xo/3, and eo :::: (Yo - Yo), to be partitioned as Yo :::: [Y', Y1] 

and eb = [e', ell, where S2 :::: ebeo/ (n - p). Corresponding values 

from the reduced data are (/3], Sf) as before, and Y1(J) :::: Z/3}, where 

Sf:::: (Y-X/31)' (Y- X/31)/(n- p -s). Theconnectionbetween Sf 

R
ep

ro
du

ce
d 

 b
y 

Sa
bi

ne
t G

at
ew

ay
 u

nd
er

 li
ce

nc
e 

gr
an

te
d 

by
 th

e 
Pu

bl
is

he
r (

 d
at

ed
 2

01
1)



DETECTING SHIFfS IN LOCATION AND SCALE IN REGRESSION 187 

and S2 is given by Sy / S2 = (n - p) / [s}li + (n - p - s) 1 , with FI as the 

R-Fisher statistic to be identified. 

Gauss-Markov assumptions on moments of erroIS, then their distributions, 

are modified here as follows, where E (a 2 , aD = Diag (a 2 Ir , or Is) , with 

T + s = n. 

Assum ptions A: 

AI. E(f:) = 0 E ~r and E(f:[) = 6 E ~'; 

A2. V(f:O) = S (a 2 , an; and 

A3. £: (f:, f:[ - 6) = Nn (0, E (a 2 , aJ)). 

This model allows for shifts in both location and scale at design.points in 

z. 

2.5 Studentized Statistics 

The R -Student ratio ti = e;j Si Jl - hi, is pivotal in single-case delepon 

diagnostics in testing for a mean shift of 8 units in Y; at design point x:. For 

subsets, the R -Fisher statistic FI =e~ (Is - H II ) -1 el / sSj tests for a mean 

sMt of 6 units in Y[ at design points in Z. Under standard assumptions, where 

a~ = a 2 in A2 and A3, it is known that £(F[) = F (s, n - p - s, >.) with 

>. = 6' (Is - HII ) 6/ a 2 , thus supporting exact a-level tests for Ho : 6 = 0 

against HI : 6:f:. O. This issue is reexamined subsequently under Assumptions 

A as given. 

The foregoing assertions apply strictly to a designated design point, or to 

designated subsets of design points. Their broader implications in regression 

diagnostics are outlined in Section 6. 
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188 JENSEN & RAMIREZ 

3. Unified diagnostics 

Single-case and subset deletion diagnostics as currently used are listed in the 

accompanying tables. The diagnostics are arranged by type; their essential 

properties are sununarized; and subscripts distinguish between single-case (i) 

and subset (I) deletions. Group I features the R -Student statistic t; , and 

influence diagnostics DFT; = 8' (Y;, Y;(i)) and D FB;] = 8' (~j, ~j(i)) , 

known also as DI F FITs and DF BET As, as in Table I. The latter serve to 

assess distmuances in predicted values, and in estimates for the individual beta 

coefficients, on deleting Y; at design point x;. Observe from Table 1 that both 

DFT; and DF Bij consist ofa product of two components, namely, a scaling 

factor based on the fixed design matrix Xo, and a random component based 

on the observed responses. 

Group II outlier diagnostics are the R -Fisher statistic FI and 

o UTI of Barnett and Lewis (1984); subset influence diagnostics include 

API of Andrews and Pregibon (1978), C RI (COV RAT 10 I) and 

FVI (FV ARATIOJ) of Belsley et al. (1980), as defined in Table 2. 

Corresponding diagnostics {t;, OUTi , APi, C ~, FV;} refer to the case 

s = 1. 

Group III influence diagnostics encompass {C I, W K I, WI, D J} as in 

Cook (1977), W::lsch and Kuh (1977), Welsch (1982), and Jensen and Ramirez 

(1998), for gauging disturbances in the vector {3 under deletions, as listed 

in Table 4. These are intended to metrize the vector-valued sample influence 

curve SIC I = (n - s) (~ - ~ I) for {3, as in Chapter 3 of Cook and Weisberg 

(1982). Corresponding diagnostics {G;, W K i , Wi, D;} are listed separately 

in Table 3 for the case s = 1, where more complete properties are available 
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DETECTING SHIFTS IN LOCATION AND SCALE IN REGRESSION 189 

than for s > 1. The fonus for Di and D [ use any reflexive g -inverse V

of V = V (73 - 73 [ ). A detailed explanation follows. 

