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Abstract: A new approach to comparative design efficiencyis given in linear estimation and in tests for linear
hypotheses. In contrast to others, this approach gives a complete assessment of two designs for any model on
identifying precisely the subspaces of parameters for which one design is more efficient than another, or two
designs are equally efficient.Local and global bounds on relative design efficienciesare given with reference to
these subspaces, and connections to information functional are noted. The relative influences of design points
with regard to deletion and augmentation are examined and related to measures of influence from the litera-
ture. Our approach provides numerical diagnostics for use in design evaluation before an experiment has been
run. The concepts are illustrated with reference to selected second-order designs,
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1. Introduction

Designed experiments and linear models persist at the forefront of statistical prac-
tice. Designs traditionally have been compared using criteria in estimation such as
A, D, E or G efficiency (cf. Kiefer, 1959, or Fedorov, 1972, Section 1.8, for exam-
ple), and more recently, the information functional of Pukelsheim (1980). These
and other criteria share the following limitations. (i) All are scalar indices, whereas
the problem in intrinsically multidimensional. (ii) Efficient designs are typically
model and criterion dependent, and generally there are no globally optimal designs.
(iii) The criteria focus exclusively on estimation, with no thought towards efficiency
in testing hypotheses. Specifically, it is not clear how design efficiency in estimation
may bear on efficiency in hypothesis testing, although the two are clearly related.
In response to (ii), Kiefer (1975) and others have stressed the importance of com-
paring designs on the basis of several different criteria and choosing one with good
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overall performance. See also Galil and Kiefer (1977a, b, c, d) and Galil and Kiefer
(1979).

On information-theoretic grounds consider a model {~ =~(xi)’~ + &i;1< i < n} of
full rank together with linear parametric functions A/l such that A (r x /c) has rank
r< k. For a set % consisting of prospective design points, consider some measurable
mapping f: %+ II?ksuch that the image f(&’) is compact, and let E comprise the
design measures on Y?, i.e., the probabilityy measures ~(. ) on X having finite sup- .
port. Then under Gaussian errors y(=) denotes the collection of all information
matrices 1(<) =\% f(x) f (x)’d< with <G2. In particular, the information matrix for
A/l is 1(A; <) = [A(l(<))-lA’] ‘1/a2, and the design <0 is said to be uniformly op-
timal for A~ in S if I(A; <.) - I(A; <) is positive semidefinite for every < e 3, see
Kurotschka (1978) and Pukelsheim (1980). However, Pukelsheim (1980) has shown
in Theorem 7 that no design is uniformly optimal for A/l in S unless r =1. In this
case A is a vector, say c’, and the optimal design is then called c-optimal. Charac-
terizations of c-optimal designs are given in PukeIsheim (1981).

Other approaches to comparing designs have been considered. Kiefer (1975)
focused primarily on scalar efficiency ratios using LP-norms for p= O, 1 or m. He
noted, however, that the’ ‘finer comparison between two designs (‘ and ~“ obtained
by contrasting the entries of N.?(<’) and kf(<”), or the eigenvalues {Ai(<’)} and
{J.i(<”)}, or by computing the eigenvalues of lkf(<’)kf-l(<”), does not, at least in
our examples, seem worth the much greater effort required. ” Here M(<) is Kiefer’s
notation for the information matrix l(~).

An approach to multiparameter estimation using axiomatic and invariance is
given in Jensen (1991). Suppose that S and T are unbiased for @e Rk having disper-
sion matrices (Z, 0). If the efficiency E(T, S) of T relative to S is to depend only
on second moments, and is also to be invariant to choise of basis, i.e., under
(S, T)+ (GS, CT) for G nonsingular, then E(T, S) necessarily depends only on
(Z, Q), and then only through a maximal invariant, namely, the ordered roots of the
determinantal equation IX– YK2I= O. This underscores that the concept of vector ef-
ficiency is intrinsically multidimensional. Moreover, by examining the eigenvalues
in relation to 1.0, and subspaces spanned by the corresponding vectors, it is possible
to compare the performance of T relative to S precisely as 0 ranges over its domain.

In this paper we extend these developments to include Pitman (1948) efficiency
in hypothesis testing (cf. Kotz et al., 1985, pp. 731-735) as well as estimation in the
context of linear models and designed experiments. This approach offers fresh in-
sight into the detailed workings of alternative designs, and it essentially pursues the
third approach mentioned above and then abandoned by Kiefer (1975) as
intractable.

An outline of the paper follows. Preliminary developments comprise Section 2.
Section 3 is concerned with the comparative Pitman and Fisher efficiencies of alter-
native designs and with connections of these to information functional. Examples
include particular second-order designs and a detailed numerical comparison of
these. The basic tools are then used in Section 4 to examine the relative influence
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of design points and points of augmentation. These results in turn are related to
measures of influence as developed in the literature, with the added feature that
specific effects on linear parametric functions nowcan be identified precisely. Sec-
tion 5 provides a brief summary.

2. Preliminaries

We establish conventions for notation and details concerning the models to be
treated subsequently.

2.1. Notation

To fix notation, ll? and I@ denote Euclidean k-space and its positive orthant;
x c I@ is of order (k x 1); Fn~k consists of real (n x k) matrices; and Sk, S: and S;
comprise the real symmetric (k x k) matrices, their positive semidefinite and positive
definite varieties, respectively. Special arrays include the unit matrix ~k and the
symmetric root A 1’2=$ of A6S:. By SP(ZI, ..., z,) is meant the linear span of
{zl,..., z,} in IRk,and we indicate by Be Sp(zl,..., z,) that its columns belong to

SP(Z1>. . ..zr). Given a basis {w’l,...,~~,~t+l,...,~k} of IT?k,we say that x is in the
complement of Sp(wl, ..., Wt)when x ~ Sp(w~+,, ..., ~k). Following Loewner (1934),
we take (Sk, >) to be partially ordered such that A ~ B on Sk if and only if,4 – B ~
Sj, with xl,) B when A -B is positive definite.

