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Anomalies in the analysis of calibrated data
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This study examines the effects of calibration errors on model assumptions and data-analytic tools in
direct calibration assays. These effects encompass induced dependencies, inflated variances, and het-
eroscedasticity among the calibrated measurements, whose distributions arise as mixtures. These anomalies
adversely affect conventional inferences, including the inconsistency of sample means; the underestima-
tion of measurement variance; and the distributions of sample means, sample variances, and student’s t

as mixtures. Inferences in comparative experiments remain largely intact, although error mean squares
continue to underestimate the measurement variances. These anomalies are masked in practice, as conven-
tional diagnostics cannot discern the irregularities induced through calibration. Case studies illustrate the
principal issues.
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1. Introduction

Calibrated measurements, intrinsic to the sciences and engineering, are inherently subject to
errors of calibration. These errors induce dependencies in the violation of a basic tenet in much
of applied statistics, namely, that observations should be uncorrelated if not independent. These
issues traditionally have been overlooked by both scientists and statisticians, despite a century of
emerging methodologies for the analysis of experimental data. Not only are many parametric and
non-parametric procedures at risk under such violations, but so also are conventional diagnostics
for checking critical features of a model. We return to these subsequently.

To fix ideas, observed responses {Z0, Z1, . . . , Zn} are often adjusted to Z0 as standard, giving
differences {Yi = (Zi − Z0); 1 ≤ i ≤ n} as the objects of interest to the investigator. More-
over, if {Z0, Z1, . . . , Zn} are mutually uncorrelated having variances {var(Z0) = σ 2

0 , var(Zi) =
σ 2; 1 ≤ i ≤ n} then {Y1, . . . , Yn} are equicorrelated with the parameter ρ = σ 2

0 /(σ 2 + σ 2
0 ) hav-

ing variances {var(Yi) = σ 2 + σ 2
0 ; 1 ≤ i ≤ n} that are inflated in comparison with unadjusted

values.
Linearly calibrated instruments are pervasive. Some unintended consequences, to be examined

here, include (1) the structure of induced dependencies, heteroscedasticity, and other departures
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from conventional model assumptions; (2) the inflation of measurement variances in compari-
son with intended values; and (3) effects of calibration on conventional inferences for location,
scale, and model diagnostics. We first examine moments, then effects of calibration on the actual
measurement distributions themselves. We focus here on direct calibration assays to be identified
subsequently. An outline follows.

Section 2 gives notation and technical support. Section 3 reconsiders the calibration process
with reference to the irregularities induced through calibration errors. Section 4 addresses the
impact of these irregularities on conventional inferences, including (1) inferences regarding the
mean and variance in a single sample and (2) the analysis of one–way experimental data, including
tests on means and variances. The latter remain largely intact, although measurement variances
continue to be underestimated. Section 5 re-examines the ability of conventional diagnostics to
uncover the violations induced through calibration. Section 6 undertakes a case study to illustrate
essential findings. Section 7 offers a brief summary and cautionary note. Some peripheral matters
are deferred to an Appendix.

2. Preliminaries

2.1. Notation

Designate R
n as an Euclidean n-space, R

n+ as its positive orthant, Sn as the real symmetric
(n × n) matrices, and S

+
n and S

0
n as their positive definite and positive semidefinite varieties.

Arrays appear in bold type, including the transpose A′ and inverse A−1 of A, the unit vector
1n = [1, . . . , 1]′ ∈ R

n, the identity matrix In, a block-diagonal matrix diag (A1, . . . ,Ak), and
Bn = (In − n−11n1′

n). Following Loewner [1], matrices (A, B) in Sn are said to be ordered as
A �L B for A − B ∈ S

0
n, with A �L B whenever A − B ∈ S

+
n . Moreover, C(n) comprises the

convex sets in R
n symmetric under reflection through 0 ∈ R

n. Operators E(Y) and V (Y) designate
the expected vector and dispersion matrix for Y ∈ R

n; with var(Y ) as the variance on R
1. We

further require {μr(Z) = E(Zr); r = 1, 2} as moments about 0 ∈ R
1, identifying κ2 = μ2(β̂1)

in terms of a linear estimator β̂1 to be encountered subsequently. The comparative concentration
of probability measures on R

n may be gauged on defining the measure μ(·) to be more peaked
about 0 ∈ R

n than ν(·), if and only if μ(A) ≥ ν(A) for every set A ∈ C(n), as in [2]. Specifically,
the peakedness ordering for scale mixtures of Gaussian measures on R

n is tantamount to the
stochastic ordering of their mixing distributions, as demonstrated in the Appendix.

2.2. Special distributions

Here pdf and cdf refer to probability density and cumulative distribution functions – for Y ∈
R

n, L(Y) designates its law of distribution and G(y) its cdf – and iid refers to independent and
identically distributed random elements. Distributions of note on R

1 include the Gaussian law
N1(μ, σ 2), with parameters (μ, σ 2); non-central versions of student’s t (ν, λ), and t2(ν, λ), chi-
squared χ2(ν, λ), and Snedecor–Fisher F(ν1, ν2, λ) distributions, with {ν, ν1, ν2} as degrees of
freedom and λ as a non-centrality parameter; and G0(α, β) as the gamma distribution on R

1+
having parameters (α, β). In particular, gT (t; ν, λ), gT 2(u; ν, λ), gF (u; ν1, ν2, λ), and g0(u; α, β)

designate the densities corresponding to t (ν, λ), t2(ν, λ), F(ν1, ν2, λ), and G0(α, β), respectively.
Futher, Nn(θ, �) designates the Gaussian law on R

n and gn(y; θ, �) its pdf, having location–
scale parameters (θ, �). Ensembles on R

n, and mixtures over these, include the translation–scale
mixtures

f1(y; θ, �, G1) =
∫ ∞

−∞
gn(y; θ(t), �(t))dG1(t) (1)
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and purely scale mixtures when θ = 0. Non-standard distributions for quadratic forms
proceed conditionally on letting L(U |w) have the scaled gamma density g0(u; α, wβ) =
(wβ)−αuα−1e−u/wβ/
(α), then compounding these as

f3(u; α, β, G3) = uα−1

βα
(α)

∫ ∞

0
w−αe−x/wβdG3(w) (2)

with G3(w) as a cdf on R
1+.

Subsequent developments have links to exchangeable sequences. Consider {Z0, Z1, Z2, . . .}
such that Z0 ∈ R

k is independent of {Z1, Z2, . . .}, whereas {Z1, Z2, . . .} are iid on R
∞: Further, let

ψ : R
k+1 → R

1, define {Yi = ψ(Z0, Zi); i = 1, 2, . . .}, recall from DeFinetti’s theorem that the
sequence {Y1, Y2, . . .} is now exchangeable on R

∞, and infer that the joint distributions projected
onto R

n are invariant under permutations. In short, {Y1, . . . , Yn} are distributed identically under
second moments, having common values for the parameters (μ, σ 2, ρ).