These diagnostics have been reexamined in response to anomalies in their 

usage. The principal issues are redundancies among the several diagnostics, 

and inconsistencies among conventional benchmarks for their use. It is 

now known that all single-case deletion diagnostics of Tables 1, 2 and 3 are 

equivalent; each represents either a scaling of the R -Student ti or corresponds 

one-to-one with its square; and their joint distribution thus is singular of 

unit rank. These facts were established in Jensen (1998), with an abridged 

version appearing as Jensen (2000). Each diagnostic thus supports a test 

equivalent to testing for a meanshift outlier at x; using ti. Similar conclusions 

were reported for { D FTi , D F Bij, C Ri, Ci } by LaMotte (1999) using 

different methods. Examples of inconsistencies an10ng ad hoc contemporary 

rules were documented in Jensen (1998) and LaMotte (1999). To ensure 

consistency across diagnostics, Jensen (2000) gave revised benchmarks for the 

several diagnostics as listed in Tables 1,2 and 3. Here (:>./2 represents the 

100 (1 - 0'/2) percentile of t (71. - P - 1), whereas c"" = t~/2 in Table 2 

under single-case deletions. 

Subset deletion diagnostics were studied further as listed in Tables 2 and 4. 

The diagnostics {}II, OUTI, API, CRI, FV[, D[} from Groups II and III 

are now known to correspond one-to-one, their joint distribution being singular 

of unit rank. Each diagnostic thus supports a test equivalent to testing for a 

mean-shifted vector outlier at design points in Z using the R -Fisher statistic 

Fl. Conventional benchmarks again apply inconsistently acro~,s diagnostics, .. ' 
and thus may be supplanted by those appearing in Tables 2 and 4, where c~ is 

the 100 (1 - 0') percentile of F (s, n - p - s), and 0' may be chosen at 
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190 JENSEN & RAMIREZ 

user discretion. Moreover, for the diagnostics {GI , W K I , WI}, bounds on 

their upper cutoff values ke> are as listed in Table 4. For further details and 

proofs see Jensen (2001). 

Regarding the Group III diagnostics {GI , WKI, WI}, we first note 

that the distribution of GI is clouded by dependence between its numerator 

and denominator. In Jensen and Ramirez (2000), we determined the subset 

influence for selected pairs of observations (I = {i, j}) in the BOQ data 

(see Section 5) arising through shifts in location only. In this case, WK I 

and W I are both noncentral generalized F variates. Our numerical studies 

there showed that the computed p-values, in testing Ho : 8 = 0, were nearly 

identical using WK I and WI. Additionally, fewer terms were required for WI 

than for W KI on truncating central versions of the series (2.1), and thus we 

recommended using WI. The p -values using the diagnostic FI, equivalently 

D I, were generally slightly larger than for WI' In this case where there is no 

shift in scale, the diagnostic FI has a central F -distribution under Ho : 8 = o. 

4. The principal findings 

Our goal is to establish stochastic properties for many of the diagnostics 

appearing in Tables 1-4. Our studies encompass all single-case deletion 

diagnostics as listed. Under subset deletions our findings include 

{FI, OUTI, API, G RI , FVI, D I} from Groups II and III. As these are all 

equivalent, it suffices to establish properties of ti and F[ under Assumptions 

A. The latter statistics have been studied heretofore under outliers arising 

through shifts in location only. Here we go beyond those earlier studies to 

include possible shifts in scale as well as location at designated design points 

comprising the matrix Z. Throughout we suppose that scale outliers are 
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DETECTING SHIFTS IN LOCATION AND SCALE IN REGRESSION 191 

typified by ar ~ a2 , although findings parallel to these may be given for the 

case ai :::; a2 as well. \M! next consider properties of FI under Assumptions 

A: properties of ti then follow as the special case where s = 1. In what 

follows we identify K = a? / a 2 and S( K) = Diag (Ir, KI.) , in which case 

V (co) = S (a 2, an = a2S(K) at Assumptions A2 and A3. 

