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a b s t r a c t

Ridge regression is often the method of choice for approaching ill-conditioned systems. A
canonical form identifies regions in the parameter space where Ordinary Least Squares
(OLS) is problematic. A curious but unrecognized property of ridge solutions emerges:
Under spherical errors with or without moments, the relative concentrations of the
canonical estimators reverse as the ridge scalar evolves, the estimators least concentrated
under OLS being most concentrated under ridge regression, and conversely.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

A full-rank model {Y = Xβ + ε} yields OLS solutions β̂L, unbiased with minimal dispersion V (̂βL) = σ
2(X ′X)−1 under

conventional errors. Near dependency among columns of X , known as ill-conditioning, ‘‘causes crucial elements of X ′X to
be large and unstable’’, β̂L to be ‘‘very sensitive to small changes in X ’’ with ‘‘inflated variances’’ (Belsley, 1986, p. 119).
Remedies in wide usage include using ridge estimators as solutions of {(X ′X + kIp)̂βRk = X ′Y ; k ≥ 0}; see Hoerl (1962,
1964) and Hoerl and Kennard (1970) and a considerable further literature. A canonical form is {Y = PDξθ + ε}, where
P ′P = Ip; Dξ = Diag(ξ1, . . . , ξp), ordered as {ξ1 ≥ ξ2 ≥ · · · ≥ ξp}; and θ = Q ′β, with Q orthogonal. The OLS
solutions θ̂L = [θ̂L1, . . . , θ̂Lp]

′ identify ‘‘linear combinations of parameters about which the data at hand are most/least
informative’’ (Thisted, 1987), since their variances {σ 2/ξ 21 ≤ σ

2/ξ 22 ≤ · · · ≤ σ
2/ξ 2p } escalate for values of ξ

2
i near zero, a

mark of ill-conditioning. In consequence, as gauged by variances through Chebyshev’s inequality, elements of [θ̂L1, . . . , θ̂Lp]
are successively less concentrated in probability about their means. It is germane in practice to ask whether this ordering
is preserved as k evolves in ridge regression. To the contrary, we demonstrate under spherical errors that the canonical
estimators reverse in peakedness as in Birnbaum (1948), with or without moments. An outline follows.
Notation and supporting materials are collected in Section 2. Section 3 sets forth the principal findings, to include

conditions for reversal in concentration of ridge solutions as k evolves, and elementary but illuminating examples. Section 4
revisits a case study given elsewhere, and Section 5 offers a brief summary.

2. Preliminaries

2.1. Notation

Designate Euclidean p-space as Rp, and its positive orthant as Rp+; matrices and vectors are set in bold type; the
transpose, inverse, and trace of A are A′, A−1, and tr(A); special arrays are the identity Ip and the diagonal matrix Da =

D(ai) = Diag(a1, . . . , ap). Let X , of order (n × p), have rank p < n; its singular decomposition is X = PDξQ ′, where
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Dξ = Diag(ξ1, . . . , ξp) comprise its ordered singular values {ξ1 ≥ ξ2 ≥ · · · ≥ ξp > 0}; and the columns of P = [p1, . . . , pp]
and of Q = [q1, . . . , qp] are the left- and right-singular vectors of X , such that P ′P = Ip and Q is orthogonal. This in turn
supports the canonical form {Y = PDξθ+ ε} for the model {Y = Xβ+ ε} of Section 1, with (Y , ε) ∈ Rn, X of order (n× p),
and (β, θ) ∈ Rp. In particular, the canonical ridge equations are {(D2ξ + kIp)̂θRk = DξP ′Y ; k ≥ 0}, with θ̂Rk = [θ̂

1
Rk, . . . , θ̂

p
Rk]
′.