3. Calibration

3.1. Essentials

Instruments are calibrated using outputs at successive inputs to determine a calibration curve,
new readings are assigned values on the scale of measurements using the calibrated device, and
periodic checks against a standard determine when recalibration is required. In this study, we
utilize direct assays in which instrumental readings {Xi; 1 ≤ i ≤ n0} during calibration relate
to observed measurements {Ui; 1 ≤ i ≤ n0} through {Ui = β0 + β1Xi + εi; 1 ≤ i ≤ n0}. For
example, the octane rating (U ) in the production of gasoline relates linearly to the percent
of purity (X) in a specimen to be assayed. Octane numbers require expensive and time-
consuming dynamic laboratory testing, whereas the percent purity is readily determined. Once
calibrated, the octane number of a given specimen is determined vicariously from its per-
cent purity. On the other hand, indirect assays proceed on reversing the roles of Ui and Xi

during calibration. Models for calibration and their analyses have been debated by several
authors; for a summary and early references, see [3]. Problems with moments and consis-
tency remain to be resolved in indirect assays, but the technical issues between the two types
differ mainly in detail. It is noteworthy that research has yet to address the principal issues
undertaken here, namely, the irregularities in models and supporting analyses attributable to
calibration.

3.2. Error analysis

Now, consider the calibrating model {Ui = β0 + β1Xi + εi; 1 ≤ i ≤ n0} under Gauss–Markov
assumptions, such that {var(Ui) = σ 2

U ; 1 ≤ i ≤ n0} and (β̂0, β̂1) are least-squares estimators
determining the empirical calibration line. Under Gaussian calibration, the calibration errors
{εi; 1 ≤ i ≤ n0} comprise iid N1(0, σ 2

U) random variables. Subsequent readings {Z1, . . . , Zn},
taken independently of {U1, . . . , Un0}, are then projected as the calibrated measurements {Yi =
β̂0 + β̂1Zi; 1 ≤ i ≤ n}. In practice {Z1, . . . , Zn} often will have been discarded as redundant,
or will have been converted directly without record, so that {Y1, . . . , Yn} remain to be analysed
and interpreted. If we now suppose that Z′ = [Z1, . . . , Zn] have means μ′ = [μ1, . . . , μn] and
second moments V (Z) = 
 = [σij ], independently of (β̂0, β̂1), then the conditional moments of
L(Y1, . . . , Yn|β̂1) are found directly as follows.
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302 D.R. Jensen and D.E. Ramirez

Lemma 1 Suppose that {Z1, . . . , Zn} have means {μ1, . . . , μn} and second moments V (Z) =
[σij ], independently of (β̂0, β̂1),and let {Yi = β̂0 + β̂1Zi; 1 ≤ i ≤ n}. Then

(i) E(Yi |β̂1) = E(β̂0|β̂1) + β̂1μi ,
(ii) var(Yi |β̂1) = β̂2

1σii + var(β̂0|β̂1), and
(iii) cov(Yi, Yj |β̂1) = β̂2

1σij + var(β̂0|β̂1).

If instead (β0, β1) were known, then {Yi = β0 + β1Zi; 1 ≤ i ≤ n} would be recovered without
an error, in which case E(Yi) = β0 + β1μi and var(Yi) = β2

1 var(Zi). This ideal case serves as a
reference against which a recovery subject to calibration errors may be gauged.

Expressions simplify when neither E(β̂0|β̂1) nor var(β̂0|β̂1) depends on β̂1, so that
cov(Yi, Yj |β̂1) = β̂2

1σij + var(β̂0), for example. This clearly holds under Gaussian calibration,
provided that the calibrating readings {X1, . . . , Xn0} have been centred to {(X1 − X), . . . , (Xn0 −
X)}. This incurs no loss in generality, as subsequent readings {Z1, . . . , Zn} may be shifted
by X units before projecting onto the scale of measurements. It then follows that β̂0 = U ;
var(β̂0) = σ 2

0 = σ 2
U/n0; and var(β̂1) = σ 2

1 = σ 2
U/Sxx , where Sxx = ∑n0

i=1(Xi − X)2; so that
(β̂0, β̂1) are uncorrelated and thus independent under Gaussian calibration errors. We henceforth
take the initial calibration to have been centred.

We next consider the conditional and unconditional properties of {Yi = β̂0 + β̂1Zi; 1 ≤ i ≤ n}
for the general case that E(Z) = μZ ∈ R

n and V (Z) = � ∈ S
+
n , to be specialized subsequently.

Clearly, the conditional means and dispersion parameters are E(Y|β̂1) = β01n + β̂1μZ = μY (β̂1),
say, and V (Y|β̂1) = β̂2

1
 + σ 2
0 1n1′

n = �(β̂1). Moreover, for the case that L(Z) = Nn(μZ, �)

in addition to Gaussian calibration errors, the conditional distribution of Y is L(Y|β̂1) =
Nn(μY (β̂1), �(β̂1)). Basic unconditional properties follow next.

Theorem 1 Consider the calibrated measurements {Yi = β̂0 + β̂1Zi; 1 ≤ i ≤ n} projected from
readings {Z1, . . . , Zn} obtained independently of (β̂0, β̂1); letY = β̂01n + β̂1Z, such that E(Z) =
μZ ∈ R

n and V (Z) = � ∈ S
+
n ; and let σ 2

0 = var(β̂0) and σ 2
1 = var(β̂1). Then the unconditional

moments E(Y) = μY and V (Y) = � of L(Y) are given by

(i) μY = β01n + β1μZ , and
(ii) � = κ2� + σ 2

0 1n1′
n + σ 2

1 μZμ′
Z , with κ2 = μ2(β̂1) = σ 2

1 + β2
1 .

(iii) Moreover, if L(Z) = Nn(μZ, �) in addition to Gaussian calibration errors, then the
unconditional joint density of the elements of Y is the translation–scale mixture

f1(y; μY , �, G1) =
∫ ∞

−∞
gn(y; μ(t), �(t))dG1(t) (3)

as in Equation (1), with μ(t) = β01n + tμZ , �(t) = t2� + σ 2
0 1n1′

n, and with mixing
distribution G1(t) = N1(β1, σ

2
1 ).

Proof Conclusion (i) follows directly through deconditioning. Conclusion (ii) follows using
var(Yi) = Eβ̂1

[var(Yi | β̂1)] + varβ̂1
(E(Yi | β̂1)] for variances and

cov(Yi, Yj ) = Eβ̂1
[cov(Yi, Yj | β̂1)] + covβ̂1

[E(Yi | β̂1), E(Yj | β̂1)]
for covariances. Conclusion (iii) follows since Y is a linear function of (Z, β̂0) with β̂1 fixed,
so that L(Y | β̂1) = Nn(μy(β̂1), �(β̂1)), as noted, and then mixing over the distribution of the
conditioning variable. �

The above-mentioned results are basic. We next specialize them as appropriate for specific
experimental settings encountered routinely in practice.
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4. Topics in inference

Induced dependencies and other model irregularities violate the tenets of conventional data anal-
ysis as noted, specifically, in estimation and hypothesis testing. We focus on normal-theory
procedures, as the independence typically required by non-parametric competitors is conspic-
uously absent. The following sections specialize earlier findings, as they apply in a single sample,
and in one-way comparative experiments.