Theorem 2: 

Consider the R -Fisher diagnostic FI under Assumptions A; let 

P'I ~ ... ~ As > O} comprise the canonical subset leverages; set K = 
aUa2 2: 1; let () =Q'8, such that Q'HIIQ = Diag(Al' ... , As); and 

identify A = 11, - p - s. 

(i) The cd! of FI is given by Fs (w; a'; w'; 1'), with weights 

{Qi = K, - (K, - 1) Ai; 1:::; i:::; s} satisfying {O's ~ ... ~ 0'1 ~ I}, and 

with location parameters {Wi = Bda [K + Ad (1- Ai)l~; 1:::; i :::; s}. 

(ii) Bounds for the cdf's. in tenus of Fisher's 

distribution are given by F(W/K.; 8,1', A) :::; F(w/O's; 8,1', A) :::; 

Fs (w; a'; w'; 1') :::; F(w/n*; 8, 'Y, A) :::; F(w; 8,1', >.) where A = 

~i=leUa2[K,+Ad(l-Ai)1 and n* = (UI ... Cl's)l/s is the geometric 

mean. 

(iii) F(w/O'*; s, 'Y, A), when considered as a function of {lXI, ... , lXs}, 

is Schur-convex, i.e., if a -< T on reordering elements. then 

F(W/lX*; s, 'Y, A):::; F(W/T*; S, 'Y, A). 

Proof: 

A proof is given in an Appendix. 
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192 JENSEN & RAMIREZ 

Without further proof the foregoing results now specialize to include the 

nonstandard distribution of the R -Student diagnostic ti under the nonstandard 

Assumptions A. 

Corollary 1: 

Consider the R -Student diagnostic. tj under Assumptions A with s = 1 

having location-scale shifts (6, aD at xi; set I\, = a~ / a2 2: 1; and identify 

, = n - p - L Then 

0) 'c(ti) = ,C(Jliitl), where ai = [1\,- (I\,-l)hii] and tl designates 

a noncentral t (" b) random variate having noncentrali,ty b 
I 

6/a [I\, + hid (1 - hii)]2 . 

(ii) Under a scale shift at xi with 6 = 0, the nonnull distribution of ti 

is the scaled 'c(t j ) = ,C (Jliit), where ai = [I\, - (I\, - 1) h ii ] and t 
designates a central t(!) random variate. 

Several points deserve notice. Theorem 2 (iii) asserts that the inner bounds 

of conclusion (ii) become tighter as variation among the canonical leverages 

{AI, ... , A.}, and thus among {a], ... , a.}, ditninishes in the sense of 

majorization. Moreover, when testing Ho (0 = 0, a? = a 2 ) at design 

points in Z at level a using FJ , we are assured that the test is unbiased 

owing to the stochastically increasing character of Fs (.; a ' ; Wi; ,) in each 

{ai I Wi I} as other parameters are held fixed. In addition, the power increases 

monotonically with I\, 2: 1 at 0 = O. The most striking feature, to 

be exanlined numerically in case studies to follow, is that increasingly large 

canonical leverages serve increasingly to mask evidence of outliers arising 

through a shift in location, or a shift in scale, or both. In many applications this 

phenomenon in effect may negate any reasonable expectations of discerning 
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DETECTING SHIFTS IN LOCATION AND SCALE IN REGRESSION 193 

outliers of either type at subsets of points having large canonical leverages. 

Parallcl assessments apply in the case of single-case deletion diagnostics using 

the R -Student t;. 

5. Numerical studies: The BOQ data 

5.1 The study 

Data regarding the administration of Bachelor Officers Quarters (BOQ) were 

reported for sites at n = 25 naval installations. Monthly man-hours (Y) were 

related linearly to average daily occupancy (Xl), monthly number of check

ins (X~d, weekly service desk operation in hours (X3 ) , sizeofcommonuse 

area (X 4)' number of building wings (X 5), operational berthing capacity 

(X 6) , and number of rooms (X 7), The data are reported in Myers (1990), p. 

218 ff, together with detailed analyses using single-case deletion diagnostics. 

Subset deletion diagnostics are not reported there. 

