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ABSTRACT
Given a model {Y = Xβ + ε} with Fisher information matrix� = X ′X,
a principal objective is to find information enhancing transformations
T for which T�T ′�L� under the positive definite ordering, so as to
improve essentials in linear inference. This is achieved through proper-
ties of congruences togetherwith basic orderings of linear spaces. These
foundations in turn support a new class of geometric mixture models
on “mixing” the original design with another to assume the role of “tar-
get,” to the following effects. Ridge, surrogate, and other solutions are
often used to mitigate the effects of ill-conditioned models. Instead,
in this study an ill-conditioned design matrix X is mixed with a well-
conditioned design as target, leveraging the former toward the latter
as the mixing parameter evolves, thus offering an alternative approach
to ill-conditioning. Themethodology is demonstrated with case studies
from the literature, where the geometric mixtures are compared with
the ridge, surrogate, and recently found arithmetic mixture models.

1. Introduction

Consider {Y = Xβ + ε} with X in Fn×p as a design matrix. The Fisher Information Matrix
(FM), namely I(X ) = X ′X, assumes a central role in the analysis and interpretation of linear
models. As a first objective we seek information-enhancing transformations T (X ) whose FM
matrices I(T (X )) dominate I(X ) under the positive definite ordering (S+

p , �L) of Loewner
(1934), as this in turn will ensure the ordering of essential design diagnostics. A first intuitive
view suggests that this might be achieved on rescaling the columns of X → XDδ with Dδ

as the diagonal matrix {Dδ = Diag(δ1, . . . , δp); δi ≥ 1}. However, this fails, as the following
counter example demonstrates.

Counter Example 1. Take p = 2;Dδ = Diag(10, 1.1), and X ′X = [ 1.0 −1.0
−1.0 2.0 ]. Then the dif-

ference is DδX ′XDδ − X ′X = [ 99.00 −10.00
−10.00 0.42 ] with determinant −58.42, so that DδX ′XDδ �L

X ′X . This despite having scaled the first column of X by the substantial factor of 10.

Thematter clearly ismore delicate, whichwe nonetheless achieve through congruent trans-
formations and basic ordering properties of linear spaces. In particular, designs having the
enhanced FM matrices are exhibited explicitly through their singular value representations.
This achievement leads to our second objective, namely, to construct geometricmixtures (GM)

of X and another design to be designated as a “target”. For the case of ill-conditioned systems,
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the target may be chosen to be well conditioned, providing yet another venue for mitigating
the ill effects of ill-conditioned models through biased estimation.

Uses for the discovery of FM-enhanced designs include the following. In the planning stage
a prospective design may be reassessed as to whether a nearby design may be found to be
more informative, but still satisfying design constraints. Additionally, such design points may
be reserved for use in subsequent experiments. Otherwise the user may elect to undertake a
non standard analysis of the original design, featuring smaller variances but biased estimators,
taking the mean square error (MSE) to quantify the Bias–Variance tradeoff. This paper is
organized as follows. Conventions for the study are established in Section 2. The principal
findings are given in Section 3 to include foundations. The case studies that illustrate the
concepts are given in Section 4. Section 5 presents the discussion and summary of the paper.
Supporting materials are deferred in the Appendix.

2. Preliminaries

2.1. Notation

Identify Rp as Euclidean p-space; Fn×p as the real (n × p) matrices of rank p < n; and
Sp as the real symmetric (p× p) matrices, with S0

p, and S+
p as their positive semidefinite

and positive definite varieties. The transpose, trace, and determinant of A are A′, tr(A),

and |A |; and special arrays are the unit vector 1p = [1, . . . , 1]′ ∈ Rp, the unit matrix I p,
and a typical diagonal matrix Dα = Diag(α1, . . . , αp). Groups acting on Rp include the
real orthogonal group Op. The spectral decomposition of A is A = ∑p

