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Abstract

Diagnostics for normal errors in regression currently uti-

lize ordinary residuals, despite the failure of assumptions

validating their use. Case studies here show that such

misuse may be critical even in samples of size exceeding

currently accepted guidelines. A remedy is to employ

recovered errors having the required properties.

1 Introduction

We �rst review the role of regression diagnostics. A case

study then illuminates the central issues, followed by a

brief discussion of the notation and models to be consid-

ered.

1.1 Case Studies: A First Look

We consider a study on actual market returns for stocks

as related to corresponding accounting rates. For each

of n = 54 companies the mean yearly market return

(Y ) and the mean yearly accounting rate (X) were de-

termined for the period 1959-1974. Simple linear regres-

sion analysis then gave the best-�tting line as reported in

Myers (1990, p.16 �.), along with the ordinary residuals.

The normal probability plot for the ordinary residuals

appears as Figure 1.

In testing for normality with n = 54, the Anderson-

Darling test gave A2 = 1:876 and a p-value of 0:000 to

three decimals, whereas the Kolmogorov-Smirnov test

gave D = 0:192 with approximate p-value < 0:01: For

details and further references regarding these tests, see

D'Agostino (1982) and Mudholkar et al. (1995). Note

that n = 54 exceeds the empirical guidelines of Pierce

and Gray (1982) of n = 20 by a factor of 2.7, so evidence

against normality of the errors is unequivocal using cur-

rently accepted methods.

Figure 1: Probability Plot of Residuals

for Accounting Data

Further insight regarding the actual error distribu-

tion is often garnered from the histogram of the ordinary

residuals as depicted in Figure 2.

Figure 2: Histogram of Residuals

for Accounting Data

To the extent that these residuals might truly re
ect

the unobserved errors, the evidence suggests a shifted



gamma distribution as a viable candidate for the under-

lying errors. This, in turn, would place in serious jeop-

ardy any reasonable prospects for using strict normal-

theory inferences in the analysis.

Nonetheless, these conclusions do appear somewhat

surprising in view of the fact that each Y itself is the av-

erage of 16 yearly market returns. Central limit tenden-

cies often are observed in practice in samples of moderate

size.

A close inspection of the accounting data shows

that the ordinary residuals tend to be negatively cor-

related. Descriptive statistics, including their mini-

mum, �rst, second, and third quartiles, and their max-

imum correlations are f�0:22767;�0:02651;�0:01957;
�0:01160; 0:10340g, respectively, with a range of

0.33107, and their histogram is depicted in Figure 3.

Correlations among the ordinary residuals are not neg-

ligible in this study and thus may be a problem. The

corresponding array of descriptive statistics for variances

of the ordinary residuals is given by f0.67670, 0.96264,
0.97268, 0.97943, 0.98138g, with a range of 0.30468. Het-
erogeneous variances thus may be an issue as well, as

these matters appear not to have been studied in depth.

We return to these topics subsequently, including di�-

culties surrounding the singularity of the joint distribu-

tion of the ordinary residuals.

Figure 3: Correlations Among Residuals

for Accounting Data

The aforementioned di�culties are not easily dis-

missed. To do so is to disclaim the importance of normal-

ity itself. In this paper, we preempt all those di�culties

on reconstructing entities, called recovered errors, having

the requisite properties. Moreover, these are recovered

from the ordinary residuals using standard software that

may be assimilated readily into existing regression pack-

ages. We turn next to matters of notation and details

surrounding the models to be considered.