2.2. Linear models

Given a model {~ =$(xi)’~ + &i; 1<i < n} of full rank with design matrix X=
[x,,... ,x.]’, we write Y=~(X)/1 + &with ~(X)= [~(xl), .. . ,j(x.)]’ of order (n x k).
The standard Gauss-Markov estimator /?(X)= [~(X) ’$(X)] ‘l~(X)’Y is unbiased
with dispersion matrix V[/f(X)] = a2 [~(X) ’J(X)] ‘1, and under Gaussian errors
with information matrix Z(X) = [f(X) ’j(X) ]/cs2 for some O*> O. Given designs X
and Z and the model ~(. ), except as noted we henceforth identify Z= [j(X) ’~(X)]’1
and Q = [j(Z) ’f(Z)] ‘l. The following analysis takes a prominent role throughout.

Let {yl z . ..> yk> O} be the ordered roots of IZ – yfl \ = O or, equivalently, of

f2-1’2Zf2-l’2, with (Z, Q) in S; as defined. With K= Z*’2f2-1’2, observe that K’K
and KK’ have the same ordered eigenvalues {y, z ...> yk> O}, whereas their respec-

tive eigenvectors, {ul, .. . . u~) and {ul, . . . . ok}, constitute orthonormal bases by
symmetry. Moreover, with K’Ku = yu, so that KK’Ku = yKu and thus KK’u = yu, we
find that

{Oj=y~l’2KUi,

so that their eigenvectors
y,=l’20-1’2ui, 1<i<k}.

l<i<k} (2.1)

are related linearly. In particular, we have {Z-1’2 ~i=
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3. Design efficiencies

We seek a unified treatment of comparative design efficiencies in linear estima-
tion and hypothesis testing. Basic connections are given next between the directed
Fisher efficiency (3. 1) and the Pitman efficiency (3.2) in linear inference. This ex-
tends work begun in Jensen (1991), but now including hypothesis tests as well as
estimation.

3.1. Efficiencies

We first consider the Fisher efficiency in estimating O=a’p in the model Y=
j(X) ~+ 8. If (S, T) are unbiased for 6 e l?’ having variances (aj, a;), respectively,
then the Fisher efficiency of T relative to S is given by E(X S) = a~la~. For estimat-
ing a’j.le R 1 in the direction in F?kwhose cosines are determined by a’= [al, ..., ak]
with a’a = 1, we now take the directed @-efficiency of design Z relative to design X
to be E@(Z,X; a) = @(a’Za/a’f2a) on ~~, with @belonging to a class @ of efficien-
cy indices considered in Jensen (1991). Because @(-) is monotonic, it suffices to con-
sider the directed Fisher efficiency E[a’/?(Z), a’~(X)] = 0-1 OEO(Z,X; a) as given in

(3.1)

with b = Q1’2a, where L?l’2 is the symmetric root of Q.
Next consider the standard F-test for H: Aj? = dO against K: A~ # & under de-

signs X and Z. The Pitman (1948) efficiency of design Z relative to design X in
testing H is given as the ratio E(Z, X IA) = ~~ (Z)/A~ (X) of their noncentralit y
parameters with IA(X) = (A/.?– dO)’(AZxl’)-l(A/?– c$O)/cr2,i.e.,

E(z, xl A) =
(A/? - do)’(’4f.L4’)-@l/J- do)

(/l/i- fiJ’(AzA’)-’(Ap- i+J ‘

With A set to A = Ik and A~ – & = c, (3.2) assumes the form

(3.2)

(3.3)

with d= Z–1’2 c. Connections between Fisher and Pitman efficiencies follow direct-
ly since both (3.1) and (3.2) are generalized Rayleigh quotients having standard
properties as given in Bellman (1960), for example. In subsequent developments we
assemble subspaces of @ in natural coordinates of the parameters using vectors
{w~,..., w~} corresponding respectively to the roots {yl, . .. . yk} of IZ– y~ I= O.

3.2. Basic results

Subsequently E(Z, X) denotes the efficiency of design Z relative to design X with
reference to a specified model. This applies both to the directed Fisher efficiency
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E(Z, X; a) = E[a’/?(Z), a’/?(X)] as in (3. 1), and to the Pitman efficiency E(Z, X IA)
as in (3.2) in testing H: A/?= 60 against K: A/? # 6..

We next undertake a systematic assessment of these efficiencies as they depend
on designs X and Z. In particular cases the ratios (3.1) and (3.2) can be evaluated
numerically, but it is of further interest to examine their behavior over a range of
values of the parameters. Clearly {yl > . .. z yk> 1} if and only if [j(Z) ’$(Z)] >

[j(X) ’f(X)l, in which case the ratios (3.1) and (3.2) both exceed unity. Design Z
is then uniformly more efficient for estimating jl and {a ‘/3;a GF/}, and the variance
ratio test for H: A/l= 60 is uniformly more powerful for all {-4 e F,X~; 1<r< k} at
all alternatives K: A~ # 6.. However, quantifying the precise gains in efficiency is
a local phenomenon to be studied subsequently.

Generally neither design dominates globally, in which case the ratios (3.1) and
(3.2) may be less than unity for some cases, possibly equal to unity for others, and
greater than unity for still other cases. It is thus of interest to examine the com-
parative efficiencies locally. To these ends we associate with {yl, ..., Yk}the respec-
tive vectors {WI,..., Wk} spanning the natural parameter space, with

{wi=fp’’ui=y:’’l-zoi; i; 1<i<k} (3.4)

as in (2.1). Now choose a subset {yi,,. . . . yi,}, together with the corresponding span-
ning vectors {Wi,, . ..jwi. }, such that {yi,~ . ..2 Y.,}, and observe that S(il, .. ..if)=
Sp(wi,, . .. . ~i,) C IT?kis a t-dimensional subspace of F?k.A basic result pertaining to
both local and global efficiencies in estimation is the following.