4.1. Single sample

Consider {Yi = β̂0 + β̂1Zi; 1 ≤ i ≤ n} such that the elements of Z = [Z1, . . . , Zn]′ sat-
isfy {E(Zi) = μZ; 1 ≤ i ≤ n} and V (Z) = σ 2

ZIn. If in addition {Z1, . . . , Zn} are iid, then
L(Y1, . . . , Yn) is exchangeable, as noted earlier. We are concerned not only with properties
of the joint distribution L(Y), but also of (Y , S2

Y , t0) as the sample mean, the sample vari-
ance, and Student’s statistic t0 = n1/2(Y − μ0

Y )/SY , as well as the ordinary residuals {Ri =
(Yi − Y ); 1 ≤ i ≤ n}. From Lemma 1 and Theorem 1, we now have the conditional and uncon-
ditional values {E(Yi | β̂1) = β0 + β̂1μZ; 1 ≤ i < n}; {E(Yi) = μY = β0 + β1μZ; 1 ≤ i ≤ n};
and V(Y | β̂1) = �(β̂1) = (β̂2

1σ 2
Z + σ 2

0 )[(1 − ρ)In + ρ1n1′
n], with ρ = σ 2

0 /(β̂2
1σ 2

Z + σ 2
0 ). The

unconditional variances are homoscedastic, namely {var(Yi) = σ 2
Y = κ2σ

2
Z + σ 2

0 + σ 2
1 μ2

Z; 1 ≤
i ≤ n}. Essential findings follow, where it is seen that S2

Y may grossly underestimate the actual
measurement variance σ 2

Y , and that structural difficulties becloud both the small-sample and the
asymptotic properties of Yn = (Y1 + Y2 + · · · + Yn)/n.

Theorem 2 Let {Yi = β̂0 + β̂1Zi; 1 ≤ i ≤ n} be calibrated measurements from {Z1, . . . ,

Zn}, such that E(Z) = μZ1n and V (Z) = σ 2
ZIn independently of (β̂0, β̂1), and consider

the sample quantities (Y n, S
2
Y ), together with the ordinary residuals {Ri = (Yi − Y );

1 ≤ i ≤ n}. Then

(i) Yn is unbiased but inconsistent for estimating μY = β0 + β1μZ ,
(ii) E(S2

Y ) = κ2σ
2
Z = σ 2

Z(σ 2
1 + β2

1 ), and
(iii) {E(Ri) = 0; 1 ≤ i ≤ n}.

Proof The unbiasedness of Yn follows routinely, and its variance from var(n−11′
nY) = �n with

�n = n−21′
n[κ2σ

2
ZIn + (σ 2

0 + σ 2
1 μ2

Z)1n1′
n]1n

= n−1κ2σ
2
Z + (σ 2

0 + σ 2
1 μ2

Z). (4)

Since limn→∞ var(Y n) = (σ 2
0 + σ 2

1 μ2
Z) > 0, it follows that its limit distribution is non-degenerate

at μY , so that Yn is consistent neither in probability, nor in mean square, nor almost surely,
as asserted. Conclusion (ii) follows from evaluating the expected value of the quadratic form
(n − 1)S2

Y = Y ′BnY as E[(n − 1)S2
Y ] = tr(BnV (Y)) + μ′

Y BnμY . Details are

E[(n − 1)S2
Y ] = tr

(
Bn

[
k2σ

2
ZIn + (

σ 2
0 + σ 2

1 μ2
Z

)
1n1′

n

]
Bn

) + μ′
Y BnμY

= (n − 1)k2σ
2
Z

where μ′
Y BnμY = (β0 + β1μZ)21′

nBn1n = 0, since Bn is idempotent and Bn1n = 0. Conclusion
(iii) follows directly, to complete our proof. �
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The following consequences may be noted.

• Conclusion (i) appears to dash the usual expectation that lengths of (1 − α) confidence intervals
for μY will decrease at the rate O(n−1/2).

• The sample variance S2
Y underestimates the actual variance σ 2

Y . The bias is E(S2
Y ) − σ 2

Y =
−(σ 2

0 + σ 2
1 μ2

Z).
• This bias increases with decreasing precision in estimating the calibration line, and with

increasing |μZ| and thus |μY |.
• On the other hand, the expectation E(S2

Y ) = κ2σ
2
Z , with κ2 = μ2(β̂1), may be compared

with the ideal variance, var(Yi) = β2
1σ 2

Z , attained under linear calibration with known
parameters (β0, β1).

We have seen how unconditional moments of calibrated measurements depend on those of the
conditioning variable β̂1. It remains to examine effects of the fitted calibration line on uncondi-
tional distributions, including those of various sample statistics. Recall from Theorem 2 and its
proof that E(Y ) = μY = β0 + β1μZ and var(Y ) = n−1k2σ

2
Z + (σ 2

0 + σ 2
1 μ2

Z). To invoke expres-
sion (1) and its special case at θ = 0, under Gaussian assumptions, we have G1(β̂1) = N1(β1, σ

2
1 ),

together with G2(β̂
2
1 ; λ), such that L(β̂2

1/σ 2
1 ) = χ2(1, λ) with λ = β2

1/σ 2
1 . Basic unconditional

distributions follow next as mixtures.

Theorem 3 Let {Yi = β̂0 + β̂1Zi; 1 ≤ i ≤ n} be calibrated measurements; suppose that
{Z1, . . . , Zn} are iid N1(μZ, σ 2

Z) idependently of (β̂0, β̂1) under Gaussian calibration; and con-
sider the sample quantities (Y n, S

2
Y , t2

0 ), together with the ordinary residuals {Ri = (Yi − Y );
1 ≤ i ≤ n}, where t2

0 = n(Y − μ0
Y )2/S2

Y for testing H0 : μY = μ0
Y against H1 : μY 
= μ0

Y . Then
the unconditional properties are a follows.

(i) The unconditional density of L(Y ) is the translation–scale mixture

f1(u; μY , �n, G1) =
∫ ∞

−∞
g1(u; μ(t), �n(t))dG1(t) (5)

with mixing distribution G1(β̂1) = N1(β1, σ
2
1 ) as in Equation (1) for the case n = 1, where

μ(t) = β0 + tμZ and �n(t) = (t2σ 2
Z/n + σ 2

0 ), and �n is defined in Equation (4).
(ii) The joint density of residuals R = [R1, . . . , Rn]′ is given by

fn(r; 0, σ 2
ZBn, G2) =

∫ ∞

0
gn(r; 0, tσ 2

ZBn)dG2(t) (6)

with mixing distribution G2(β̂
2
1 ; λ) = χ2(1, λ) and λ = β2

1/σ 2
1 .