i=1 αiqiq′
i ∈ S+

p with
λ(A) = {α1 ≥ · · · ≥ αp > 0} as its eigenvalues. The singular decomposition of X ∈ Fn×p is
X = ∑p

i=1 ξipiq′
i = PDξQ′ in which P = [p1, . . . , pp] contains the left singular vectors as

semiorthogonal in Hn×p, Q = [q1, . . . , qp] ∈ Op contains the right singular vectors, and ele-
ments ofDξ = Diag(ξ1, . . . , ξp) are its singular values given by σ (X ) = {ξ1 ≥ · · · ≥ ξp > 0}.
Moreover, for a vector a = [ a1, . . . , ap ], and for b = [ b1, . . . , bp ] having non zero elements,
by a · b is meant [ a1b1, . . . , apbp ] and by a/b = [ a1/b1, . . . , ap/bp ].

Standard usage refers to independent, identically distributed (iid) variates, their cumulative
distribution function (cdf) and L(Y ) as the distribution ofY , with Nk(μ,�) as the Gaussian
law on Rp having the mean E(Y ) = μ and dispersion matrix V(Y ) = �.

3. The principal findings

3.1. Overview

The models here are {Y 0 = β01n + Xβ + ε} with intercept, the columns of X ∈ Fn×p having
been centered about their means such that 1′

nX = 0. Throughout X = PDξQ′ is given in its
singular value representation. In addition, elements ofY 0 also are centered such that

Y 0 −Y1n = Y = Xβ + ε (1)

The conventional assumptions A1. E(ε) = 0 and V(ε) = σ 2In; A2. L(ε) = Nn(0, σ 2In) are
set to apply, where σ 2 is taken to be unity unless stipulated otherwise. The OLS solutions are
̂βL = (X ′X )−1X ′Y .

We seek a design {X → X θ} altered so as to enhance its FM matrix I(X θ) = X ′
θX θ beyond

that of I(X ) = X ′X as intrinsic to the original model. The following is basic.
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Definition 1. In reference to X = PDξQ′, ensembles of matrix expansions in Fn×p of note
are

SDH = {X = LDξQ′| L ∈ Hn×p}; SDξ
H

= {X θ = LDθQ′| L ∈ Hn×p; θi ≥ ξi; 1 ≤ i ≤ p}

3.2. Information-Enhanced designs

We next reconfigureX = PDξQ′ into designsX θ having enhanced FM matrices. These in turn
are characterized within a large class, to include their explicit singular value expansions. All
admit numerical evaluations through routinely available algorithms. To these ends take�

1
2 =

QDξQ′ as the spectral square root of� = X ′X = QD2
ξQ

′.
A fundamental result, and the key to our approach, rests on the existence of W ∈

Fk×k having singular values {σ (W) = ω = (ω1, . . . , ωp); ωi ≥ 1}. Then 	 represents a FM-
enhancement of � if and only if 	 = �

1
2W′W�

1
2 from Theorem A.1, Appendix, with W′W =

Q1D2
ωQ

′
1 as its spectral form, so that

	 = (QDξQ′)
(
Q1D2

ωQ
′
1

)
(QDξQ′) �L�

= QDξQ′QD2
ωQ

′QDξQ′ = QD2
ξ·ωQ

′�L�

ThatQmay be substituted forQ1 follows sinceQ1D2
ωQ

′
1 �LIk if and only ifQD2

ωQ
′ �LIk.These

steps in turn serve to establish conclusion (i) of the following pivotal result.

Theorem 1. Consider the design X = PDξQ′ together with I(X ) = �, and let D2
ξ·ω = D2

θ.

Then
(i) 	 comprises a FM-enhancement of � if and only if 	 = QD2

θQ
′ for {θ 2

i ≥ ξ 2
i ; 1 ≤ i ≤

p}.
(ii) The expansion 	 = QD2

θQ
′ is the spectral decomposition for 	, and X θ = PDθQ′ the

singular value expansion of X θ having I(X θ ) = 	;
(iii) The class SDξ

H
of Definition 1 comprises an equivalence class of designs X θ ∈ SDξ

H
whose

FM-matrices dominate that of X under the ordering (S+
p , �L).