Theorem 1. For directed Fisher efficiency, local bounds on the efficiency of design
Z relative to design X for a specified model are given by

(i) Yi,<E(Z, X; a) < Yi, uniformly for all a e S(il,..., if), and in particular,
(ii) y~<E(Z, X; a) < y, uniformly for alla e Rk.

Moreover, all bounds are sharp in that equality can be attained.

Proof. To see conclusion (i), write E(Z, X; a) = a’Za/a’f2a = b’f2-1’2Z12 ‘1’2b as
above with b’b = 1. Then a e S(il, .. . . if) is equivalent to b ~ Sp(~i,, . .. . ~i,) from (2.1).
It follows that b = Cl ~i, + . ..+c. ui, forsomec= [cl,..., c,]’, where b’b= 1 and C’C=1
are equivalent. Moreover, the orthonormaiity of {ul, ..., Uk}, together with the
spectral decomposition L?-1’2ZQ-1’2 = ~~=, yj uj u;, show that

b’12-1’2EQ-1’2b = (C,llj,+
““”+c4&’’u’u0(clu’+o””+c@’),

(3.5)

It follows directly that

(3.6)
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where equality is attained on choosing c suitably, first as c = [1 O .. . O]’to give equali-
ty on the right, then as c = [0 . .. 0 1]’ giving equality on the left. This establishes
conclusion (i). Conclusion (ii) follows from conclusion (i) as a special case. ❑

We note that a version of Theorem 1 is given in Rao (1973), p. 62. We have given
our proof for completeness and in preparation for the next result, which pertains
to both local and global Pitman efficiencies in testing linear hypotheses.

Theorem 2. For Pitman efficiency in testing H: A/3= dOagainst K: A/3 # iiO, [ocal

bounds on the efficiency of design Z relative to design X for a specified model are
given by

(i) yi,<E(Z, X IA) < Yi, un$ormly for all A’ ~ S(il, . .. . i,), and in particular
(ii) yk<E(Z, X IA)<Y1, un~ormly for all {A ~F,X~; 1<r<k}.

Proof. From the spectral decomposition Z1’2fi-l Z1’2= ~~=, yj uj U; we have that
Q= ~~=1 y,~lZ1’2 Vjvi Z“12 and Z’= Z1’2 ~f=l VjU;Z1’2. Given that the rows of A

belong to S(il, . .. . ir) by assumption, we may represent A as A = CVZ-1’2, where C
(t x t) is nonsingular and V’= [~i,. ..~i.] is of order (k x t). If follows that

( )AOA’ = CVZ-1/2 ~ )J,~*zl’2UjD;~112 Z-1’2 V’c’
j=]

‘cv(ji’~’vJv’)v’c’= cDfc’

with Dc = Diag(y,~l, .. . . Y,;l). The ratio E(Z, X /A) now becomes

d’(AQA’)-ld d’(CD[ C’)-ld e’D[-le
E(Z, XI A) =

d’(AZA’)-ld = d’(CC’)-ld = ~

(3.7)

(3.8)

because C is invertible, and finally E(Z, X IA) = ~~=, g; yj, with g= e/llel/. The
proof is now completed using the final steps in the proof for Theorem 1. ❑

Suppose that neither design dominates. It is then of interest to be able to charac-
terize those linear hypotheses for which design Z has efficiency greater than, or
equal to, or less than that of design X. Such characterization may point to one
design as being more informative than another, and thus preferable, on issues
critical to a particular investigation. This is done next in Corollary 1 for Pitman effi-
ciency based on Theorem 2. Corresponding results in estimation are given in Jensen
(1991). To these ends suppose that neither Z ~ Q nor Q ) Z, in which case integers
(r,s) can be found, with r> O and s z O, such that

{y, >... >yr>y, +]=l=””” =yr+~>yr+~+l> ““”>yk}. (3.9)

Accordingly, identify subspaces as L1= Sp(wI, . .. . w,), Lz = Sp(w,+ ~,. .. . w,+,), and

L3=SP(W, +s+l, ..., ~k). In terms of these we have the following.
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Corollary 1. Among all linear hypotheses H: A~ = & with alternatives K: Aj3 # &
the Pitman efficiencies of design Z relative to X for a given model satisfy

(i) E(Z, X IA)>l for all A’e L1=Sp(wl, .. . . w,),
(ii) E(Z, X IA)=l for all A’CLZ=SP(W,+l, .. . . w,+,),

(iii) E(Z, X IA)< I for all A’c L3=Sp(w,+S+1, .. . . w~).

Observe that Corollary 1 holds generally without the constraints of (3 .9) if at most
two of L,, Lz and .L3are allowed to be empty. For example, the case s= O renders
L2.as an empty set. Nonetheless, Corollary $ still holds if conclusion (ii) is removed
as a vacuous statement.

Following Pukelsheim (1980), we next consider the class J of information func-
tional j on S: such that j is (i) nonnegative on S: and positive on S;, (ii) positively
homogeneous, and (iii) super-additive, i.e., j(A + B) >j(A) -tj(13). Let @Obe a
compact convex subset of S}, any member of which will be called an information
matrix. Theorem 1 of Pukelsheim (1980) shows for every information matrix
l= YOn S; that the following three statements are equivalent: (i) Z has @O-maximal
j-information for Ajl for all information functional j e J; (ii) [AI-lA’]’1 ~
[A T-lA’]’1 for all T= @o;and (iii) 1 has @O-maximal information for c’~ for all c
in the range of A’.

A basic connection between Pitman efficiency and information is that I(A; X) =
{A [f(X)’f(X)] ‘lA’}-1/a2. Here l(A;X) is interpreted as the amount of information
about A@ contained in X. Corollary 1 now may be restated in terms of information
functional using Pukelsheim’s (1980) result as follows.