(iii) The joint distribution L(R1, . . . , Rn) increases in peakedness about 0 ∈ R
n with decreas-

ing λ.
(iv) L(vS2

Y /σ 2
Z) has the density f0(u; v/2, 2, G2) as in Equation (2), with v = n − 1, mixing

distribution G2(β̂
2
1 ; λ) = χ2(1, λ) and λ = β2

1/σ 2
1 , and E(S2

Y ) = σ 2
Z(σ 2

1 + β2
1 ).

(v) The distribution L(vS2
Y /σ 2

Z) increases stochastically with λ = β2
1/σ 2

1 .
(vi) The unconditional density of t2

0 = n(Y − μ0
Y )2/S2

Y is given as the mixture

g(u; v, δ, G2) =
∫ ∞

0
gT 2

(
u; v,

δ

t

)
dG2(t)

with mixing distribution G2(β̂
2
1 ; λ), where v = n − 1, δ = (μY − μ0

Y )2/σ 2
Z , and λ = β2

1/σ 2
1 .

(vii) The unconditional cdf of L(t2
0 ) increases stochastically with increasing δ = (μY − μ0

Y )2/σ 2
Z

for fixed λ = β2/σ 2
1 , and for fixed δ, it decreases stochastically with increasing λ.
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Proof The conditional distribution of note is L(Y |β̂1) = N1(μ(β̂1), �n(β̂1)), where μ(β̂1) =
β0 + β̂1μZ and �n(β̂1) = (β̂2

1σ 2
Z/n + σ 2

0 ). Its unconditional density thus is f1(u; μY , �n, G1)

from Equation (1), to give conclusion (i) with mixing distribution as asserted. Now, observe
that R = BnY and Bn�(β̂1)Bn = Bn(β̂

2
1σ 2

ZIn + σ 2
0 1n1′

n)Bn = β̂2
1σ 2

ZBn since Bn is idempotent
and Bn1n = 0. We infer conditionally that L(R|β̂1) = Nn(0, β̂2

1σ 2
ZBn), since Bnμ(β̂1) = (β0 +

β̂1μZ)Bn1n = 0. The unconditional distribution is the scale mixture as in conclusion (ii),
with G2(β̂

2
1 , λ) = χ2(1, λ) as the mixing distribution over [0, ∞]. Conclusion (iii) follows

from Lemma A1 of the Appendix, as the mixing distribution L(β̂2
1/σ 2

1 ) = χ2(1, λ) increases
stochastically with λ = β2

1/σ 2
1 . Now, observe that (n − 1)S2

Y = R′R, so that L(R′R/β̂1σ
2
Z|β̂2

1 ) =
χ2(n − 1, 0). It follows that L[(n − 1)S2

Y /σ 2
Z|β̂2

1 ] is a central chi-squared variate scaled by β̂2
1 . On

identifying (n − 1)S2
Y /σ 2

Z with U and β̂2
1 with w in developments leading to Equation (2), we thus

establish conclusion (iv) on specializing from gamma to chi-squared distributions. Conclusion
(v) follows directly from (iii) since the set At = {R ∈ R

n : R′R ≤ t} is convex and symmetric in
R

n, whereas P(At) = P [(n − 1)S2
Y ≤ tσ 2

Z].
To see conclusion (vi), recall the affine invariance of t2 = n(Y − μ0

Y )2/S2
Y for testing H0 :

μY = μ0
Y under {Yi → a + bZi; 1 ≤ i ≤ n}, namely, t2 = n[(Y − μY ) + (μY − μ0

Y )]2/S2
Y =

n{[(a + bZ) − (a + bμZ ) ] + b(μY − μ0
Y )/b}2 /b2S2

Z = n[(Z − μZ ) + (μY − μ0
Y )/b]2 /S2

Z .
Clearly L(t2) = t2(v, δ), with v = n − 1 and δ = (μY − μ0

Y )2/b2σ 2
Z , independently of a. We

next apply these facts conditionally, given (β̂0, β̂1), on replacing (a, b) with (β̂0, β̂1), to
infer that L(t2

0 |β̂0, β̂1) = L(t2
0 |β̂1) = t2(v, δ(β̂1)), where δ(β̂1) = (μY − μ0

Y )2/β̂2
1σ 2

Z , indepen-
dently of β̂0. It follows that the unconditional distribution of t2

0 has the mixture density
g(u; v, δ, G2) = ∫ ∞

0 gT 2(u; v, δ/u)dG2(u) with mixing distribution G2(β̂
2
1 ; λ) as asserted, where

δ = (μY − μ0
Y )2/σ 2

Z and λ = β̂2
1/σ 2

1 . Therefore, the test for H0 : μY = μ0
Y against H1 : μY 
= μ0

Y

rejects at level α for t2
0 > c2

α; moreover, the conditional cdf L(t2
0 |β̂1) increases stochastically

with δ(β̂1), pointwise for each fixed β̂1 from standard properties of non-central t2 distributions.
It follows that the unconditional cdf increases stochastically with increasing δ under mixing.
That the unconditional cdf decreases stochastically with increasing λ with δ held fixed, follows
unconditionally through mixing as in the proof for conclusion (v), to complete our proof. �

Note from conclusion (iv) that E(S2
Y ) = σ 2

Z(σ 2
1 + β2

1 ). This may be compared with the ideal
case var(Yi) = β2

1σ 2
Z , where (β0, β1) are known. It is instructive to re-examine the uncondi-

tional properties of this section if we retain the homogeneity of variances of {Z1, . . . , Zn}, but
assume instead that means are not, i.e., that E(Z) = μ = [μ1, . . . , μn]′. Therefore, we see that
{var(Yi) = κ2σ

2
Z + σ 2

0 + σ 2
1 μ2

i ; 1 ≤ i ≤ n}. We have the curious finding that calibrated measure-
ments in a single sample will have heterogeneous variances under heterogeneous means, despite
the homogeneity of variances of {Z1, . . . , Zn}.

4.2. One-way experiments

Clearly {Y1, . . . , Yn} and {Z1, . . . , Zn} have the same experimental structure, here a one-way
experiment comprising k samples of sizes {n1, . . . , nk}, with n1 + · · · + nk = n In keep-
ing with conventional notation, partition Z′ = [Z1, . . . , Zn] as [Z′

1, . . . , Z′
n] such that {Z′

i =
[Zi1, . . . , Zini

]; 1 ≤ i ≤ k}; similarly for Y ′ = [Y ′
1, . . . ,Y ′

k], with {Y ′
i = [Yi1, . . . , Yini

]; 1 ≤ i ≤
k}; and suppose that {E(Zij ) = μi; 1 ≤ j ≤ ni} and {var(Zij ) = ω2

i ; 1 ≤ j ≤ ni}. Accord-
ingly, takeμZ = [μ11′

n1
, . . . , μk1′

nk
]′ andV (Z) = diag(ω2

1In1 , . . . , ω
2
kInk

) = D(ω2
1, . . . , ω

2
k), say.