1.2 Notation

Designate by L(Y) the law of distribution of Y . In

particular, N1(�; �
2) is the one-dimensional normal dis-

tribution having the mean E(Y ) = � and variance

V ar(y) = �
2. The covariance (Y1; Y2) is designated as

Cov(Y1; Y2):

In what follows we consider full-rank multilinear mod-

els of the type

Yi = �0 + �1Xi1 + � � �+ �kXik + "i (1)

relating the typical response Yi to the regres-

sors fXi1; Xi2; : : : ; Xikg through unknown parameters

f�0; �1; : : : ; �kg, for i = 1; 2; : : : ; n. The ordinary resid-

uals are given by ei = Yi � bYi = Yi � (b�0 + b�1Xi1 +

� � � + b�kXik) in terms of the ordinary least-squares es-

timators fb�0; b�1; : : : ; b�kg. Conventional assumptions re-
garding such models include

A1 : E("i) = 0; 1 � i � n;

A2 : V ar("i) = �
2
; 1 � i � n;

A3 : Cov("i; "j) = 0; i 6= j = 1; : : : ; n;

A4 : L("i) = N1(0; �2); independently
for i = 1; 2; : : : ; n:

1.3 Basics

Consider the ordinary residuals fe1; : : : ; eng, their ex-

pected values E(ei), their variances V ar(ei), and their

covariances Cov(ei; ej), for i; j = 1; 2; : : : ; n. Under as-

sumptions A1 � A3 it follows directly that E(ei) = 0,

whereas their variances and covariances are determined

by the matrix of regressor variables. In consequence, the

elements fe1; : : : ; eng are typically heteroscedastic and

are correlated, as documented empirically in the case

study of Section 1.1. Moreover, their joint n-dimensional

distribution is singular of rank n�k�1, there being k+1

sure linear relations among them. This joint singularity

is itself troubling for reasons to follow.

Using all n ordinary residuals diagnostically ignores

redundancies among them, and it supports the illusion

that there are n, instead of the actual n�k�1, e�ective

data points. Write model (1) in block form as�
Y1

Y2

�
=

�
X1

X2

�
� +

�
"1

"2

�
; (2)

with X2 invertible and, as usual, with X having as its

�rst column the unit vector. Since X0e = 0, it follows

with e = [e01; e
0
2]
0 that e2 = �(X1X

�1
2 )0e1. Thus e1 and

e are equally informative, and e2 contains no further in-

formation. In consequence, the usual graphical displays,



order statistics, sample moments, the empirical distribu-

tion function (EDF ), and various tests for goodness of

�t are based on excessive and partially redundant data,

whereas p-values depending on sample size are reported

erroneously.

1.4 The Recovered Errors

Using properties of linear statistics and using t = n�k�
1, we recover elements fR1; : : : ; Rtg from the ordinary

residuals fe1; : : : ; eng, as linear functions whose coe�-

cients depend on the matrix projecting observations onto

the error space. An algorithm is based on the spectral

decomposition Bn =
Pn

i=1 �iqiq
0
i = QD�Q

0 of Bn =

In � X(X0X)�1X0, such that D� = Diag(�1; : : : ; �n)

contains the ordered eigenvalues and Q = [q1; : : : ;qn]

the corresponding eigenvectors of Bn. To these ends, let

R(n) = Q0e; partition R(n) as R(n) = [R0
(t);R

0
(k+1)]

0

with R(t) 2 R
t and R(k+1) 2 R

k+1 ; and identify

R0
(t)

= [R1; : : : ;Rt]. Their properties are summarized

in Proposition 1 (see Jensen and Ramirez (1999). We

henceforth refer to fR1; : : : ; Rtg as the linearly recovered
errors.

Proposition 1 Let R(n) = [R0
(t)
;R0

(k+1)
]0 = Q0e with

Q from the spectral decomposition Bn =
Pn

i=1 �iqiq
0
i =

QD�Q
0
of Bn = In � X(X0X)�1X0

. Then under as-

sumptions A1�A3 with t = n�k�1, the linearly recov-

ered errors R0
(t)

= [R1; : : : ;Rt] are homoscedastic, non-

singular, and uncorrelated, whereas under assumptions

A1�A4, the variables fR1; : : : ; Rtg now comprise a sim-

ple random sample of size t = n� k � 1 from N1(0; �
2),

independently of X:

1.5 Non-Uniqueness of Linearly

Recovered Errors

Since the eigenvalues of the matrix Bn are not distinct,

with unity appearing t = n� k � 1 times, the matrix Q

is not unique. We introduce in this section our method-

ology for choosing Q. Write Q0 = [Q1;Q2]
0 with Q1 of

rank t and Q2 of rank n� t. For any orthogonal matrix

P of order t� t, the matrix P0Q0
1 will also transform the

singular errors e into a nonsingular vector of recovered

errors.