(iv) In particular, taking X θ = PDθQ′ preserves the left- and right-singular vectors of X .

Proof. Conclusion (i) is from QD2
ξ·ωQ

′ since elements of ω satisfy {ωi ≥ 1; 1 ≤ i ≤ p}.
With Q = [q1, . . . , qp], conclusion (ii) follows on verifying {(qi, θ 2

i ); 1 ≤ i ≤ p} as the
eigenvector–eigenvalue pairs for 	. Next recall that the FM-matrix I(X ) = X ′X does not
depend on P, and similarly I(X θ ), so that I(LDθQ′) = I(PDθQ′) for any L ∈ Hn×p, i.e., the
same I matrix holds for all. Accordingly, it suffices to choose any L ∈ Hn×p, or equivalently
any X θ ∈ SDξ

H
of Definition 1, to establish conclusion (iii) and then (iv) as a special case. �

3.3. Geometric mixtures

Arithmetic mixtures (AM) of FM matrices, namely {(1 − t )X ′X + tZ′Z; t ∈ [ 0, 1 ]}, were
developed to advantage in Jensen and Ramirez (2017) for combating collinearity. An allied
concept follows.

Definition 2. The collection of designs {X θ(t ) = PDiag(ξ1−tωt )Q′; t ∈ [ 0, 1 ]} is said to
embody a geometric mixture (GM) of the vectors (ξ, ω), with PDωQ′ as the target design.

To illustrate, Table 1 refers to the ill-conditionedBody FatData fromNeter et al. (1996)with
n = 20, p = 3 regressors, and singular values σ (X ) as in the first row of Table 1. In an attempt
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Table . Singular values [ ξ1(t ), ξ2(t ), ξ3(t ) ]; t ∈ [ 0, 1 ] of the geometric mixture designs {X θ =
PD(ξ

(1−t )
i ωt

i )Q
′} as t varies for the Body Fat Data with target ω′ = [ξ1, ξ1, ξ1], and condition number

κ(t ) = ξ1(t )/ξp(t ).

t ξ1(t ) ξ2(t ) ξ3(t ) κ(t )

. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .

to improve conditioning, as well as its FM matrix, take the target to be Xω having σ (Xω) =
[ω, ω, ω ] withω = ξ1 and condition number κ = 1.0 as listed in Table 1. In consequence, the
GM model {X θ(t ) = PDiag(ξ1−tωt )Q′; t ∈ [ 0, 1 ]} has condition numbers κ(t ) decreasing
monotonically with increasing t in [ 0, 1 ] as in the final column of Table 1.

Remark 1. In practiceXω = PDωQ′ may be considered as a “target”. Then the geometric mix-
ture provides a continuum, leveraging the beginning designX ξ more andmore toward its tar-
get as {t ↑ ∈ [ 0, 1]}. By construction, the altered design X θ tends to the “target” Xω as t ↑ 1
when the latter is well-conditioned. This desirable property does not hold for ridge and sur-
rogate designs where as k → ∞ the perturbed design Xk is infeasible in the limit with entries
tending to infinity.

3.4. Properties of the solutions

Linear estimators from the altered designX θ arêβθ = (X ′
θX θ )

−1X ′
θY . Essential properties are

listed in Table 2. These follow directly from first principles, albeit sometimes tedious determi-
nations. Standard criteria for design evaluation are [κ, A, D, E] where for design X , we have
κ(X ) = ξ1/ξp as the ratio of its extreme singular values; if V(̂βL) = � = (X ′X )−1 underOLS,

then A = tr(�), D = |�|, and E = λ1(�), its largest eigenvalue. These values are identified
in Table 2 as they apply for X θ .