Specializing from Section 3, we have the conditional moments E(Y|β̂1) = μY (β̂1) = β01n +
β̂1[μ11′

n1
, . . . , μk1′

nk
]′ and V (Y|β̂1) = �(β̂1) = β̂2

1 diag(ω2
1In1 , . . . , ω

2
kInk

) + σ 2
0 1n1′

n, together

with L(Y|β̂1) = Nn(μY (β̂1), �(β̂1)) under Gaussian errors. Moreover, unconditional moments
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are E(Y) = μY = β01n + β1[μ11′
n1

, . . . , μk1′
nk

]′ and V (Y) = � = k2diag(ω2
1In1 , . . . , ω

2
kInk

) +
σ 2

0 1n1′
n + σ 2

1 M, where M = [Mij ] = μZμ′
Z has the block structure Mij = μiμj 1ni

1′
nj

.
In particular, for typical calibrated measurements in sample i of the k samples, the conditional and
unconditional means are {E(Yij |β̂1) = β0 + β̂1μi; 1 ≤ j ≤ ni} and {E(Yij ) = β0 + β1μi; 1 ≤
j ≤ ni}, whereas the corresponding variances are {var(Yij |β̂1) = β̂2

1ω2
i + σ 2

0 ; 1 ≤ j ≤ ni} and
{var(Yij ) = κ2ω

2
i + σ 2

0 + σ 2
1 μ2

i ; 1 ≤ j ≤ ni}. We are concerned with the dual issues of the homo-
geneity of means, and of the homogeneity of variances, across the k samples. Clearly the induced
irregularities are artifacts of the calibration process, rather than consequences of the experimen-
tal structure itself. It remains to determine unintended effects of calibration on conventional
comparisons among the means and the variances.

In contrast to conventional one-way experiments, where homoscedasticity can be checked
regardless of heterogeneity among the k population means, under calibration we see that homo-
geneity of the unconditional variances is possible only in unusual circumstances. Specifically,
homoscedasticity holds unconditionally if and only if, for every pair (ω2

i , μ
2
i ) and (ω2

j , μ
2
j ), that

(ω2
i − ω2

j ) = c(μ2
j − μ2

i ) with c = σ 2
1 /κ2.

Now, consider the transformations T1(Y), T2(Y), and T3(Y) such that T1(Y) = Y = [Y , . . . , Y k]′
comprise the k sample means; T2(Y) = R′ = [R′

1, . . . , R′
k]′ consists of the ordinary within-sample

residuals, with Ri = Bni
Y i and Bni

= (Ini
− n−1

i 1ni
1′

ni
); and T3(Y) = [ν1S

2
1 , . . . , νkS

2
k ]′ are the

residual sums of squares, i.e., {νiS
2
i = R′

iRi = Y ′
iBni

Y i; 1 ≤ i ≤ k}, with νi = ni − 1. Basic
properties may be summarized as follows.

Theorem 4 Consider the calibrated measurements Y′ = [Y′
1, . . . ,Y′

k] corresponding to Z′ =
[Z′

1, . . . , Z′
k] such that E(Z) = [μ11′

n1
, . . . , μk1′

nk
]′ and V (Z) = Diag(ω2

1In1 , . . . , ω
2
kInk

), and

let T1(Y) = Y = [Y 1, . . . , Y k]′, T2(Y) = [R′
1, . . . , R′

k], and T3(Y) = [ν1S
2
1 , . . . , νkS

2
k ]′, with {νi =

ni − 1; 1 ≤ i ≤ k}. Moreover, a Gaussian model asserts that {(Zij − μi)/ωi; 1 ≤ j ≤ ni, 1 ≤
i ≤ k} are iid N1(0, 1) random variates independently of (β̂0, β̂1) under Gaussian calibration.

(i) The conditional and unconditional moments of T1(Y) = Y are given by E(Y|β̂1) = θ(β̂1) =
β01k + β̂1μ, E(Y)= θ = β01k + β1μ, V (Y |β̂1) = �1(β̂1) = β̂2

1 diag(ω2
1/n1, . . . , ω

2
k/nk)+

σ 2
0 1k1′

k , and V (Y) = �1 = κ2 diag(ω2
1/n1, . . . , ω

2
k/nk) + σ 2

0 1k1′
k + σ 2

1 μμ′, where μ′ =
[μ1, . . . , μk].

(ii) Under Gaussian models, the unconditional density of L(Y) is the translation–scale mixture

fk(u; θ, �1, G1) =
∫ ∞

−∞
gk(u; θ(t), �1(t))dG1(t) (7)

with mixing distribution G1(β̂1) = N1(β1, σ
2
1 ) as in Equation (1), where θ(t) = β01k + tμ

and �1(t) = t2 diag(ω2
1/n1, . . . , ω

2
k/nk) + σ 2

0 1k1′
k .

(iii) The conditional and unconditional moments of the residuals are E(R | β̂1) = E(R) = 0,
V (R|β̂1) = �2(β̂1) = β̂2

1 diag(ω2
1Bn1 , . . . , ω

2
kBnk

), and

V (R) = �2 = κ2 diag(ω2
1Bn1 , . . . , ω

2
kBnk

).

(iv) Under Gaussian models, the joint density of residuals R = [R′
1, . . . , R′

k]′ is given by
f2(r; 0, �2, G2) as in Equation (6), with mixing distribution G2(β̂

2
1 ; λ) and λ = β2

1/σ 2
1 .

(v) Under Gaussian models, the joint density of elements of [ν1S
2
1/ω2

1, . . . , νkS
2
k /ω

2
k]′ is given by

f (u; ν1, . . . , νk) =
∫ ∞

0

k∏
i=1

g0

(
ui; νi

2
, 2w

)
dG2(w)

with νi = ni − 1 and g0(u; α, wβ) = (wβ)−αuα−1e−u/wβ/
(α), having the mixing distri-
bution G2(β̂

2
1 ; λ) with λ = β2

1/σ 2
1 .
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Proof Arguments follow step by step as in the proofs given in Section 4.1. The details dif-
fer, but proceed similarly on noting that Y = diag(n−1

1 1n1 , . . . , n
−1
k 1′

nk
)Y = L′

1Y , say, whereas
R = diag(Bn1 , . . . , Bnk

)Y = L′
2Y . The conditional and unconditional moments follow directly

as linear functions, together with the idempotencies of {Bni
; 1 ≤ i ≤ k} and the annihilations

achieved through {Bni
1ni

= 0; 1 ≤ i ≤ k}. A Gaussian model for L(Z) and Gaussian errors
during calibration give conditional Gaussian laws for L(Y | β̂1) and L(R | β̂1), whereas the uncon-
ditional distributions are mixtures as in Section 2.2. Moreover, {S2