We consider two examples, as shown in Table 1, which

will demonstrate our methodology as well as exemplify

some problems with the usual regression diagnostics.

The two examples both have the same x values, but dif-

ferent y values.

Table 1: Case Study Examples

x -1 -1 -1 0 0 0 1 1 1

y1 .4 .4 .4 .1 .1 .1 -.2 -.2 .8

y2 0 0 0 0 0 0 0 0 1

For strict validity, graphics and hypothesis tests for

normality both presuppose simple random sampling as

noted, whereas the ordinary residuals are correlated and

their joint distribution is singular, as these two examples

will show.

Example 1 is concerned with (x;y1). The

Kolmogorov-Smirnov Normality Test on the residuals of

Example 1 has p-value > 0:15; and so the normality as-

sumption for this model, at this point, would be deemed

to be valid using standard procedures.

Example 2 is concerned with (x;y2). Note that the

value 1 for y at (x; y) = (1; 1) could be any value,

say 1,000,000, by scaling. Although it is not immedi-

ately apparent, Examples 1 and 2 have identical residu-

als. They thus have identical studentized residuals and

identical p-values for the Kolmogorov-Smirnov Normal-

ity Test which, for Example 2, also has p-value > 0:15.

The normality assumption for this model also would be

taken to be valid. However, one would hope that Exam-

ple 2 would fail the normality test.

For a linear regressionmodel, the studentized residuals

ri are given by normalizing the residuals ei = yi�byi (1 �
i � n) by dividing ei by the corresponding standard de-

viation, replacing � by s, as r2i = e
2
i =(s

p
1� hii) where

hii = x0i(X
0X)�1xi denotes the ordinary leverages. For

example, Myers (1990, p. 217) suggests using the studen-

tized residuals in residuals diagnostics. Unfortunately,

these diagnostic tools are routinely misapplied using or-

dinary residuals, which are correlated and the joint dis-

tribution is singular. Example 2 has been constructed

to have the maximum value for r29 = n� k� 1 = 7. This

is an extension of Thompson's inequality (Z2
i � n � 1)

which gives a bound on how deviant an observation can

be; see, for example, Olkin (1992). The extension to lin-

ear models has been noted by Gray and Woodall (1994).

The externally studentized residual ti use for the esti-

mate of � the estimate si which is computed with the

i
th value deleted. This diagnostic is known to be dis-

tributed as t(n� k � 2): Using the relationship between

s and si (for example, Myers (1990, p. 408)), we can

write

r
2
i =

(n� k � 1)t2i =(n� k � 2)

(1 + t2i =(n� k � 2))
� n� k � 1:

Examples 1 and 2 have been constructed to satisfy

Q0
1y1 = Q0

1y2, and so they have identical linearly re-



covered errors. To examine the nonuniqueness of Q, let

P0(�) =

2
666666664

1 0 0 0 0 0 0

0 cos(�) sin(�) 0 0 0 0

0 � sin(�) cos(�) 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

3
777777775
:

Then P0(�)Q0
1 also can be used to de�ne recovered er-

rors. Figure 4 presents the graph of the seven re-

sulting standardized quantities as a function of � on

�� � � � �. For a �xed � 2 [��; �], we standard-

ized the seven components of P0(�)Q0Y2 by subtracting

their mean value and dividing by their standard devia-

tion with n� 1 = 6.

Figure 4: Standardized Recovered Errors

Using P
0(�)Q0

1Y2

All recovered errors are in the class of Linear Unbi-

ased Scaled (LUS ) residual estimators; see Theil (1971).