CoroMary 2. Among all linear parametric functions A/3 the following normal-
theory information inequalities hold:

(i) Design Z has greater j-information than X, for all A/3 with A’ ~ L, =
Sp(w,,..., w,), and for all j ~ J,

(ii) Designs X and Z have equivalent j-information for all A~ with A’ .sLz =

SP(W, +l,..., w,+,), and for all j e J,
(iii) Design X has greater j-information than Z, for all A/? with A’ e L3 =

SP(W,+S+I, ..., w~), and for all j ~ J.

The foregoing developments support the detailed comparison of any pair of de-
signs. Implicit are further comparisons between a specified design Z and members
of an ensemble of designs. To these ends let Z= Z(X)= [j(X) ’~(X)]’1 to emphasize
its dependence on X. Details follow.

Let #t’Obe a bounded ensemble of designs for which there are elements {X~, X~}
such that Zms .UX~) $ Z(X) < Z(XM) = ~&Ifor every X ● %’., and let Z be a fixed
design of the same order with [f(Z) ’f(Z)]’1 = Q as before. Since X(X)} Z’m, it
follows that JJ-l/zz(x)~-l/z ~ ~-1/a~~~-l/z for every Xc #ZO. If

{Ym12”””,> y~k} are the ordered roots of \X~ – y~i Q I= O, it then follows that

Yfnk< Hz, X) for both Fisher and pitman efficiencies, uniformly for all x= S@O.
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Table 1
Design points in the (Xl, Xz)-plane for three designs

32 Factorial Rotated factorial Roots of unity
(x) (z) (T)

–1.0 –1.0 O.00000 –1.41421 – 1.00000 o.m

–1.0 0.0 –0.70711 –0.70711 o.00ooo – 1.00000

–1.0 1.0 -1.41421 0.00000 0.00ooo 0.00ooo

0.0 – 1.0 0.70711 -0.70711 0.00ooo 1.00ooo

0.0 0.0 0.00ooo 0.00ooo 1.00000 o.m

0.0 1.0 –0.70711 0.70711 –0.70711 –0.70711

1.0 –1.0 1.41421 0.00000 0.70711 –0.70711

1.0 0.0 0.70711 0.70711 –0.70711 0.70711

1.0 1.0 0.000QO 1.41421 0.70711 0.70711

Similarly, if {y~l z . ..> y~k} are the ordered roots of IZ’M– y~i Q I= O, then the
ordering E(Z, X) < yM1 holds for both Fisher and Pitman efficiencies, uniformly
for all X ~ .%?..We have proved the following.

Theorem 3. Let {ym~,yM1} be the smallest and largest roots of lZ~ – y~i Q I= Oand
\ZM - y~i L!I= O, respectively.

(i) Bounds on the directed Fisher efficiency, given by y~~ < E(Z, X; a) < y,wl,
hold uniformly for all a e Rk and for all Xe %..

(ii) Bounds on the Pitman efficiency, given by y~k <E(Z, X IA) < y,wl, hold uni-
formly for all {A ●F,Xk; 1<r<k), and for ail X~WO.

3.3. Applications

To illustrate our methods consider the second-order response model

(3.10)

together with three design matrices X, Z and T given in Table 1 as points in the
(Xl, X2)-plane. The first is the standard 32 factorial design with coded values
{-1 ,0, 1}x {-1 ,0,1} in the (Xl, X2)-plane; the second is obtained from the first by
rotating points in the (Xl, X2)-plane clockwise through 45 degrees; and the third
consists of eight roots of unity in the (Xl, X2)-plane plus the origin. The largest

Table 2
Eigenvalues, traces and determinants for the matrices Z= [~(X) ~(X)] -l,
LI= [f(Z) ’f(Z)]” and A =[~(T)’~(T)]’1for the three designs of Table 1
with reference to the model (3.10)

Matrix Eigenvalues Trace Determinant

z {1,1/2,1/4,1/6,1/6,1/18} 2.1389 0.0001929
n {1,1,1/6,1/6,1/8,1/18} 2.5139 0.0001929

A {3.17116,1,1 /2.1/4,1/4,0.07884} 5.2500 0.0078129



D.R. Jensen, D. E. Ramirez / Linear inference

Table 3
Diagonalization of r= Q-’’2Z”2”2 with I’u, = yiui and W= fi-”z U,
where [yl, . . ..y6]= [4. 1, 1, 1, 1, 1/4]’

Columns of W

0.00000 2.92470 0.00000 0.00000 – 0.66801 0.00000
0.00000 0.000oo 0.000oo 2.44949 0.00000 0.00000
0.00000 0.00000 2.44949 0.00000 0.00000 0.00000

– 2.00000 2.17248 0.00000 0.00000 0.52955 0.000oo
2.00000 2.17248 0.00000 0.00000 0.52955 0.00000
0.00000 0.000oi) 0.00000 0.00000 0.00000 1.00000

59

eigenvalue, trace and-determinant are given in Table 2 for each of the matrices Z=
[j(X) ~(X)] ‘1, Q= [f(Z) ’f(Z)]” and A = [j(T) ’~(T)]’1 of order (6 x 6) with refer-
ence to the model (3.10).

Conventional comparisons show that designs X and Z have comparable D and E
efficiency, whereas X has greater A efficiency with smaller average variance of the
Gauss-Markov estimators. On these grounds the 32 factorial design X ordinarily
would be preferred to the rotated design Z, a point to which we return subsequently.
Further details are given in Table 3, including values for {Yl,..., ~G}together with
the corresponding vectors {Wl,..., ~(j} spanning l!?6. Here we have transformed back
to the natural coordinates of the original parameters using {Wj= Q-* ’2~i; 1<i < 6}
as in (2.1).