2.2. Stochastic concepts

The expectation, dispersion, and law of distribution of Z ∈ Rp are E(Z), V (Z), and L(Z); moreover, FZ (z) and gZ (t)
designate its cumulative distribution (cdf) and characteristic (chf) functions. Following Birnbaum (1948), a probability
measure µ on R1 is said to be more peaked about a than is ν about b on R1 if their translates are ordered as µa([−c, c]) ≥
νb([−c, c]) for every c ≥ 0, where µa([u, v]) = µ([u − a, v − a]). Designate this ordering as µ�B ν, choosing a and b in
context. Further denote by Γ the order-determining class on R1, i.e., functions that are even, continuous, and increasing on
[0,∞). The following essential result is from Jensen and Foutz (1989).

Lemma 1. Let {F((x − θ)/σ ); (θ, σ ) ∈ R1 × R1
+
} be a location–scale family of cdfs on R1, each symmetric about θ , and let

(µ, ν) be probability measures on R1.
(i) For fixed θ , the scale family {F((x− θ)/σ ); σ ∈ R1

+
} decreases monotonically in peakedness about θ as σ increases.

(ii) The ordering µ�B ν holds if and only if∫
∞

−∞

γ (x)dµa(x) ≤
∫
∞

−∞

γ (y)dνb(y) (2.1)

for every function γ ∈ Γ for which both expectations are defined.

Symmetric errors for {Y = Xβ + ε}, not necessarily having moments, arise in practical circumstances to be noted.
Specifically, suppose the error chf is gε(t) = φε(σ

2t ′t) defined on [0,∞). Then the error distributionL(ε) is called spherical
on Rn, to be designated asL(ε) = Sn(0, σ 2In), centered at 0 ∈ Rn with σ 2In as scale parameters. Examples of note include
spherical Cauchy and Gaussian errors inRn. Elementary properties of chf s imply that gY (t) = eit

′Xβφε(t ′t) at σ 2 = 1.0 and,
under the affine transformation {Y → Z = A′Y + b} with A(n × k) and b ∈ Rk, that gZ (s) = eis

′(A′Xβ+b)φε(s′A′As). The
resulting distribution, having elliptical contours and centered at A′Xβ+ b, is designated asL(Z) = Sk(A′Xβ+ b,A′A). We
return to these error structures subsequently.

3. The principal findings

3.1. Ridge reversals

At issue are concentrations in probability of elements of θ̂ for estimating θ ∈ Rp. Under second moments the ordered
variances

{Var(θ̂L1) ≤ Var(θ̂L2) ≤ · · · ≤ Var(θ̂Lp)}, (3.1)

together with Chebyshev inequalities, suffice to order {θ̂L1, θ̂L2, . . . , θ̂Lp} frommost to least concentrated about their means,
as noted earlier. Since the ridge solutions θ̂Rk are OLS at k = 0, we seek to determine whether this ordering persists
among {θ̂ 1Rk, θ̂

2
Rk, . . . , θ̂

p
Rk} as k evolves. Although second moments conform to conventional Gauss–Markov theory, instead

we take the error distribution to be spherical, with or without moments, i.e., L(ε) = Sn(0, σ 2In), gε(t) = φε(σ
2t ′t),

and L(Y ) = Sn(Xβ, σ 2In), with (Xβ, σ 2In) as location and scale parameters. On occasion it suffices to take σ 2 = 1.0.
It is shown in Jensen (1997) that elements of β̂L (i) are median-unbiased through symmetry, (ii) are unbiased in mean
under first moments, and (iii) are modal-unbiased under unimodal errors. Noting that {θ̂L1, θ̂L2, . . . , θ̂Lp} typically differ in
location, as do {θ̂ 1Rk, θ̂

2
Rk, . . . , θ̂

p
Rk}, we proceed to compare the Birnbaum (1948) peakedness about their respective centering

parameters. Details follow, where {Y = PDξθ + ε} and {U = P ′Y } give the reduced form {U = Dξθ + P ′ε}, together with
gY (t) = eit

′PDξ θφε(t ′t) and gU(r) = eir
′Dξ θφε(r ′r), with r ∈ Rp. The pivotal chf s for θ̂Rk are