These estimators are not unique. Given a choice for

Q0
1; any orthogonal rotation P0Q0

1 also will produce a

LUS estimator for the disturbances. Theil suggests using

the matrix P0Q0
1 that minimizes the expected squared

length of the transformed residuals, to be called the

BLUS residuals. Other criteria are required in testing

for normality.

Table 2 gives the standardized linearly recovered er-

rors for two di�erent values of the angle �: The �rst,

� = �2:3562 (where two of the curves cross), has damp-
ened the magnitudes of the standardized recovered er-

rors with the maximum value being R2 = �1:4180. The
second, � = 1:7530; has been chosen to amplify the mag-

nitudes of the standardized errors with the maximum

value being R2 = 2:2017. We will explain the choice for

these values of � below.

Recall that both models from Table 1 have p-value

> 0:15 using the ordinary residuals together with the

Kolmogorov-Smirnov Normality Test. This same test

using the n�2 = 7 recovered residuals at � = 2:3562 has

p-value 0.058, again validating normality for this repre-

sentation of the recovered errors. However, when applied

to the errors recovered at � = 1:7530, the Kolmogorov-

Smirnov Normality Test now contraindicates normality,

with p-value < 0:01. At this representation for the re-

covered errors, the original models in Table 1 do not

satisfy the normality requirements. This example makes

clear that opposite conclusions may be drawn from a

given data set, depending on the representation used for

recovered errors.

Table 2: Two Standardized Linearly

Recovered Errors

� R1 R2 R3

-2.3562 0.6943 -1.4180 -1.4180

1.7530 -0.2062 2.2017 -0.6498

R4 R5 R6 R7

0.8616 0.7975 0.2129 0.2697

-0.0691 -0.1216 -0.6008 -0.5542

To measure the spread of the recovered errors, the

sum of the fourth powers of their deviations from the

mean of the seven components of P0(�)Q0Y2 is consid-

ered, as plotted in Figure 5 with �� � � � �. For rea-

sons to be given, we call this function of � on �� � � � �

the Kurtosis Estimate. The graph shows a minimum

at � = �2:3562; and a maximum at � = �0:1822 and

� = 1:7530. Both of these maximum values for � pro-

duce identical values for the recovered errors.

Figure 5: Kurtosis Estimate for

the Recovered Errors

In this section we have demonstrated the nonunique-

ness for the linearly recovered errors, and we have shown



that the standardized recovered errors can vary greatly.

The methodology we have introduced is that of �nding

the recovered errors which have a large kurtosis estimate

for reasons to be given. We show how to achieve this in

the next section.

2 Kurtosis Estimates

We assume that the linearly recovered errors

fR1; : : : ; Rtg have been determined from the matrix Q0

as in Section 1.3: For any orthogonal matrix P of order

t� t, the matrix P0Q0
1 = A

0

will also transform the or-

dinary residuals e into a nonsingular vector of recovered

errors. The kurtosis 
2 for the BLUS residuals have been

given by Huang and Bolch (1974); see also Misra (1972).

The result, which extends to include the LUS residuals,

is (where we correct the typographical error)


2(Ri) = 3 + (
2("i)� 3)

nX
j=1

a
4
ji; for 1 � i � t:

The criterion that we use is to consider 	(P) =Pt

i=1 
2(Ri) as P is varied, eventually choosing P so as

to maximize �(P) =
Pt

i=1

Pn

j=1 a
4
ji. This maximization

is available with standard software since it is equivalent

to the Kaiser \raw" varimax criterion in factor analysis;

see, for example, Harman (1976, p. 290). The varimax

criterion, in turn, is used to �nd the orthogonal matrix

P which will maximize

1

n

tX
i=1

nX
j=1

a
4
ji �

1

n2

tX
i=1

0
@ nX

j=1

a
2
ji

1
A

2

;

where A = Q1P. We now note that the second term

above is the constant t=n2 since A0A = It:

2.1 The Methodology

For a given data set, �rst compute the ordinary lever-

ages hii = xi(X
0X)�1x0i, for 1 � i � n:We sort the data

in ascending order based on the leverages. The order of

the data does a�ect the linearly recovered errors. We

�nd the linearly recovered errors RH = Q0
H1Y from the

eigenvectorsQH ofHn = X(X0X)�1X0
; and the linearly

recovered errors RB = Q0
B1Y from the eigenvectors QB

of Bn = In�Hn. The �rst method transforms into zero

the residuals corresponding to the k+1 values with low

leverages, and the second transforms into zero the residu-

als corresponding to the k+1 values with high leverages.