1 , . . . , S2
k }, are conditionally

independent given β̂1. As in the proof for Theorem 3(iv), the marginal density of L(νiS
2
i /ω

2
i | β̂1)

is the scaled chi-squared density g0(ui; νi/2, 2ω) as defined preceding Equation (2), with w = β̂1.
Their unconditional density now follows on mixing as in Section 2.2, as asserted in conclusion
(v), to complete our proof. �

It is essential to examine effects of calibration in comparing variances across the k groups,
typically based on {S2

1 , . . . , S2
k }. In the ideal case where (β0, β1) are known, we would have

{var(Yij ) = β2
1ω2

i ; 1 ≤ i ≤ k}, so that homoscedasticity across groups for measurements {Yij }
would be tantamount to that for {Zij }. Under calibration errors, however, Theorem 2(ii) shows that
S2

i underestimates var(Yij ) = κ2ω
2
i + σ 2

0 + σ 2
1 μ2

i , the amount of bias, Bi = −(σ 2
0 + σ 2

1 ω2
i ), being

an artifact of the calibration process itself. Accordingly, it is germane to examine homogeneity
among the expected values {κ2ω

2
1, . . . , κ2ω

2
k} of {S2

1 , . . . , S2
k }. To these ends, let T4(S

2
1 , . . . , S2

k )

be any scale-invariant statistic based on the sample variances from the measurements {Yij ; 1 ≤
j ≤ ni, 1 ≤ i ≤ k}. The following result is basic.

Theorem 5 Let {S2
1 , . . . , S2

k } be within-sample variances from the calibrated measurements
{Yij ; 1 ≤ j ≤ ni, 1 ≤ i ≤ k} in a one-way experiment; let T4(S

2
1 , . . . , S2

k ) be any scale-invariant
statistic; and consider a Gaussian model where {(Zij − μi)/ωi; 1 ≤ j ≤ ni, 1 ≤ i ≤ k} are iid
N1(0, 1) random variables independently of (β̂0, β̂1) under Gaussian calibration errors. Then the
distribution of T4(S

2
1 , . . . , S2

k ) is identical to its normal-theory form, independently of (β̂0, β̂1)

and the empirical calibration line.

Proof The proof for Theorem 4(v) asserts f (u; ν1, . . . , νk) = ∏k
i=1 g0(ui; νi/2, 2) as the con-

ditional density for L(ν1S
2
1/β̂1ω

2
1, . . . , νkS

2
k /β̂1ω

2
k | β̂1), with νi = ni − 1 and g0(u; α, β) =

uα−1e−u/β/βα
(α), so that {S2
1 , . . . , S2

k } are conditionally independent given β̂1. But since
T4(S

2
1 , . . . , S2

k ) is scale-invariant, L[T4(S
2
1 , . . . , S2

k ) | β̂1] = L[T4(S
2
1 , . . . , S2

k )] unconditionally,
to complete our proof. �

It deserves note that meaningful comparisons among variances are necessarily scale-invariant.
Moreover, it is seen that procedures based on {S2

1 , . . . , S2
k } support tests for conditional hypotheses

that {var(Yij | β̂1) = β̂2
1ω2 + σ 2

0 ; 1 ≤ i ≤ k}, or equivalently, H0 : ω2
1 = ω2

2 = · · · = ω2
k , to be

tested against alternatives as appropriate. Theorem 5 applies in the case of both null and non–null
distributions of invariant test statistics. Tests in common usage include

• modifications of Bartlett’s [4] likelihood ratio test,
• Cochran’s [5] test based on S2

max/(S
2
1 + · · · + S2

k ),• Hartley’s [6] F -max test based on the maximal ratio max{S2
i /S

2
j }, and

• Gnanadesikan’s [7] simultaneous comparisons of treatment variances with a control.

To examine effects of calibration errors on the one-way analysis of variance for comparing
means, we proceed conditionally given β̂1, first assuming that {var(Yij | β̂1) = β̂2

1ω2 + σ 2
0 ; 1 ≤

j ≤ ni, 1 ≤ i ≤ k}, so thatV (Y | β̂1) = β̂2
1ω2In + σ 2

0 1n1′
n = �(β̂1) in the notation of Section 3.2.

We are concerned with comparative inferences regarding elements of μ(β1) = β1[μ1, . . . , μk]′
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from E(Y) = β01n + β1[μ11′
n1

, . . . , μk1′
nk

]′. Recall that In = A0 + A1 + A2 partitions Y ′InY =
Y ′A0Y + Y ′A1Y + Y ′A2Y such that Y ′A0Y = nY

2
, with Y as the grand mean and A0 =

n−11n1′
n;Y ′A1Y = ∑k

i=1 ni(Y i − Y )2; and Y ′A2Y = ∑k
i=1

∑ni

j=1(Yij − Y i)
2. To validate the

Fisher–Cochran theorem conditionally requires that {Ai�(β̂)Aj = 0; i 
= j}. Moreover, scale
parameters associated with the quadratic forms are found as {κ2

i Ai = Ai�(β̂1)Ai; i = 1, 2, 3},
whereas non-centrality parameters derive from expected mean squares. This program of study is
carried out next in support of the following.

Theorem 6 Let {Yij = β̂0 + β̂1Zij ; 1 ≤ j ≤ ni, 1 ≤ i ≤ k} be calibrated measurements in a
one-way experiment such that {(Zij − μi)/ω; 1 ≤ j ≤ ni, 1 ≤ i ≤ k} are iid N1(0, 1) random
variables independently of (β̂0, β̂1) under Gaussian calibration errors.

(i) The analysis of variance test for equality of elements of μ(β1) = β1[μ1, . . . , μκ ]′, pertaining
to the group measurement means, is identical in level and power to its normal-theory form.

(ii) Supporting tests, based on linear contrasts among the group means, are identical in level and
power to their normal-theory forms.