{ĝθRk(s) = e
is′D(ξ2i /(ξ

2
i +k))θφε(s′D(ξ 2i /(ξ

2
i + k)

2)s); k ≥ 0}, (3.2)

where D(ωi) = Diag(ω1, . . . , ωp); ĝθL(s) follows at k = 0; and under second moments, {θ̂
1
Rk, θ̂

2
Rk, . . . , θ̂

p
Rk} are mutually

uncorrelated in view of their diagonal second-moment matrix. Moreover, on setting in succession all elements of s but one
to zero, we deduce that the marginal chf s are

{g
θ̂
j
Rk
(sj) = e

isjξ2j θj/(ξ
2
j +k)φε(s2j ξ

2
j /(ξ

2
j + k)

2); 1 ≤ j ≤ p}. (3.3)

Subsequently designate Ce(θ̂
j
Rk) = ξ

2
j θj/(ξ

2
j +k) and Sc(θ̂

j
Rk) = ξ

2
j /(ξ

2
j +k)

2 as their respective location and scale parameters
where, owing to symmetry, Ce(θ̂

j
Rk) serves as the center of symmetry or the centering parameter of the correspondingmarginal

distribution.
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We next examine the pairwise ordering µ�B ν among {θ̂L1, θ̂L2, . . . , θ̂Lp}, and its evolution with k among
{θ̂ 1Rk, θ̂

2
Rk, . . . , θ̂

p
Rk}, all such comparisons to be taken as peakedness about the respective centers of symmetry.

Theorem 1. Consider ridge solutions in {(D2ξ + kIp)̂θRk = DξU; k ≥ 0} under spherical errors having scale parameters
{Sc(θ̂

j
Rk) = ξ

2
j /(ξ

2
j + k)

2
; 1 ≤ j ≤ p} such that {ξ 21 ≥ ξ

2
2 ≥ · · · ≥ ξ

2
p > 0}.

(i) OLS solutions are ordered in peakedness as {L(θ̂L1)�BL(θ̂L2)�B · · · �BL(θ̂Lp)}.

(ii) Ridge solutions reverse in peakedness from OLS, i.e.,L(θ̂ jR(k)) �B L(θ̂ iR(k)) for j > i, if and only if k > ξiξj.
(iii) Ridge solutions preserve the order of OLS for k ≤ min{ξiξj}.
(iv) Complete reversal {L(θ̂ pRk)�B · · · �BL(θ̂ 1Rk)} occurs at k > max{ξiξj}.
(v) Let (θ̂1, θ̂2) be any such scalar estimators centered at (θ1, θ2), under spherical errors having finite moments E(ε2ri ), such that

L(θ̂1)�BL(θ̂2). Then even moments are ordered as

{E(θ̂1 − θ1)2j ≤ E(θ̂2 − θ2)2j; 1 ≤ j ≤ r};

odd moments {E(θ̂ − θ)2r−1; 1 ≤ j ≤ r} vanish for both; and absolute moments satisfy

{E|θ̂1 − θ1|2r−1 ≤ E|θ̂2 − θ2|2r−1; 1 ≤ j ≤ r}.

Proof. For a typical τ̂j = [θ̂j− Ce(θ̂j)] at issue here, all marginal distributions have chf s of the type gτ̂j(sj) = φε(ωjs2j ). These
all belong to the same scale family, determined byφε(·), symmetric about 0 ∈ R1 sinceφε(s2) is an even function. Conclusion
(i) follows on successive applications of Lemma 1(i), since {ω1 ≤ ω2 ≤ · · · ≤ ωp}with {ωj = 1/ξ 2j ; 1 ≤ j ≤ p}. To continue,
for i < j and ξ 2i > ξ 2j , it suffices to compute the difference Sc(θ̂

i
R(k))− Sc(θ̂

j
R(k)) in scale parameters as

ξ 2i

(ξ 2i + k)2
−

ξ 2j

(ξ 2j + k)2
=
ξ 2i (ξ

2
j + k)