3.5. MSE Considerations

In estimating β using β̃ with bias B(̃β) = E(̃β − β) = (β0 − β), its mean square error
is MSE(̃β) = tr (V(̃β)) + (β0 − β)′(β0 − β), effecting the variance-bias trade-off under

Table . Conversion of X = PDξQ
′ to the FM enhanced X θ = PDθQ

′, together with the resulting linear
estimators and their essential properties.

FM-Enhanced regression Properties

X → Xθ = PDθQ
′ E(̂βθ ) = QDt

ξ
D−t
ω Q′β

̂βθ = (X ′
θ
Xθ )

−1X ′
θ
Y . V(̂βθ ) = �θ = QD−2(1−t )

ξ
D−2t
ω Q′

(̂βθ −̂βL) = Q[D−(1−t )
ξ

D−t
ω − D−1

ξ
]P′Y λ(�θ )˜ = {ξ−2(1−t )

i ω−2t
i ; 1 ≤ i ≤ p}

Efficiency indices [κ, A, D, E]

κ(Xθ ) = max{ξ 1−t
i ωt

i }
min{ξ 1−t

i ωt
i }

A = tr(D−2(1−t )
ξ

D−2t
ω )

D = |(D−2(1−t )
ξ

D−2t
ω )| E = max{ξ−2(1−t )

i ω−2t
i ; 1 ≤ i ≤ p}
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squared error loss. Equivalently, taking ψ = Q′β in canonical form with Q orthogonal, and
ψ̃ = Q′β̃, it suffices that MSE(̃β) = MSE(ψ̃). To these ends consider the canonical form in
whichψ = Q′β,ψθ = Q′βθ, together with ψ̂ and ψ̂θ.Accordingly, on returning to Table 2 we
have the following pivotal result.

Theorem 2. Consider the MSE for̂βθ as in Table 2. Then
(i) MSE(̂βθ ) = MSE(ψ̂θ ) = σ 2tr (D−2

ξ D 2t
ξ D−2t

ω ) + (ψθ − ψ)′D 2t
ξ D−2t

ω (ψθ − ψ).

(ii) For ω = [ξ1, . . . , ξ1], the elements of (D 2t
ξ D−2t

ω ) are all less than or equal to unity for
t ∈ (0, 1).

Proof. On reinstating the scalar σ 2 in Table 2, we have the bias B and dispersion matrices in
equivalent forms as

B = [E(̂βθ ) − β] = Q
(
Dt

ξD
−t
ω − I p

)
Q′β → (

Dt
ξD

−t
ω − I p

)
ψ

V(̂βθ ) = σ 2QD−2(1−t )
ξ D−2t

ω Q′ → V(ψ̂θ ) = σ 2D−2(1−t )
ξ D−2t

ω

as in conclusion (i ), giving conclusion (ii) directly. �
Remark 2. Thus with ω = [ ξ1, . . . , ξ1] the variance term decreases from σ 2 ∑p

i=1
1
ξ2i

at t = 0

to σ 2 p
ξ21

at t = 1, while the bias term increases from 0 to ∞. As MSE is a function of the
unknown parameters σ 2 and β, finding the minimal MSE currently remains insolvable.
Nonetheless, knowing the structure of MSE as in Theorem 2 may prove helpful to prospec-
tive users.

4. Case studies

4.1. Basics

We illustrate with near collinear data, the columns ofX having been both centered and scaled.
Hallmarks of ill-conditioning include the Variance Inflation Factors (VIFs) as ratios of actual
to “ideal” variances of estimators had the columns of X been linearly independent; and noted
by Marquardt and Snee (1975) as “the best single measure of the conditioning of the data.”
Rules-of-thumb that VIFs be accorded of consequence are those exceeding 10 or even 4; see,
for example, Myers (1990), O’Brien (2007) and Sengupta and Bhimasankaram (1997).