Proof To validate the Fisher–Cochran theorem conditionally, observe {Ai�(β̂1)A0 =
0; i = 1, 2}, since Ai�(β̂1)A0 = Ai

(
β̂2

1ω2In + σ 2
0 1n1′

n

)
A0 and {AiA0 = 0; i = 1, 2} Simi-

larly {Ai�(β̂1)Aj = 0; (i, j) = 1, 2, i 
= j} since Ai�(β̂1)Aj = Ai (β̂
2
1ω2In + nσ 2

0 A0)Aj and
{AiAj = 0; (i, j) = 0, 1, 2, i 
= j} from standard properties of the one-way classification. Scale
parameters, as determined from

{
κ2

i Ai = Ai�(β̂1)Ai; i = 1, 2
}

are found to be equal – namely{
κ2

i Ai = Ai

(
β̂2

1ω2In + σ 2
0 1n1′

n

)
Ai = β̂2

1ω2Ai; i = 1, 2
}

from idempotency together with the
annihilation {Ai1n = 0; i = 1, 2}, so that

{
κ2

i = κ2; i = 1, 2
}
. Finally, the noncentrality parame-

ters and degrees of freedom associated with {Y ′AiY; i = 1, 2} are determined from their expected
mean squares. These are {E(Y ′AiY|β̂1) = tr(Ai�(β̂1) + [μ(β̂1)]′Aiμ(β̂1); i = 1, 2}. It follows
directly that

E(Y ′A1Y|β̂1) = tr(A1�(β̂1)) + [μ(β̂1)]′A1μ(β̂1) = (k − 1)κ2 + β̂2
1

κ∑
i=1

ni(μi − μ)2

with μ = ∑k
i=1 niμi/n. Similarly E(Y ′A2Y|β̂1) = tr(A2�(β̂1)) + [μ(β̂1)]′A2μ(β̂1) = (n − k)κ2

since [μ(β̂1)]′A2μ(β̂1) = β̂2
1

∑k
i=1

∑ni

j=1(μi − μi)
2 = 0. From these developments, we infer that

the distribution of the ratio F = (n − k)Y ′A1Y/(k − 1)Y ′A2Y satisfies L(F |β̂1) = F(k − 1, n −
k, λ(β̂1)) with λ(β̂1) = β̂2

1

∑k
i=1 ni(μi − μ)2/β̂2

1ω2 = ∑k
i=1 ni(μi − μ)2/ω2. Thus the condi-

tional and unconditional distributions are identical, i.e., L(F |β̂1) = L(F ) = F(k − 1, n − k, λ),
with λ = ∑k

i=1 ni(μi − μ)2/ω2. �

5. Diagnostics

5.1. Objectives

Calibration errors exact profound disturbances, both in models and in data–analytic procedures,
as shown. Myriad calibrated data sets have been analysed to date, supported of late by an evolv-
ing battery of diagnostic tools. On these grounds, it is tempting to dismiss the present study
as academic: in fact, these issues long since would have surfaced in practice, to be addressed
accordingly. At issue is the capacity of known diagnostics to uncover calibration-induced irregu-
larities as documented here. We now address these concerns with regard to induced correlations,
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non-normality, mixture distributions having excessive tails, and possible outliers. For definiteness,
we return to the case of a single sample as in Section 4.1.

5.2. Correlation

Neither the conditional
(
σ 2

0

(
β̂2

1σ 2
Z + σ 2

0

))
nor the unconditional

((
σ 2

0 + σ 2
1 μ2

Z

)
/
(
κ2σ

2
Z + σ 2

0 +
σ 2

1 μ2
Z

))
correlations need to be negligible. Tests for correlation entail dispersion matrices

V (Y) = τ 2�(ω), for which �(ω) = (In + ωA) with A fixed and �(ω) ∈ S
+
n . Specializing gives

τ 2�(ω) as �(ρ) under the equicorrelation models encountered here. Tests of note are due to
Durbin and Watson [8–10], Anderson and Anderson [11], Theil [12], and others, all based on
versions of von Neumann’s [13] ratio U = R′BR/R′R, with R as the observed residuals and
with B(n × n) fixed; for further details, see [14]. However, here the unconditional distribu-
tions are all identical to their normal-theory forms as if L(R) = Nn(0, σ 2Bn). This is seen
from the proof for Theorem 3(ii), where L(R|β̂1) = Nn(0, β̂2

1σ 2
ZBn) together with the scale

invariance of U = R′BR/R′R, assuring that L(R′BR/R′R|β̂1) = L(R′BR/R′R) uncondition-
ally. All such diagnostics for correlative dependencies are totally blind, both to the conditional
[V (Y|β̂1) = β̂2

1σ 2
ZIn + σ 2

0 1n1′
n] and unconditional [V (Y) = κ2σ

2
ZIn + (σ 2

0 + σ 2
1 μ2

Z)1n1′
n] disper-

sion structures. In short, demonstrated calibration-induced correlations cannot be discerned
through conventional diagnostic tools.

5.3. Non-normality

Diagnostics for normality encompass both graphical and hypothesis testing procedures. Graphs
include plots of ordered residuals against their normal-theory expectations. Common usage
includes the scaled residuals {Ri/SY ; 1 ≤ i ≤ n} or the Studentized residuals {WiRi/SY ; i =
1, 2, . . . , n}, standardized so that var(WiRi) = σ 2

Y ; see Sections 2.12 and 5.7 of ref. [15], for
example. In calibrated data, these residual plots are indistinguishable from those for the conven-
tional Gaussian model Nn(μ1n, σ

2In), whatever be the joint mixture density at Equation (1) for
the calibrated measurements. This follows since L(R/(R′R)1/2|β̂1) = L(R/(R′R)1/2) from scale
invariance, the latter as a scaled singular multivariate Student’s t distribution having ν = n − 1
degrees of freedom, depending on neither β̂1 nor σ 2

Y .
Tests for normality include the regression tests of Shapiro and Wilk [16], known to be

powerful against a wide range of alternatives, including skewed or distributions having short
or very long tails, even in small samples; see [17], for example. These tests utilize statis-
tics W = ( ∑n

i=1 wiY[i]
)2

/(n − 1)S2
Y , where {Y[1] ≤ Y[2] ≤ · · · ≤ Y[n]} are the ordered values of

{Y1, . . . , Yn}, and {w1, . . . , wn} are fixed weights. Such tests would appear promising for detecting
the non-standard mixture distributions of calibrated measurements, where

W =
( ∑n

i=1 wiY[i]
)2

(n − 1)S2
Y

=
(
β̂0

∑n
i=1 wi + β̂2

1

∑n
i=1 wiZ[i]

)2

(n − 1)S2
Y

. (8)

However, since
∑n

i=1 wi = 0 for these tests, together with the identity S2
Y = β̂2

1S2
Z , it follows that

W = ( ∑n
i=1 wiZ[i]

)2
/(n − 1)S2

Z . Then L(W |β̂1) = L(W) holds unconditionally from cancella-
tion. Briefly, all such regression tests fail to distinguish between Gaussian distributions, and the
Gaussian mixtures of type (1). With regard to further variations on regression tests, as in [18],
similar arguments show that none is able to distinguish between Gaussian distributions and their
mixtures from calibrated measurements. Given the sample moments {mr = ∑n

i=1(Yi − Y )r; r =
2, 3, 4}, tests based on the moment ratios

{
b1 = m2

3/m3
2, b2 = m4/m2

2

}
are useful against skewed

alternatives or distributions having excessive or short tails [18]. It is readily shown that these
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ratios are precisely those obtainable from {Z1, . . . , Zn}, so that their null distributions are iden-
tical to those for which L(Y) = Nn(μ1n, σ

2In), whatever be the joint mixture distribution as in
Equation (1). On the other hand, the preceding tests do offer a clear check on normality of the
distribution of {Z1, . . . , Zn}, on which the mixtures (1) are predicated.