5.2 Subset diagnostics 

We focus on sites {i5, 20, 21, 23, 24} , having individual leverages 

{0 . .5576, 0.a663, 0.0704, 0.9885, 0.8762}, theirindividualR-Student,values 

exceeding the widely used ±2 rule. For further study we select subsets of sizes 

tw~, three and four Pairs of sites selected are Sl = {20, 21}, S2 = {15, 20} 

and .'h = {23, 24}, reflecting smallcr, intermediate, and larger individual 

leverages. Subsets of three and four sites are S4 = {20, 23, 24} and 

S 5 = {1.5, 20, 21, 24}, reflecting a wide range of leverages. Details, are 

reported in Tables 5 and 6 in testing for outliers using FI at the 0.05 leveL 

Specifically, we consider power of the test against a standardized location shift 

of 6/a E {I, 2, 3, 4} units and a scale ratio K, = aVa2 E {1, 2, 3} for 
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194 JENSEN & RAMIREZ 

observations at each of the several subsets of design points, where t5 = LH •. 

Computations utilize the SAS and Maple software packages. 

Table 5 lists power comparisons for subsets {SI, S2, S3} comprising pairs 

of design points, where exact values for K, = 1 derive from standard noncentral 

F -distributions. For other cases, values are listed in triples, where the top and 

bottom entries are lower and upper bounds as detemlined using the three inner 

inequalities of Theorem 2(ii). The middle entry gives exact power as outlined 

following Theorem I, where parentheses contain tlle number of terms required 

to achieve an error bound at 10-5 . For example, in subset 8 1 at 6./0 = 3, 

the exact power at K, = 1 is 0.8631, whereas at K, = 2 the exact power of 

0.8273, requiring 15 terms, is seen to lie between 0.8262 and 0.&472. 

Evidence presented in Table 5 is rather striking. Recall that individual 

leverages for subsets {SI, 82 , S3} are {O.3663, O.0704}, {O .. 5576,O.3663} 

and {O.988.); O.8762}, whereas their corresponding canorucalleverages are 

{O.3665, O.0702}, {O.5582,O.3657} and {O.9946, O.8700}, respectively. 

Witllin each subset the power tends to increase with 6./0 for each fixed "'. 

On the other hand, the power tends to increase with K for smaller values of 

6./0, whereas this trend reverses for larger values of 6./0 within the ranges 

studied, with the exception of subset S3. What is most striking, however. is the 

daunting extent to which effects of both translation and scale shifts are masked 

by increasing leverages. For example, in Table 5 the exact power to detect 

the extreme shifts (6./0, K,) = (4, 3) decreases from 0.9426 at subset SI, 

through 0.8826 at subset S2, to 0.1613 at S3, as their canorucalleverages 

increase. These trends hold even for K = 1, where the power to detect 

a location shift of four standard deviations decreases from 0.9852 at-Sl, to 

0.9319 at S2, to the diminutive 0.1388 at S3. Large canonical leverages 
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DETECTING SHIFTS IN LOCATION AND SCALE IN REGRESSION 195 

in effect are seen to negate any reasonable expectations for detecting shifts in 

either location, or scale, or both. 

Similar trends are seen in Table 6 for subsets 8 4 and 85 , baving individual 

leverages {0.3663, 0.9885, 0.8762} ~ {0.5576, 0.3663, 0.0704, 0.8762} , 

and canonical leverages as given by {0.9949, 0.9211, 0.3149} and 

{0.9605, 0.5364, 0.3123, 0.0613}, respectively. In particular, the extent of 

masking is less severe in the case of subset S5, where the canonical leverages 

are dominated by those for subset S4. Note in Tables 5 and 6 that lower and 

upper bounds on power are tightened as the range of the canonical leverages 

diminishes, as is evident also from the scale structure of the inner inequalities 

of Theorem 2(ii). 

6. Conclusions 

The single-case deletion diagnostics of Groups I, II and III, as in Tables I, 2 

and 3, are all equivalent. Moreover, the Group II subset deletion diagnostics 

in Table 2, and the Group III diagnostic D/ from Table 4, are all equivalent 

to the R -Fisher diagnostic Fl. These subset deletion diagnostics have been 

studied here under outliers arising from shifts in both location and scale. In 

these circumstances the distribution of F/ has been shown to be a noncentral 

generalized F distribution. \\e have given series expansions for these 

distributions, as well as global error bounds for their partial sums. Bounds 

for the cdfs of noncentral generalized F distributions also have been given in 

tenns of the widely supported noncentral Fisher distributions. 