To continue, take VM = max{VIF; 1 ≤ i ≤ p} to gage the overall ill-conditioning of the
system. Several design features to be reported for each modified X θ with dispersion matrix
�θ are

[VM, κ, A, D, E, M, MAD, �] (2)

where [κ, A, D, E] are as defined but now D = log |�θ|; M is Mauchly’s (1940) criterion for
the sphericity of the Gaussian contours of L(̂β). In addition, MAD(X θ ) = 1

np

∑ |xi j(θ ) − xi j|
gages the discrepancy between X = [xi j] and its modified X θ = [ xi j(θ )], and �(Xω) =∑ |ξ j(θ ) − ξ j| for singular values. Clearly [κ, A, D, E] ideally would be small, whereas
Mauchly’s M(·) would increase toward unity for t increasing in [ 0, 1 ], and thus toward more
nearly spherical contours, in increasingly well conditioned data.

Of the designs to be examined. Hadi (2011) identified the Surrogate procedures of Jensen
and Ramirez (2008) as among the principal techniques for mitigating collinearity. The Sur-
rogate Xk is listed in Table 3, as are Zt and Gt as the arithmetic (AM) and geometric (GM)

mixtures of their respective FM matrices. Choices for k ∈ [ 0, ∞) in Xk, and for the mixing
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Table . Altered designs studied numerically, including the Surrogate Design Xk; the AMmixture Zt with

ξ
2 = (

∑p
i=1 ξ

2
i )/p; and the GMmixtureGt , together with their FM matrices.

Item Design Fisher Information Matrix

Xk P Diag((ξ 2i + k)
1
2 )Q′ Q(D2

ξ
+ kIp)Q

′

Zt P Diag([(1 − t )ξ 2i + tξ 2 ]
1
2 Q′ QDiag([(1 − t )ξ 2i + tξ 2 ])Q′

Gt PDiag(ξ 1−t
i ωt

i )Q
′ QDiag(ξ 2(1−t )

i ω2t
i )Q′

Table . A small design X ′ = G′
0; and its GMmixtureG′

t at t = 0.0666.

−. . −. . −. . . .

. . . . . . − . − .
G′
0 − . . − . . − . . − . .

− . . − . . − . . . − .
G′
t . − . . . . − . − . − .

− . . − . . − . . − . .

parameters t ∈ [ 0, 1], are derived numerically so as to achieve maximal VM = 10 consistently
across case studies, to place them on common ground. All computations are supported by the
Maple software package.

Remark 3. (i) Ridge solutions are not included, subsumed instead by Surrogate solutions,
as reported here, having uniformly smaller residual sums of squares point-wise for each
k > 0; see Jensen and Ramirez (2010a). (ii) In addition, although intended to ameliorate ill-
conditioning over a wide range of k, Ridge often must be abandoned in favor of OLS for val-
ues of k exceeding a threshhold k0 as stipulated in Jensen and Ramirez (2010b). This in turn
would further complicate computations for Ridge solutions. (iii) Finally, the original defini-
tion of VIF as given in Marquardt (1970) is in dispute, allowing values less than unity and
thus “inconsistent with the theoretical definition ofVIF.” See García et al. (2015a, 2015b) and
Salmerón et al. (2016).

Case studies follow.
(1) A Small Design. The data having n = 8 and p = 3 are from Jensen and Ramirez

(2017) as in Table 4. The purpose here is to exhibit the design matrix X = PDξQ′ as
G0, its GM mixture with Xω = PDiag(ξ1, ξ1, ξ1)Q′ as Gt , so that the reader may gage
the proximity of G0 to Gt visually, in addition to the diagnostics MAD(Gt ) = 0.0060
and �(Gt ) = 0.0504 as in Table 5. Observe that t = 0.0666 is determined to achieve
VM = 10. This in turn reflects a negligible displacement of Gt fromG0, as may be seen
on comparing their respective elements in Table 4. Enhancement of I(X ) = � is tan-
tamount to diminishing the corresponding dispersion matrix� = �−1, a compelling
reason to enhance I(X ). Nonetheless, despite the negligible shift t = 0.0666, reduc-
tions in the diagnostics [ κ,A,D,E ] amount to [ 12.25%, 21.74%, 11.76%, 22.89% ],
respectively. In addition to decreases in the diagnostics [κ, A,D,E ], conditioning of
the dispersion matrix has reduced from 49.28 for OLS under G0, to 37.95 for Gt .