2
− ξ 2j (ξ

2
i + k)

2

(ξ 2i + k)2(ξ
2
j + k)2

. (3.4)

The numerator is ξ 2i ξ
4
j − ξ

4
i ξ
2
j + k

2(ξ 2i − ξ
2
j )which, on letting ξ

2
i = ξ

2
j + δ with δ > 0, becomes

(ξ 2j + δ)ξ
4
j − (ξ

2
j + δ)

2ξ 2j + k
2(ξ 2j + δ − ξ

2
j ) = δ[k

2
− ξ 2j (ξ

2
j + δ)]. (3.5)

The latter is positive, and so Sc(θ̂ iR(k)) > Sc(θ̂
j
R(k)) and L(θ̂

j
R(k)) �B L(θ̂ iR(k)), if and only if k

2 > ξ 2i ξ
2
j , as asserted in

conclusion (ii). Conclusions (iii) and (iv) follow on repeated applications of (ii). Conclusion (v) follows from Lemma 1(ii) on
noting that all central and absolute central moments, as listed, belong to the order-determining class Γ of Lemma 1. All odd
central moments vanish by symmetry. �

Remark 1. The ordering �B substantially transcends the variance ordering of OLS as in (3.1). Specifically, under first
moments Theorem 1(v) implies the L1 ordering E(|θ̂1 − Ce(θ̂1)|) < E(|θ̂2 − Ce(θ̂2)|) when ω1 < ω2, as well as the L2

ordering E[θ̂1 − Ce(θ̂1)]2 < E[θ̂2 − Ce(θ̂2)]2 under second moments.

Remark 2. Under third moments the quantity E(|θ̂1 − Ce(θ̂1)|3) figures prominently in central limit theory, in constructing
Berry–Esseén bounds on rates of convergence. Smaller values ensure tighter bounds.

Remark 3. Spherical Student t error distributions on ν degrees of freedom trace to Zellner (1976), but with no apparent
contact with ridge regression. Nonetheless, it is remarkable that the canonical estimators exhibit the peakedness orderings
of Theorem 1(i)–(iv), even for spherical Cauchy errors at ν = 1 having heavy tails devoid of first moments.

3.2. Example

To illustrate, suppose that p = 3; β = [β1, β2, β3]
′
; and X ′X , its inverse (X ′X)−1, and the matrix Q are given in

succession by

[2.97 0 0
0 0.015 0.005
0 0.005 0.015

]
,


1
2.97

0 0

0 75.00 −25.00
0 −25.00 75.00

 ,

1 0 0

0
1
√
2

1
√
2

0
1
√
2
−
1
√
2

 . (3.6)

The spectral decomposition X ′X = QD2ξQ
′ gives D2ξ = Diag(2.97, 0.02, 0.01) and Q as displayed. The canonical form

θ = Q ′β specifies θ1 = β1, θ2 = (β2 + β3)/
√
2, and θ3 = (β2 − β3)/

√
2. Moreover, V (̂θL) = Diag(0.336700, 50, 100)
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Table 1
Choices for k in the Hospital Manpower Data corresponding to conventional criteria DF k , GCVk , Ck , PRESSk , and HKBk .

Name DF k GCVk Ck PRESSk HKBk

Value for k 0.0004 0.004787 0.0050 0.2300 0.616964

Table 2
Products {ξiξj; i < j} for elements of Dξ = Diag(ξ1, . . . , ξ5) as singular values for Z in the Hospital Manpower Data.