The noncentral generalized F distributions have been used to compute the 

power for the diagnostic F/, and thus for all equivalent diagnostics, under 

shifts in location and scale at selected subsets of the BOQ data. These case 
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196 JENSEN & RAMIREZ 

studies demonstrate that subsets with large canonical leverages tend to associate 

with tests having low power, so that shifts in both location and scale may be 

masked at points of high leverages. 

Our experience as consultants is that really knowledgeable researchers often 

can identify prospective problem data from field or laboratory notes prior to 

data analyses. Our findings clearly apply where subsets of design points 

can be so designated. In practice, however, it is often encumbent on the 

analyst to identify anomalies from the data. Under single-case deletions 

it is standard practice to apply benchmarks in multiple inference based on 

a Bonferroni inequality, where each of several R -Student statistics has the 

requisite marginal distribution. These bounds carry over directly to include use 

of the R -Fisher statistics, each having the requisite marginal distribution under 

the usual validating assumptions. We thank one of the referees for requesting 

this clarification. 

Fung (1995) focused on the daunting computational demands in evaluating 

numerous subset diagnostics currently used in conventional practice. Our 

studies show that these demands may be decimated when equivalent diagnostics 

are represented by a single diagnostic to be chosen at the discretion of the user 

Moreover, our studies support a complete probabilistic assessment regarding 

the operating characteristics of numerous diagnostics in current usage. 

Appendix 
To prove Theorem 2, we proceed in several steps as follows, often invoking 

Assumptions A without further comment. Write H in partitioned fonn as H = 

[Hij; i, j E {O, I}] with Hoo =X(XoXO)-lX1, HIIO =HOI =X(X[00)-lZ, 

and HII =Z(XbXoXrl ZI as before. To show independence of the 
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linear fonn, eI = BYo = -HOI Y + (Is - HI I) YI, and the quadratic form 

(n--p-s)S; = (Y- X,BI)' (Y- X,BI) =YQAYo under Assumptions 

A,with A = Diag ( (Ir - X (XIX) -I X) , 0) , the reader may verify directly 

that BE (I\:)A = O. Independence under Gaussian errors now follows from 

standard theory, as required in Section 2.2 in regard to Fs (w; a l ; Wi; 'Y)' 

Observefurtherthat E(eJ) =BE(Yo) = (Is - Hn)~ and 

V (eI )=a2BE (I\:)BI= a2[ I\: (Is-Hn ) 2+HIOHO I ] = ai[(Is-Hn)2 +HIOHOI] 

- (ai - a2)HIOHoI. Next expand the idempotent matrix (In - II)2 = 

(In - II) 

in its block-partitioned form and identify expressions on both sides to infer that 

(Is - Hn)2 +HIOHoI = (Is - Hn) and HIOHOI = (Is - Hn )Hn, so that 

V (eI/a) = [I\: (Is - Hn) - (I\: - 1) (Is - Hn)Hn]. 

We next take the dispersion matrix into diagonal form on transforming 

eI/a -4QleI/a, such that E (QleI/a) = QI (Is - Hn )QQI~/a =D1_>.()/a 

and V (QleI/a) = KJJ l ->. - (1\:-1)D1_>.D>., where () =QI~,D>. = 

Diag (>q, ... , As) , and D1->. = Diag ((1 - AI)' ... (1- A8))' The matrix 

of the quadratic fonn in the numerator of FI, namely, e~ (Is - HII ) -I e I = 

e~ QQI (Is - HI I ) - 1 QQI e I, becomes D~ ~ >.. Thus as in Section 2.2, the 

required weights in the cd! Fs (w; 01, ... , Os; WI, ... , Ws; 'Y) are the 

eigenvalues of D~~>. [KJJ1->. - (x; - l)Dl->.D>.J = I\:Is - (I\: - l)D>.. 