Applying Theorems 1 and 2 to account for both the directed Fisher efficiency in
estimation and Pitman efficiency in hypothesis testing, we have the global bounds
0.25< E(Z, X) <4. The latter hold for all a ~ ll?6in the case of estimation, and for
all A (r x 6) in the case of hypothesis testing, with 1<r< 6. Local bounds follow
from Table 3 on interpreting the pairs {(~i$wi); 1<i < 6}. In particular, the pair

(lj, M’1)implies that the rotated design Z has fourfold greater efficiency for the con-
trast ~2z– & ~, whereas (~&wG)implies that the 32 factorial design X has fourfold
greater efficiency for inferences regarding P12.

We further infer that 1< E(Z, X) <4 for all inferences about the parameters
exchding /312,and that Z is at least as efficient as X for these. Similarly, 0.25<
E(Z, X) <1 for all inferences in the space of parameters complementary to the con-
trast ~22– B,~. Finally, Corollary 1 shows the designs X and Z to be equally effi-
cient for all linear inferences in the four-dimensional subspace complementary to
the linear functions P22– /311 and P12.

In terms of linear parametric functions it is now seen that our methods support
a complete comparative assessment of two designs. With regard to choosing be-
tween X and Z, the foregoing facts in turn point towards the rotated design when-
ever ~22– j?l1 is of greater interest than ~12, despite the somewhat irrelevant but
greater A efficiency of the factorial design.

Table 4 provides details regarding the relative efficiencies E(2CX). The global bound
0.146 <E(T, X) <1.520 applies directly. Moreover, the design T is more efficient
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Table 4
Diagonalization of ~= A-’’2Z”2”2 with ~ui = yiUiand W= A-l’*U, where

[Yl>...>~61=[1.5205s,1.00000>0.66667,0.66667,0.25000,0.141615]’

Columns of W

–2.91580 0.00000 0.000oo 0.00000 0.000CQ 0.70580
0.00ooo 0.00000 2.00000 0.000oo 0.00000 0.00Q0O
0.000oo 0.000oo 0.00000 -2.00000 0.00000 0.000oo

– 1.18500 -1.00000 0.00000 0.00000 0.00000 0.77186
–1.185(M 1.00000 0.000oo 0.000oo 0.00000 0.77186

o.m 0.000oo 0.00000 0.00000 1.00000 0.00000

than X by a factor of 1.520 for inferences regarding 2.916/30+1. 185(/11,+ ~22); T
and X are equally efficient for inferences regarding ~22– ~1~; and T is less efficient
elsewhere. It is seen that T is least efficient with regard to 0.706/30+ 0.772(~1 ~+ ~22),
where E(T, X) = 0.146. Comparisons between T and Z gave nearly identical results,
the exception being that T and Z are equally efficient for /312.For this case the ma-
trix W containing spanning vectors is identical to the matrix W given in Table 4 ex-
cept that columns 2 and 5 are interchanged. Further details are omitted.

The foregoing conclusions are both model and design-dependent. Other com-
parisons among these designs have been made for an altered version of the model
(3. 10). If the pure quadratic terms are dropped, whereby ~11= ~22= O, then the 32
factorial design X dominates the corresponding Z and T designs uniformly, and thus
is preferred by an efficiency factor ranging from 1 to 4. In particular, we find that
0.25< E(Z, X) <1, where X has fourfold greater efficiency for inferences regarding

&, with equal efficiency elsewhere. Design X now surpasses design T except for in-
ferences about /10,where they are equally efficient. Efficiencies E(T, Z) are bounded
globally by 0.667 <E(T, Z) < 1; T and Z are equally efficient for inferences regarding

{Do>Bl}s whereas T is less efficient for {82,812}.

4. Influeuce and augmentation

4.1. Background

Standard diagnostics in regression examine the influence of individual points with
regard to estimation or the prediction variance at those points. Design augmentation
based on prediction variance is used by Wynn (1970) to obtain convergence to a D-
optimal design by adding a new observation where the prediction variance is greatest.
Measures of influence of subsets of observations are considered by Ghosh (1989)
and Takeuchi (1991) in design evaluation, and by Mukerjee and Kageyama (1990)
in the study of robustness of group divisible designs.

Here we apply results of earlier sections as tools for studying effects of deleting
subsets of observations, and in choosing among candidates in design augmentation.
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To illustrate we augment by replicating points of the original design, but the methods
apply equally to any other points of relevance to a particular experiment. Our work
transcends earlier studies in tracking precisely the effects of specific deletions and
augmentations as they alter the quality of inferences regarding linear parametric
functions which then may be identified explicitly.

4.2. Basic results

To fix notation let {i,, . . . . i,} be a subset of {1,2, . .. . n}. Then X(il, .. . . i,) is the

result of deleting rows {il, .. . . is} from X; Xz(il, ... . is) consists of the deleted rows;
and X[il, ..., is] is a matrix with n +s rows obtained on appending X2(il, ..., is) to
the original design as X[ii, ..., i,] = [X’, (X2(il , . .. . is))’]’. Referring to the model Y=
~(X)/3 = g, let Z(il, ... . is)= [f(X(il, .. . . i,)) ’f(X(il, ... . i,))]’1 whenever X(il, . .. . is) is
of full rank, with a similar expression for Z[il, .. . . i$]. We are concerned with
relative efficiencies EIX(il, ..., is),X] and EIX[il, ..., “~~1,X 1 pertaining to deletions
from and augmentations to a given design X.