Table . A small design X ′ = G′
0; its GMmixtureG′

t at t = 0.0666; and diagnostics for each.
Diagnostics VM κ A D E M MAD �

G0 . . . . . .  
Gt . . . . . . . .



COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 4901

To illustrate that SDH fromDefinition 1 is a class of designs all with a commonmoment
matrix, consider the design G0 = PDξQ′ from Table 4. For L ∈ Hn×p we set L = PR
with R ∈ Op as the (p× p) varimax rotation matrix from theMinitab Factor Analysis
procedure applied to P. The matrixW = LDξQ′ ∈ SDH satisfiesW ′W = X ′X and is
given by

W ′ =

⎡
⎢⎣

−0.3315 0.3721 −0.6251 0.2033 −0.3315 0.3721 0.2516 0.0890
−0.1159 0.2693 0.3569 0.2724 −0.1159 0.2693 −0.1612 −0.7749
−0.2304 0.2690 −0.6760 −0.1278 −0.2304 0.2690 0.4404 0.2863

⎤
⎥⎦

to be compared with G0 of Table 4.
Surveys of case studies from the literature are listed next. Comparative summaries from
their numerical analyses are given subsequently.

(2) Acetylene Data. Taken from Marquardt and Snee (1975), the Reduced Quadratic
Model has n = 16 and p = 5 with explanatory variables x1 : reactor temperature; x2 :
ratio of H2 to n-heptone; x3 : contact time; x1x2 : interaction; x21 : squared tempera-
ture; and y : the conversion percentage of n-heptone to acetylene. The conditioning
improves from κ(X ) = 218.33 → {κ(Xk) = 7.22, κ(Zt ) = 7.22,κ(Gt ) = 7.08}.

(3) Body Fat Data. The data are given in Neter et al. (1996) with n = 20 and p = 3
explanatory variables, namely x1 : tricep skinfold thickness; x2 : thigh circumference;
x3 : midarm circumference; and y : the amount of body fat. The conditioning improves
from κ(X ) = 53.33 → {κ(Xk) = 6.17,κ(Zt ) = 6.17, κ(Gt ) = 6.17}.

(4) French Economy Data. Analysis is given in Chatterjee and Hadi (2006) to model the
French Economy for years 1949 to 1959 with n = 11 and p = 3 explanatory variables,
namely x1 : domestic production; x2 : stock formation; x3 : domestic consumption;
and y : imports. The conditioning improves from κ(X ) = 27.24 → {κ(Xk) = 6, 16,
κ(Zt ) = 6.16,κ(Gt ) = 6.16}.

(5) HospitalManpowerData.As reported inMyers (1990), the Hospital Manpower Data
comprise records at n = 17 U. S. Naval Hospitals with p = 5 regressors, specifically
x1 : average daily patient load; x2 : monthly X-ray exposures; x3 : monthly occupied
bed days; x4 : eligible population in the area divided by 1000; x5 : average length of
patients’ stay in days; and y : monthly man-hours. The conditioning improves from
κ(X ) = 278.87 → {κ(Xk) = 7.68, κ(Zt ) = 7.68,κ(Gt ) = 7.97}.

(6) Number of Active Metropolitan Physicians. The Standard Metropolitan Statistical
Area (SMSA) data have n = 141 and p = 3 from the website.1 The variables are x1 :
total population (in thousands); x2 : land area (in square miles); x3 : total personal
income (in millions of dollars); and y : number of active physicians. The conditioning
improves from κ(X ) = 29.22 → {κ(Xk) = 6.20,κ(Zt ) = 6.20, κ(Gt ) = 6.19}.