We now may identify the elements of the vector V as in Section 
1 

2.2, on letting V= [KJJ 1->. - (I\: -l)D l _>.D>.r'2QleI/a, so that 
I 

E(U) [KJJ 1_>. - (1\:-1)Dl_>.D>.r'2D1 _>.()/a. It follows that 

the required location parameters for Fs (w; a l ; Wi; 'Y) are given by 

{wi=B;/a[K+).;/(1-).i)J~; l~i~S}. Clearly 'Y= n-p~s, to 

complete our prooffor Theorem 2 (i). 
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198 JENSEN & RAMIREZ 

To continue, we suppose 111at ai > a 2 as before, so that 

K, ;::: 1. The remaining steps consist in bounding { ai, ... , Q8}; using 

the property iliat Fs. (w; a l ; Wi; "() increases stochastically in each 

{ ai, 'Wi I} with remaining parameters held fixed; and invoking the identity 

Fs (w; a, ... , Q, WI, ... , Ws; "() == F(wla; 8, ,,(, A) with A == wlw. 

Conclusion (ii) now follows provisionally from 

{ai = K, - ('" -1) Ai; 1 ~ i ~ 8}, and {K, 2: as 2: ... 2: QJ 2: I}, to give 

F (wi K,; 8, ,,(, A) < F (wlas; 8, ,,(, A) < Fs (w; a l ; Wi; "() < 

F(wlal; 8,,,(,A) ~ F(w; 8,,,(,A). However, we may sharpen the inner 

upper bound on applying a result of Okamoto (1960) conditionally, given Sy, 
to get Fs (w; a l ; Wi; "( I SY) ~ F (wla*; 8, ,,(, A' SY), with Q* as the 

geometric mean, and then unconditionally on taking expectations, to establish 

conclusion (ii) as stated in lie theorem. Conclusion (iii) follows on noting that 

the geometric mean 4>(a) == (al ... as)l/S is Schur-concave (cf. Marshall 

and Olkin, 1979, p. 79), i.e., a --< r implies that 4>(0:) 2: 4>(r) , so that 

F (wla'; 8, ,,(, A) ~ F (wiT'; 8, ,,(, A) as claimed, to complete our proof. 
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I 

ThBLE 1. Group I single-case deletion diagnostics, rules and benchmarks 
for their use, and their ranges, where R:=:. [Tji] = (XIX) -1 X'. 

Diagnostic Expression Rule Benchmark Range 

ti 
(Yi-Yi) ± ta/2 (-00,00) 

SiJl-hii 

DFT; 
{Yi-Yi(i)} ± t'.!!/2.filii (-00,00) 

SiA. v'1- h ii 

DFBij (,B, -.8;1(i11' ± lOLZrji (-00,00) 
Si.jCjj VCj,;(I-hii) 

ThBLE 2. Group II subset deletion diagnostics, rules and benclunarks for 
their use, and their ranges, where 1}:=:. (n - p) / (n - p - s) , 

A = I1:=1 (1- Ai)-1 , GL I = 1 - I1:=1 (1 - A;) 
and Ca becomes (;/2 for single-case deletions. 

Diagnostic Expression Rule Benclunark Range 

Pi e; (Is -HII r l e, 
> Ca (0, 00) sSl 

OUT[ 1- ~ > 
B(en .. 1) [~ 1] !,<c",+(71-P'-s)] n-p--s I 

API 1 (n-p-s)S21 X'X, > [sc",+(n-· ~-'S)GL1', [GJ"J,l] - (n-p)S2[X~Xo I [se,,+(n,-p'-s)] 

CRI 
Isf(X'X)-11 

IS2(XbXo ) 'I 
< (n-E) A [ r [sc,,+(1l'P'-s)] [0; rlA] 

FVI 
IS;z{XIX)-IZ'[ 

< [ (TIp) r A [O,1]s A] 
I s2Z(XbXo) IZ'l '[BC,,+(71 '1'-- 8)J 
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202 JENSEN & RAMIREZ 

TABLE 3. Group III single-case deletion diagnostics, rules and benclunarks 
for their use, and their ranges, where 1'~ = hid (1- hid· 

Diag-
Expression Rule Benchmark Range nostic 

Ci 
Ci3-~;) 'X;,xO(~-~i) 

> 
(n-p)t!/2'Yf [0, (11, - p)rUp)] pS~ p(t!/2+n~p-l) 

WKi 
Cfj-~;) 'X~Xoc;a-~;) 