For short-hand notation, when the rows {ii, ..., i~} are deleted from the experi-
mental design matrix X, we let G denote the matrix

G =f(X2(il, .. . . i~))Z(il, .. . . i,) f(Xz(il, .. . . is))’ (4.1)

with eigenvalues {dl262 > . . . 26$>0}, and we let H be the matrix

H =~(X2(i1, .. . . iJ)Zf(X2(i1, ... . is))’ (4.2)

with eigenvalues {ql Zrj2 >...> q~~ O}.
Corresponding to the relative efficiency EIX(il, .. . . is),X] are the eigenvalues of

Z1’2(Z(i1, “... . k))-l Z1’2 which we have previously denoted as {Y1> Y2>.”. z yk> 0}.
The next result relates these eigenvalues when all the matrices are of full rank.

Theorem 4. With the foregoing notation and with all matrices of full rank, the
eigenvalues of Z1’2(Z(il, ..., iS))–*Z1’2 are 1.0 with multiplicity k –s, and in addition

{Yk-r+I=(l+~r)-’=l-nr; l<r<s}. (4.3)

Proof. We assume that X is partitioned as X= [(Xz(il,..., i,))’,(X(il,..., i,))’]’and com-
pute ~(X) ’j(X) =~(X2(il,..., is))’f (X2(i1, . .. . is)) +f(X(il, .. . . iS))’f(X(il, . .. . is)). The
matrix Z’-*Z(il,..., is)= [~(X2(i1, ..., iS))’~(X2(il,..., is))]z(il, .. . . is) + Zk has eigen-

values 1.0 with multiplicity k –s, since the rank of the first matrix above is s. The
remaining eigenvalues are {(1 + dr); 1< r<s}. Equivalently, the eigenvalues of
27’2(Z(il, .. . . iS))-lZl’2 are 1.0 with multiplicity k–s and {(1 +~,)-l; 1<r<s}.
Similarly, compute

Z(Z(il, . .. ~4))-’ = [mow)] ‘1 Uw)’m) –f(x2)’f(x2)l
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= 1~– [f(X) ’f(X)] ‘1[f (Xz)’f(Xz)]

= 1~– Z[f (Xz)’f(Xz)]

having eigenvalue 1.0 with multiplicity k – S, with the remaining eigenvalues given
by {(l–q,); I<r<s}. ❑

When s= 1, the nonunit eigenvalue Ykis related to the variance in the response
space for prediction at xi with xi missing from the design. We state without proof
the following corollary.

Corollary 3. With X(i) of full rank,

(i) f (xi)’~f (xi) = f (xi) ’~(i)f (xj)/[1 +f (xi) ’~(i)f (xi)] = 1- Yk <1,

(ii) f(xi)’~(i)f(%)‘f (Xi)’zf (%)i[l ‘f (xi)’~f (xi)] = (1 - Y/c)/Yk >1.

There is an analogous theorem for designs which have
replicated rows, say {i], ..., is}. Let T denote the matrix

T= f(X2(il, . ...i~))Z[il. .. ..iJf(X2(i1. .. . ,i~))’

with eigenvalues {<12 <22 .. . 2&2 O}.

been augmented with

(4.4)

Theorem 5. With the foregoing notation and with all matrices of full rank, the
eigenvalues of Z1’2(Z[i1, . ...iJ)-l Z1’2 are 1.0 with multiplicity k –s, and

{Y,=(1

Proof. This time
Z-lZ[il, . ...i.] =
Zf (xJ’f(xJ. ❑

-L)-’ =l+vr; I<r<d.

we have (X[il,

– f Hz) f ix;?;:, =

f (X) ’f(x) + f (x*) ’f(xJ,

Ik , l_. . ..i~] and Z(Z[il, . .. . i$])– –

(4.5)

with
z~+

Thus there is a functional relationship between the relative efficiencies of a de-
leted design and the corresponding augmented design, for the rows {ii, ..., i,}. This
relationship is given next where we use Y(. ) to denote eigenvalues associated with
the design with rows deleted, and we use y[. ] for the corresponding augmented
design.

Corollary 4. In the foregoing notation, we have

{Yk-r+l(. )+ Yr[”l =2; l<r<~}. (4.6)

We next show that the basis vectors corresponding to the two eigenvalues above
are equivalent, in the sense that they differ only by a scalar factor. In other words,
we have the intuitive result that the linear parametric function most harmed by
deleting a row, is the same linear function most improved by replicating that row.
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Theorem 6. With the foregoing notation and with all matrices of full rank, we have

{[yk-r+l(”)]-”2 wk-r+l( ”)=(yr[ ”])-1’2wr[ ”]; <r<s}. (4.7)

Proof. Recall that Z(Z(il, . .. . i~))–l=Ik – Z[f(X2)’f(X2)] and ~(~[il, . . . . i~])–l= “
Ik + Z[.f(X2)’f(Xz)] and so these two matrices have the same eigenvectors, say,
{x,,..., xk}. The eigenvectors of Z1’2(Z[i1, ....i~])-l Zl’2. Say {~~,.. . . uk}, satisfy
{ur=z-I/z Xr; 1<r< k}. The basis vectors from Section 3.1 are given by Wr[ii, ..., is]=

(Y,[il, . ...iJ)1’2Z-1’2 0r=(yr[il. .. . . iJ)l’2Z-lxr. Similar developments apply for the

design with rows {il,..., is} deleted. •l

4.3. Applications

To fix ideas we focus on the standard 32 factorial design together with the model
(3. 10). Three types of design points maybe identified, namely, vertex, edge and in-
terior points, as typified by rows 1, 2 and 5 of Table 1. We now proceed to evaluate
the relative efficiencies E(X(i), X) and E(X(i,j), X) as in Section 3 for the model
(3.10), and similarly for augmented designs X[i] and X[i,j], with {i,je {1,2,5}}.
Details follow, where it suffices to report the vector y = [y}, ..., yG]’of eigenvalues
together with the corresponding basis vectors {Wl,..., wb} spanning subspaces of
R6.