ξi ξ2 = 0.816997 ξ3 = 0.307625 ξ4 = 0.201771 ξ5 = 0.007347

ξ1 = 2.048687 1.673771 0.630228 0.413365 0.015052
ξ2 = 0.816997 0.251329 0.164846 0.006003
ξ3 = 0.307625 0.062070 0.002260
ξ4 = 0.201771 0.001482

under second moments, and the condition number c1(X ′X) = ξ 21 /ξ
2
3 = 297.0 is the ratio, Var(θ̂3)/Var(θ̂1), of variances of

the least to the most precisely estimated linear functions.
If instead we takeL(ε) = Sn(0, In), we may track the comparative peakedness of the estimators via Theorem 1. Observe

that k = 0.25 > ξ1ξ2 = 0.243721 > ξ1ξ3 = 0.172337 > ξ2ξ3 = 0.014142. The scale matrix for ridge estimators at
k = 0.25 is now Sc (̂θRk) = Diag(0.286447, 0.274348, 0.147929). Progressing from k = 0 for OLS, to k = 0.25 for ridge,
has seen a complete reversal in peakedness for estimating θ = [θ1, θ2, θ3]

′. In particular, θ̂3, least precise under OLS for the
contrast θ3 = (β2 − β3)/

√
2, now has greatest peakedness at approximately half the scale parameters of θ̂1 and θ̂2, all as

ridge estimators at k = 0.25. On the other hand, Theorem 1(iii) assures that no reversals in peakedness might occur among
ridge estimates for k ≤ 0.014142.

4. Case studies

4.1. The setting

As reported in Myers (1990), the Hospital Manpower Data consist of records at n = 17 US Naval Hospitals, to include:
Monthly man-hours (Y ); Average daily patient load (X1); Monthly X-ray exposures (X2); Monthly occupied bed days (X3);
Eligible population in the area÷ 1000 (X4); and Average length of patients’ stay in days (X5). The working model is

{Yi = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + εi; 1 ≤ i ≤ 17}. (4.1)
Following conventional usage, we center and scale to {Y = Zβ+ε}with Z ′Z in correlation form, our focus being the rates of
change β = [β1, β2, β3, β4, β5]

′. The data are given in Table 3.8 of Myers (1990, pp. 132–133), and computations reported
here utilize PROC IML of the SAS Programming System. The data are remarkably ill-conditioned: Singular values of Z are
Dξ = Diag(2.048687, 0.816997, 0.307625, 0.201771, 0.007347), and the condition number is c1(Z ′Z) = 77,754.86.

4.2. Ridge regression

A striking diversity in choices for k has evolved, reflecting the problem as less than well-posed, often with profound
differences among the solutions. Selected choices in wide usage are identified in Table 1, together with their values for the
Hospital Manpower Data. These encompass DF k = tr(Hk) =

∑p
i=1 ξ

2
i /(ξ

2
i + k) with Hk = [Z(Z ′Z + kIp)−1Z ′]; PRESSk =∑n

i=1 e
2
(i,λ) as the cross-validation statistic of Allen (1974); GCV k = SSRes,k/[n − (1 + tr(Hk))]

2, a rotation-invariant analog
called Generalized Cross Validation in Golub et al. (1979); Ck = [(SSRes,k/σ̂ 2) − n + 2 + 2tr(Hk)] to achieve a variance–bias
trade-off (Mallows, 1973); and HKBk = σ̂ 2/̂β

′

Lβ̂L as in Hoerl et al. (1975) from simulation studies. Here SSRes,k is the residual
sum of squares using ridge regression; σ̂ 2 is the OLS residual mean square; and {e2(i,λ)} are the PRESS residuals from ridge
regression. For further details seeMyers (1990, pp. 392–411), including numerical values forDF k, Ck, and PRESSk as reported
here. The ridge parameter k can be estimated by different methods. For more details on the estimation of k, we refer the
reader to Kibria (2003) and Muniz and Kibria (2009), among others.
These choices carry hidden consequences regarding the concentration reversals of Theorem 1. Table 2 displays threshold