> t!/2'Y~ (0,00) pS? - p 

Wi 
(~-~il 'xIX(~-~i 1 

> 
h.i-j t!/2 (0, 00) 

psi P 

Di 
(~-~il 'v- (~-{3il 

s; > t~/z (0, 00) 

TABLE 4. Definitions of Group III subset deletion diagnostics, bounds on 
their upper cutoff values kcr., and their ranges 

Diag-
Expression Benchmark Range nostic 

~(3-(31) 'X~Xo(~-~12 
(n-z:)scn ,-" < k 

p(scn+n-p--s) - C< 

CI pS2 [0, (11, - p) al/p)] 
< (n-p).cn ,-" 
- p(.cn+n-p-s) 

WKI 
({3-~11 'X~Xo(~-~11 

&<k <So. [0,00] ps~ al - Q - a.Oj 

WI 
({3-{311 'X~Xo(~-{311 

So.<k <So. [0,00] PsJ >'1 - a - O:s 

DI 
(~-{31) 'V_ (~-~1) 

.SJ ec' 
[0,00] 
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ThBLE 5. Power of F, under location shifts t5 / (7 = Ll1., / (T for scale ratios K, = (T; / (T2 at design points 
comprising subsets 8 1 ) 8 2 and 8 3 ofthe BOQ data, where pairs of entries give lower and upper bounds 

on the actual power from Theorem 1 (ii). 

Subset 8 1 Subset 8 2 Subset 83 

'" '" '" Ll/a 1 2 3 1 2 3 1 2 3 
I 0.1573 0.2703 0.3592 0.1240 0.2045 0.2759 0.0551 0.0634 0.0716 

0.2715(6) 0.3606(6) 0.2061 (6) 0.2779(6) 0.0640(4) 0.0734(5) 
0.2987 0.3999 0.2237 0.3072 0.0723 0.0907 

2 0.5088 0.5501 0.5836 0.3776 0.4293 0.4707 0.0707 0.0789 0.0869 
0.5518(10) 0.5848(9) 0.4327(9) 0.4743(9) 0.0805(5) 0.0904(6) 
0.5828 0.6231 0.4551 0.5058 0.0893 0.1085 

3 0.8631 0.8262 0.8099 0.7199 0.7063 0.7041 0.0981 0.1057 0.1133 
0.8273(15) 0.8105(13) 0.7100(13) 0.7080(12) 0.1089(6) 0.1195(7) 

4 I 0.9852 

0.8472 0.8364 0.7290 0.7339 0.1185 0.1389 
0.9620 0.9424 0.9319 0.9007 0.8801 0.1388 0.1451 0.1514 
0.9623(21) 0.9426(18) 0.9028(18) 0.8826(16) 0.1504(7) 0.1613(8) 
0.9688 _ 0.9534 0.9123 0.8971 0.1609 0.1823 

o 

~ 
(J 

j 
Z 
o 
C/l ::r: 

~ 
Z 
t""' o 
(J 

~ o z 

~ 
C/l 
(J 

~ 
tTl 

Z 
Gl 
~ 
C/l 
C/l 

~ 
N 
o 
w 
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TABLE 6. Power of PI under location shifts 8 = .6.18 for scale ratios K = aU a2 at design points 
comprising subsets 54 and 55 of the BOQ data, where pairs of entries give lower and upper bounds 

on the actual power from Theorem I (ii). 

Subset 54 Subset 55 
K, K, 

.6./a I 2 3 1 2 3 
I 0.0728 0.1043 0.1334 0.1108 0.2005 0.2852 

0.1171(11) 0.1612(16) 0.2179(15) 0.3166(22) 
0.1946 0.3126 0.3075 0.4670 

2 0.1517 0.1718 01949 0.3424 0.3977 0.4557 
0.2012(14) 0.2424(19) 0.4337(22) 0.5019(29) 
0.2893 0.4016 0.5316 0.6428 

3 0.3018 0.2904 0.2988 0.6926 0.6674 0.6776 
0.3416(17) 0.3708(23) 0.7083(29) 0.7251(37) 
0.4371 0.5314 0.7831 0.8270 

4 0.5090 0.4522 0.4380 0.9251 0.8785 0.8607 
0.5197(21 ) 0.5282(28) 0.9034(38) 0.8920(47) 
0.6107 0.6751 0.9375 0.9426 

- -
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