In particular, for E(X(l), X) the eigenvalues are y(1)= [1 1111 0.194]’, in-
dicating equal efficiency except for the linear parametric function

uL+f32)- WO+A1 +B22+/312) (4.8)

corresponding to wfj(l) = 0.491 [–1 1 1 –1 –1 – l]’. If we now augment the original
design on duplicating the first row, we have for E(X[l], X) the eigenvalues y[l] =
[1.806 1111 l]’, with WI[l]=l.497[–1 11 –1 –1 –l]. The augmented design is
more efficient for (P1+~2)–(D.+~11 + ~22+ ~12) by a factor of 1.806, with the
original and augmented designs having equal efficiencies elsewhere. Corollary 4
assures that Y6(1)+ yl [1] = 2 and Theorem 6 that WI[1]= (1.806/0. 194)1’2wG(l).

Similar results for E(X(2), X) are y(2) = [1 1111 0.444]’ and wG(2) =
0.894[–1 10 –1 OO]’,indicating a loss of information about /31– /30–/311, with equal
efficiencies elsewhere. Augmenting X on duplicating its second row gives y [2]=
[1.556 1111 l]’, with wl[2] now taking the value WI[2]= 1.673 [-1 10-10 O]’,
improving by a factor of 1.556 the efficiency for inferences regarding ~1–P.–B11.

Deleting the center run gives y(5) = [1 1111 0.444]’ and ~G(5)= 0.894[1 0000 O]’
for E(X(5), X), indicating a loss of information about ~. only. Adding an extra
center run gives y[5] = [1.5561 1 1 1 1]’ for E(X[5], X), the revised vector W1[5]
becoming W,[5]= 1.673 [1 O 000 O]’. Thus the greatest loss of information occurs
when the vertex row 1 is deleted, or equivalently from Corollary 4, the greatest in-
formation is gained when a vertex row is replicated. The loss of information is the

,\
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same when an edge row or an interior row is deleted. However, the correspond
linear parametric functions are very different.

Similar results were found for the design Z featured in Section 3. Somewhat
ferent weights appear on occasion in the spanning vectors. Additional details
omitted.

Further comparisons entail dropping pairs of points. Retaining the 32 fact
design for generating X, the case E(X(l, 2), X) gives y(l, 2) = [1 1110.574 0.0
indicating a severe loss of information regarding the parametric function

corresponding to W6(1,2) = [–0.359 0.3590.227 –0.359 –0.227 –0.227]’. Ano
one-dimensional linear subspace of note is generated by the spanning vector Wj(1
[-0.416 0.416-0.587-0.4160.587 0.587]’ corresponding to 0.416(~1-~O-~11
0.587 (B2– /322– ~12). Inferences about all other linear parametric functions
comparable whether or not rows 1 and 2 have been deleted. If the design is
augmented on duplicating rows 1 and 2, we find for E(X[l, 2], X) that y[1
[1.936 1.426111 l]’, with WI[I,2] and WZ[I,2] as scalar multiples of W6(1,2
w5(l, 2), respectively.

Similar results for E(X(l, 5),X) give Y(1,5) = [1 1110.4870. 152]’, together
the vectors

Wj(l, 5) = [1.256 –0.346 –0.346 0.3460.346 0.346]’, (

W6(1,5) = [–0.245 0.3960.396 –0.396 –0.396 –0.396]’, (

corresponding to the parametric functions 1.256/30– 0.346(~1 + 82 – fll ~– ~22
and 0.396(/3] + ~2 – /71~– /322– ~12)– 0.245j$, respectively. The corresponding d
augmentation gives y[l,5] =[1.858 1.5131 1 1 1]’ for E(X[1,5], X), with W
and W2[1,5] now as scalar multiples of W6(1,5) and W5(1,5), respectively.

Conclusions for E(X(2, 5),X) are straightforward, giving the vector of
parative efficiencies Y(2,5) = [1 1 1 1 0.667 0.222]’ together with the spanning ve

W5(2,5) = [0 –1 O 10 O]’
and

W6(2,5) = [–0.756 0.3780 –0.378 O O]’.

On the other hand, a design augmentation yields y[2, 5] = [1.7781 .333111
E(X[2, 5], X), with WI[2,5] and W2[2,5] as scalar multiples of W6(2,5) and W
respectively. This augmented design has enhanced capacity for the linear co

(811–~1), by a factor of 1.333, and for 0.378(P1 –/711)- O.755B0, by a fact
1.778. Elsewhere the 32 factorial design, and its augmentation via duplicating
(2, 5), have comparable efficiencies. Comparing the eigenvalues Y(1,2), Y(1,5
Y(2,5), we find that the smallest loss of information occurs when the pair of
(2, 5) is deleted. In the next section we discuss the interpretation of Z“2[Z(. )]-]

To examine the robustness of a design, some authors use a scalar design cri
divided by the number of observations; see, for example, Andrews and<erzb



..

D. R. Jensen, D. E. Ramirez / Linear inference 65

(1979). Our view is different. In this section on augmentation and deletion, our goal
is to quantify not only the gain or loss of information, but also to identify those
Iinear inferences most affected by replicating or deleting observations.

4.4. Measures of influence

We next relate the eigenvalues determined in the preceding section to measures of
influence studied in the literature. Mukerjee and Kageyama (1990) have investigated
robustness of group divisible designs to loss of sets of design points. To compare
the design X to the same design with rows {i, < 0.0<i$} missing, say X(il,..., i,),
they use for a measure of influence the quantity

el(Z(il, .. . . is)) = tr[~(X)’~(X)] ‘l/tr[~(X(il, .. . . i,)) ’f(X(il, . . . . i,))]’1

= tr Z/tr Z(il, . . ..i~). (4.14)

if all inverses exist, and zero if f(X(il, .. . . is)) is not of full rank. For example, with
the model (3. 10) together with the standard 32 factorial design having the first row
(vertex) deleted, the influence is el = 2. 1389/3.0952 = 0.6910. Table 5 contains the
values for e, corresponding to the three designs we have studied in which various
rows have been deleted. This measure of influence would indicate the greatest loss
of information when the edge row 2 is deleted. For a single scalar we would prefer
to compute tr [.Z(Z(il, . . . . is))-]]. we will return to this point shortly.