We now use a varimax rotation to �nd the matrices PH

and PB; that have maximized �(�) forQH1 andQB1, re-

spectively. With A0
H = P0HQ

0
H1 and A0

B = P0BQ
0
B1, we

determine two sets of recovered errorsRA0

H
andRA0

B
, re-

spectively, each having maximal kurtosis, which we now

can test for normality without violating the important

assumptions required. Note that the rotation matrices

are independent of the responses Y: The Monte Carlo

simulation study in Jensen and Ramirez (1999) showed

that our recovered errors procedure had uniformly more

power than the BLUS0s procedure over all cases studied.

We also showed that there the order of the data caused

statistical di�erences in the p-values for the BLUS resid-

uals. No such statistical di�erences were seen with our

recovered error residuals A0
H and A0

B.

2.2 Case Studies: Revisited

We next examine a multilinear model in light of the fore-

going developments. The results are rather striking. We

consider a study of discoloration in canned applesauce

during storage. Draper (1965) examined e�ects of tem-

perature (X1), betaine added (X2), and storage time

(X3) on the Munsell chroma (Y ) of each specimen stud-

ied. A multilinear model was determined using n = 48

data points. The normal probability plot of the ordinary

residuals appears as Figure 6; the Anderson-Darling test,

using these residuals, gives A2 = 0:300 and a p-value =

0.567; and the Kolmogorov-Smirnov test givesD = 0:066

and p-value > 0:15. This example falls within the guide-

lines of Pierce and Gray (1982) regarding the sample size,

so that nonnormality of errors is not an issue using cur-

rently accepted methods. However, the applicability of

the methods themselves must be questioned for reasons

given earlier.

Figure 6: Probability Plot of Residuals

for Applesauce Data

Proceeding as before, we again �nd that the ordinary

residuals tend to be negatively correlated. Accordingly,

we rework the foregoing tests using n�k�1 = 44 linearly

recovered errors instead, as prescribed in Proposition 1,



to ensure their validity. The p-values from the Shapiro-

Wilk test for normality using the ordinary residuals e,

and the residuals from the two rotated transformed mod-

els, A
0

HY and A0
BY, which maximize the kurtosis of the

recovered errors, are 0.4568, 0.1219, and 0.0262 respec-

tively. As expected, the rotated models are better able

to reveal the nonnormality of the linearly recovered er-

rors, with the residuals RA0

B

= A0
BY having a p-value

of 0.0262.

The revised tests clearly point towards nonnormal er-

rors, contradicting our earlier assessment based on the

ordinary residuals. The normal probability plot of the

recovered errors RA0

B
= A0

BY appears in Figure 7. In

summary, evidence for or against normality is always

suspect when based on the ordinary residuals in regres-

sion.

Figure 7: Recovered Errors for the

Applesauce Data

3 Other Case Studies

The accounting data set from Section 1 failed the tests

for normality using the ordinary residuals. As we have

demonstrated in this paper, the user should base conclu-

sions of normality on the recovered errors. The Shapiro-

Wilk test has p-value = 0.0002 for both sets of recov-

ered errors RA0

H
= A0

HY and RA0

B
= A0

BY: Thus we

have shown the nonnormality of this data set without

violating the assumptions of the Shapiro-Wilk test for

normality.

4 Conclusions

Diagnostics for normal errors in regression are subject

to misuse when applied to singular, heteroscedastic, and

correlated residuals. Case studies show that such misuse

may undermine substantially the intent of these diag-

nostics and should be discontinued. Fortunately, these

di�culties may be surmounted on using recovered errors

amenable to standard regression software packages.
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