(7) Summary. Essentials from these studies are summarized in Table 6 with reference
to their [ κ,A, D, E ] efficiency indices. The well-conditioned PDiag(ξ1, . . . , ξ1)Q′ is
the target design for the GM mixture Gt where values for ξ1 are listed in Table 6 for
each case study. For the AM mixture, the target design for Zt is the well conditioned
PDiag([ξ 2 ] 12 , . . . , [ξ 2 ] 12 )Q′.

The parameter k ∈ [ 0, ∞ ) for Xk, and the mixing parameters t ∈ [ 0, 1 ] for Zt and Gt ,

were chosen to give VM = 10 in order to place the altered designs on comparable scales.
In regard to the [A,D,E ] efficiencies, summary comparisons among {Xk,Zt ,Gt} are given

in Table 7 where X ≈ Z identifies (X,Z) on balance to be comparable. Recalling that smaller

 [https://onlinecourses. science.psu.edu/stat/sites/onlinecourses.science.psu. edu.stat/files/smsa.data]

https://onlinecourses. science.psu.edu/stat857/sites/onlinecourses.science.psu. edu.stat857/files/smsa.data


4902 D. R. JENSEN AND D. E. RAMIREZ

Table . Comparison of [ κ,A,D,E ] efficiency indices across choices among (Xk,Zt ,Gt ) together with ξ1
for the five case studies.

Xk Zt Gt

κ2 A D E κ2 A D E κ2 A D E

Acetylene (ξ1 = 1.8222)
. . . . . . . . . . . .
Body Fat (ξ1 = 1.4375)
. . . . . . . . . . . .
French Economy (ξ1 = 1.4139)
. . . . . . . . . . . .
Hospital Manpower (ξ1 = 2.0487)
. . . . . . . . . . . .
SMSA (ξ1 = 1.4255)
. . . . . . . . . . . .

Table . Summary comparisons of {Xk,Zt ,Gt}with regard to the [A,D,E ] efficiency criteria.

Case Study κ(X ) Preference Order

Acetylene Data . Gt ≺ Xk ≺ Zt
Body Fat Data . (Xk ≈ Gt ) ≺ Zt
French Economy Data . Xk ≈ Zt ≈ Gt
Hospital Manpower Data . Gt ≺ Xk ≺ Zt
SMSA Data . Xk ≈ Zt ≈ Gt

[A,D,E ] values reflect greater efficiencies, we use the designation X ≺ Z to reflect smaller
thus more efficient [A,D,E ] values for X . Also listed are values κ(X ) for conditioning of the
original data. For the Acetylene and Hospital Manpower Data, more highly ill-conditioned at
the outset, the GMmixture Gt is preferred in efficiency to the Surrogate Xk, in turn preferred
to the AMmixture Zt . For the intermediate κ(X ) = 53.33 in the Body Fat Data, Xk andGt on
balance are comparable but preferred to Zt . On the other hand, (Xk,Zt ,Gt ) are comparable
under the smaller initial conditioning of the French Economy and SMSA Data.

4.2. Choices for VIF

In the foregoing studies, as noted, the perturbation parameters {k, t}were chosen numerically
so as to standardizeVM = max{VIF; 1 ≤ i ≤ p} to the common valueVM = 10 as suggested in
O’Brien (2007), for example.We acknowledge a Reviewer’s suggestion to consider this further.
Accordingly, Table 8 shows for the Acetylene Data the corresponding values for {κ2,A,D,E}
with the perturbation parameter, either k or t , chosen so as to achieve the reduction of VM

Table . Comparisons of {Xk,Zt ,Gt} with regard to the indices {κ2,A,D,E} with constraints VM =
{5, 20.}
VM Index Xk Zt Gt

 κ2 . . .
 κ2 . . .
 A . . .
 A . . .
 D . . .
 D . . .
 E . . .
 E . . .



COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 4903

to {5, 20} in addition to VM = 10 as in Table 6. For nearly all of the row comparisons, the
ordering Gt ≺ Xk ≺ Zt holds as in Table 7 for the case VM = 10.