values as products {ξiξj; i < j}. From the matrix Q = [q1, q2, q3, q4, q5], it is clear that θ1 = q′1β resembles a scaled
average of {β1, β2, β3, β4, β5}, since q′1 = [0.485286, 0.453235, 0.484977, 0.460969, 0.333737]. At the other extremity,
θ5 = q′5β, with q′5 = [−0.719480,−0.001160, 0.694081, 0.023436, 0.006780], is a near linear contrast between {β1, β2}
and {β3, β4, β5}, since the inner product 1′5q5 = 0.003657 is approximately zero.
As noted, the OLS estimates {θ̂L1, θ̂L2, θ̂L3, θ̂L4, θ̂L5} exhibit successively diminished precision, as do concentrations of

ridge estimates for k ≤ 0.001482 from Theorem 1(iii). Since GCV k = 0.004787 and Ck = 0.0050 exceed both
thresholds ξ3ξ5 = 0.002260 and ξ4ξ5 = 0.001482, we find that ridge solutions for those choices of k now estimate the
near contrast θ5 = q′5β, with concentration greater than of {θ̂

3
Rk, θ̂

4
Rk}. Similarly, since PRESSk = 0.2300 exceeds all of

{ξ1ξ5 = 0.015052, ξ2ξ5 = 0.006003, ξ2ξ4 = 0.164846, ξ3ξ4 = 0.062070, ξ3ξ5 = 0.002260, ξ4ξ5 = 0.001482}, we
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may assert that the ridge estimate θ̂ 5Rk at k = 0.2300 now is most concentrated, with scale parameter smaller than for
{θ̂ 1Rk, θ̂

2
Rk, θ̂

3
Rk, θ̂

4
Rk}, and that θ̂

4
Rk is more concentrated than {θ̂

2
Rk, θ̂

3
Rk}, no further reversals being apparent. If instead the choice

were HKBk = 0.616964, then the only non-reversals in peakedness, in comparison with both OLS and with ridge estimators
at k ≤ 0.001482, are between (θ̂ 1Rk, θ̂

2
Rk) and (θ̂

1
Rk, θ̂

3
Rk). All such reversals emerge as unintended consequences of the widely

divergent values for k as derived from various ad hoc desiderata.
Observe that the foregoing phenomena could have been discovered numerically, apart from σ 2, on evaluating V (̂θRk)

under second moments, or equivalently Sc (̂θRk) under spherical errors, as cases of note. The advantage of Theorem 1 is that
it supports inequality assertions for {k > ξiξj} generally, and for {k ≤ min{ξiξj}} and {k > max{ξiξj}} in particular, as in the
preceding examples. We see such reversals as unanticipated and heretofore undiscovered consequences of ridge regression
as initially formulated.

5. Conclusions

In summary, further insight is offered regarding the use of ridge regression in ill-conditioned models. This study begins
with successive concentration orderings of OLS estimators for the canonical parameters. The ordering continues to hold
for ridge solutions as k evolves, up to a threshold value given in Theorem 1(iii). Exceeding this, individual ridge estimators
encounter reversals in their comparative concentrations as k evolves, up to another threshold value in Theorem1(iv), beyond
which complete reversal obtains. Specifically, for k sufficiently large, the estimator least concentrated at the outset achieves
greatest concentration in comparison with other estimators at that k. Knowledge of these facts could be useful in choosing
k so as to enhance the comparative performance for selected parameters of singular interest to an investigation.
Ridge regression continues inwide usage, prominently now in calibration studies in the chemical engineering and related

literature. See Frank and Friedman (1993), Geladi (2002), Kalivas (2005) and Sundberg (1999) for recent surveys. Here
we have emphasized spherical error models not necessarily having moments, together with the peakedness ordering of
Birnbaum (1948). These encompass spherical Student t distributions on ν degrees of freedom as in Zellner (1976), to include
heavy-tailed Cauchy errors at ν = 1 devoid of moments. Connections to calibration problems are found in Jensen and
Ramirez (2009), where it is seen that linearly calibrated data, subject to errors of calibration, may arise as ratios of Gaussian
variables, thus having Cauchy distributions.
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