Ghosh (1989) has introduced a measure of influence to identify subsets of influen-
tial observations at the design stage. His measure, in the spirit of Cook’s (1977) dis-
tance, is defined as ll(.Z(il, .. . . is)) = a2tr[~(X2(i1, .. . . iS))Z(il, .. . . iS)f(X2(i1, .. . . is))’],
where X2(il, ..., i$) is the (s x k) matrix whose rows are the s rows deleted from X.
In the notation of Section 4.2, this is 11(Z(il,..., i,)) = cr2tr G = CJ2(& +... + a,). In

particular, with one row deleted, say row i, we have the quantity ll(~(i)) =

Table 5
Measures of influence pertaining to rows 1, 2 and 5 for three designs, in-

-2 ~, and the nonunit ei&Wdue ~ieluding el, u

Matrix e, 0-21, Yi

z(l) 0.6910 4.1428 0.1944
Z(2) 0.8148 1.2500 0.4444
Z(5) 0.6417 1.2500 0.4444

Q(l) 0.7596 4.1428 0.1944
L2(2) 0.7661 1.2500 0.4444
Q(5) 0.6779 1.2500 0.4444

4(1) 0.9000 1.6667 0.3750
A (2) 0.8514 1.6667 0.3750
A(5) O.0000 ** **

**Not defined. \
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~2~(xi)’Z(i)~(xi ). For example, given the model (3. 10) and the standard 32 fac-
torial design with row 2 (an edge) deleted, we compute 11(Z(2)) = 02j(x2)’2(2)j(x2.) =

1.25Oz. Recalling that Y(2)= [1 1 1 11 0.444]’, we note that Theorem 4 relates the
nonunit eigenvalue 0.444 to the measure of influence II (X(2)) by the rule 0.444=
1/(1 + 1.25). Our work transcends earlier studies by Ghosh (1989) in that we are able .
to relate the loss of efficiency directly to the loss of information about B1–Do–j311
through the vector WGas the last column of W= Z-l’* V, where V consists of the

1 1’2 Vahtes for the Ghosh (1989) index 11, andeigenvectors of ~(2)= Z1’2[Z(2)]” Z .
corresponding values for the nonunit eigenvahte ~i, are given in Table 5 for the
three types of designs studied here in which various rows have been deleted.

The Ghosh (1989) measure of influence indicates the greatest loss of information
when the vertex row 1 is deleted. This is consistent with the calculations in Sec-
tion 4.3 since a large value of 61 corresponds to a small value for the efficiency Yk.

When two or more rows have been deleted from X, the nonunit eigenvalues

{Yi,~ . . . . yi~} Of l’(i~, .. ..i~)=z’’z[z(il “~. .. . Is)]’1 ~*’2 will measure the loss of efficien.
CY, and the associated eigenvectors {~i,j..., ui~}relate directly to those linear in-
ferences wj/3, with {~i = 2-1’2 ui, 1<i< S}, which will suffer a loss of information.
If the researcher wishes to present a composite scalar measure of influence due to
deleting rows {il, . .. . is}, then the trace or determinant of ~(il, ..., is) can be used.
As an example, with X as the 32 factorial design and with rows 1 and 2 (a corner
and edge) deleted, we have Y(1,2) = [1 1 1 10.574 0.067]’, and so tr(~(l,2)) = 4.638
and 1~(1, 2) I=0.0367. The measure of influence introduced by Ghosh (1989) would
be ZI(Z(1,2)) = a2tr G= 15.25a2, where

[1G = f(q)’

[1

11 6

f(x~)’
Z(l, 2) [f (X,)f (x*)] =

6 4.35 “
(4.15)

The matrix G has eigenvahtes 14.5090 and 0.7409 which are related to 0.064 and
0.574 respectively by Theorem 4, for example, 0.064= 1/(1+ 14.5090). The three
measures of influence, tr(~), IT I, and 11(~), all indicate that the smallest loss of
information occurs when the pair (2, 5) is deleted. The values for 1~I are given in
Table 6.

Table 6
Determinants of r= Q-’’2Zf”2”2 for designs obtained on deleting and
augmenting rows (i) or (i,j) in a 32 factorial design for the model (3.10),
where Z= [~(X )’j(X )]–‘ and Q is obtained on deletion or augmentation
as appropriate

Row(s) (1) (2) (5) (1,2) (1,5) (2,5)

Deleted 0.194 0.444 0.444 0.037 0.074 0.148
Augmented 1.806 1.556 1.556 2.761 2.796 2.370
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5. Summary

To help summarize these numerical results for the model (3.10), we record in
Table 6 the determinant of the matrix r= f2-*’2Sf2-l’2 with Z’= [~(X) ’~(X)]’1 and
with f2 as the corresponding matrix for designs determined by the deletion and “
augmentation process. The determinants and traces are useful as composite scalar
indices of efficiency. In applications the linear parametric functions are of primary
interest and must be acknowledged in order to utilize effectively the fine structure
contained in the eigenstructure of r.

Methods presented here share common ground with those of Ghosh (1989) and
Mukerjee and Kageyama (1990). Specifically, these methods depend exclusively on
the designs in question and are independent of empirical observations. All such
comparisons can be made numerically during planning before an experiment has
been done. These methods can be contrasted with those of Cook (1977) and Takeuchi
(1991), for example, which are data-dependent and thus of value in reassessing a
particular experiment retrospectively.

Computations are easily programmed using standard statistical software. Exten-
sive numerical studies to evaluate alternative designs have been undertaken by the
authors, along the lines of examples reported here, using SAS and Minitab software.
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