5. Conclusions

Beginningwith the Fisher InformationMatrix (FM)� = QD2
ξQ

′ from the designX = PDξQ′,
foundations for this study rest on characterizing the congruences T for which T�T ′�L� as
ordered in Loewner (1934). In this case, T can be decomposed as T = �

1
2W�− 1

2 in which
the singular values of W satisfy {σi(W) ≥ 1; 1 ≤ i ≤ p} from Theorem 2. Theorem 1 shows
that	 = T�T ′�L� for	having the spectral decomposition	 = QD2

ξ·ωQ
′.Thus enhancing

the second moment matrix is tantamount to increasing the singular values {ξi → ξiωi; 1 ≤
i ≤ p}. The geometric mixture (GM) design has the decomposition Gt = PDiag(ξ 1−t

i ωt
i )Q

′

together with its FM matrix�t = G′
tGt .

We have chosen the target design G1 = PDiag(ω1, . . . , ωp)Q′ with {ωi = ξ1; 1 ≤ i ≤ p}
to satisfy {ξ 1−t

i ωt
i = ξi(

ξ1
ξi

)t ≥ ξi; 1 ≤ i ≤ p}, to assure that �t�L�. Additionally, with this
target design, if {0 ≤ t1 ≤ t2 ≤ 1}, then {�1�L�t2�L�t1�L�}, so that {�t; t ∈ [ 0, 1 ]} is
monotone increasing under the matrix ordering ≺ as t ↑∈ [ 0, 1 ]. In consequence their
inverses, as dispersion matrices for β̂(t ), are reverse ordered so that the [A,D,E ] criteria
all decrease monotonically with increasing t. Using five data sets from the literature, we have
demonstrated themanner in which theGM designs serve tomitigate ill-conditioning as well as
to improve the efficiency indices [A,D,E ].Wehave compared theGMdesigns to the Surrogate
designs Xk and to the corresponding Arithmetic Mixture (AM) designs Zt . The perturbation
parameters (k, t ) were chosen to achieve the maximal variance inflation factor VM = 10 to
facilitate comparisons among the designs. In all our case studies, the GM procedure produced
either a superior design with smaller efficiency indices, or a design nearly equivalent in its
efficiencies.
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Appendix

Considered here are similarity transformations T (�) = T�T ′ on (S+
p , �L) ordered as in

Loewner (1934). We have the following.

Definition A.1.
(i) Call T (�) = T�T ′ as order-increasing if T�T ′�L�, and as order-decreasing if

T�T ′ ≺ � under �L.

(ii) Specifically,

D↑(�) = {G ∈ S+
k : G�L�} are matrices dominating �;

D↓(�) = {
L ∈ S+

k : Ł ≺ �
}

are matrices dominated by �;
(iii) Let τ (�) = {T : T = �

1
2W′�− 1

2 } with W ∈ Fk×k; so that T�T ′ = �
1
2W′W�

1
2 .

Against this background the following determination is essential.

Theorem A.1. For � ∈ S+
k and T ∈ Fk×k consider the similarity transformations T (�) =

T�T ′ together with W ∈ Fk×k having singular values σ (W) = (σ1, . . . , σp).
(i) T (�) is order-increasing if and only if {σi(W) ≥ 1; 1 ≤ i ≤ p};
(ii) T (�) is order-decreasing if and only if {σi(W) ≤ 1; 1 ≤ i ≤ p};
(iii) 	 ∈ D↑(�) if and only if {σi(W) ≥ 1; 1 ≤ i ≤ p};
(iv) 	 ∈ D↓(�) if and only if {σi(W) ≤ 1; 1 ≤ i ≤ p}.

Proof. Proofs for (ii) and (iv) are given verbatim for Theorems 1 and 2 of Jensen and Ramirez
(1990) as dispersion-diminishing operations with � as �. The dual conclusions (i) and (iii)
follow on taking inverses step-by-step in the proofs for Theorems 1 and 2 of (1990). �
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