Briefly, conventional Gaussian diagnostics are bereft of any capacity to distinguish between
Gaussian errors, and Gaussian mixtures of type (1). Thus radical calibration-induced depar-
tures from Gaussian models cannot be discerned through routine screening using any of these
diagnostics.

5.4. Outliers

Commonly used diagnostics for a shift in location or scale at observation Yi include the
studentized residuals ti = Ri/SY

√
(1 − 1/n) and the R-Student deletion diagnostic Rti =

Ri/S−i

√
(1 − 1/n), where S−i is the sample standard deviation found on deleting Yi from

{Y1, . . . , Yn}. As mixture distributions may have heavy tails, and since conventional diagnos-
tics for normality have failed, it is natural to ask whether outlier diagnostics might be sensitive to
observations from mixtures of type (1). If so, then evidence for apparent outliers in calibrated data
instead might be attributable to the calibration process itself. However, these diagnostics are all
scale-invariant functions of the observed residuals {R1, . . . , Rn}, so that they are indistinguishable
from the statistics derived from the standard Gaussian model Nn(μ1n, σ

2In). Briefly, conventional
outlier diagnostics cannot distinguish between Gaussian errors, and between heavy-tailed mixtures
as in Equation (1), even if a shift in location or scale has occurred at observation Yi .

Section 5 has re-examined whether conventional diagnostics can detect calibration-induced
anomalies, including correlations, non-normality, distributions having excessive tails, and possi-
ble outliers. Even radical departures from conventional assumptions cannot be discerned through
routine screening using any of the above-mentioned diagnostics. In summary, the present study
cannot be dismissed as merely academic, as evidence for anomalies traceable to calibration
could not have surfaced in practice through a battery of diagnostic tools as it has evolved
to date.

6. Case studies

We apply the results of Section 4.1 to a numerical data set under the assumptions of Theorem 3.
Table 1 gives the percent of purity (X) and the octane number (U) from a sample of n = 11
different gasoline production runs. Percent purity is determined readily, whereas octane numbers
require expensive and time-consuming dynamic laboratory tests; hence the need for calibration.

The least-squares fit for U = β0 + β1(X − X) + ε has {n = 11, β̂0 = 87.2818, σ̂0 =
0.1846, β̂1 = 1.8546, σ̂1 = 0.5837}. Suppose that subsequent determinations of percent purity
satisfy {L(Zi) = N1(0, 1); 1 ≤ i ≤ n}, so that calibrated measurements are recovered as {Yi =
β̂0 + β̂1Zi; 1 ≤ i ≤ n} in units of octane number. Then the distribution of Y is the mixture of
a normal distribution N1(μ(t), �(t)), with μ(t) = β0 + tμZ and �(t) = t2σ 2

Z/n + σ 2
0 , having

the density g1(u; μ(t), �(t)), and a mixing distribution N1(β1, σ
2
1 ) having the density dG1(t).

For convenience, we write this as L(Y ) = N1(β0 + tμZ, t2σ 2
Z/n + σ 2

0 )�tN1(β1, σ
2
1 ), where �t

Table 1. Percent of purity (X) and octane number (U) of gasoline.

X 99.8 99.7 99.6 99.5 99.4 99.3 99.2 99.1 99.0 98.9 98.8

U 88.6 86.4 87.2 88.4 87.2 86.8 86.1 87.3 86.4 86.6 87.1
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designates the mixing operation. Accordingly, the density of Y is

f1(u) =
∫ ∞

−∞
g1

(
u; β0 + tμZ,

t2σ 2
Z

n
+ σ 2

0

)
dG1(t)

=
∫ ∞

−∞
exp(−[u − (β0 + tμZ)]2/(2(t2σ 2

Z/n + σ 2
0 )))√

2π(t2σ 2
z /n + σ 2

0 )

exp(−((t − β1)
2)/2σ 2

1 )√
2πσ 2

1

dt, (9)

a function of the parameters � = {n, β0, σ0, μZ, σZ, β1, σ1}, with skewness 0.1464 × 10−6 and
kurtosis 3.855, and with conditional mean E(Y ) = 87.2818, given the empirical calibration.

Using Equation (9), we compute the 95% probability region for Y as (86.037, 88.526) compared
with β̂0 ± 1.96|β̂1|σZ/

√
11 = (86.184, 88.376) if Y were normal. This latter interval is actually

a 92.2% probability region. In addition, the density f1(u) is bell-shaped but is not normal. Table 2
gives its moments (mean, variance) and moment ratios (skewness (γ ), kurtosis (κ)) for selected
values of the parameters �.

The scaled sample variance is a mixture of a gamma distribution, G0(·, ·), with mixing
distribution dG2(w) as a non-central chi-squared distribution, to give L((n − 1)S2

Y /σ 2
1 σ 2

Z) =
G0((n − 1)/2, 2t)�tχ

2
1 (λ = β2

1/σ 2
1 ) with E(S2

Y /σ 2
Zσ 2

1 ) = (1 + λ), which for the octane data is
the conditional value E(S2

Y )/σ 2
Zσ 2

1 = 11.095, so that E(S2
Y ) = 3.780. The mixture distribution

has the density

f0(u) = uν/2−1

2ν/2
(ν/2)

∫ ∞

0
w−ν/2e−u/2wdG2(w)

= uν/2−1

2ν/2
(ν/2)

∫ ∞

0
w−ν/2e−u/2w

⎡
⎣e−λ/2−u/2

21/2

∞∑
j=0

(
λ

4

)j
uj−1/2

j !
(1/2 + j)

⎤
⎦ dw (10)

with ν = (n − 1).
If Y were normal with β̂1 a constant, then a 95% probability region for S2

Y could be
found from P [χ2(10; 0.025) < (n − 1)S2

Y /β̂2
1σ 2

Z < χ2(10; 0.975)] or equivalently P [1.1167 <

S2
Y < 7.0449], which actually is a 74% probability region when variation in β̂1 is taken into

account. The correct probability region is found by numerically integrating Equation (10) to get

Table 2. The moments (mean, variance) and moment ratios (skewness (γ ), kurtosis (κ)) of
L(Y ) for selected values of the parameters � = {n, β0, σ0, μZ, σZ, β1, σ1}.

n β0 σ0 μZ σZ β1 σ1 E(Y ) var(Y ) γ κ

10 1 1 1 1 1 1 2.0000 2.2000 0.1839 3.2851
20 1 1 1 1 1 1 2.0000 2.1000 0.0986 3.1463
20 0.5 1 1 1 1 1 1.5000 2.1000 0.0986 3.1463
20 2 1 1 1 1 1 3.0000 2.1000 0.0986 3.1463
20 1 0.5 1 1 1 1 2.0000 1.3500 0.1913 3.3539
20 1 2 1 1 1 1 2.0000 5.1000 0.0260 3.0248
20 1 1 0.5 1 1 1 1.5000 1.3500 0.0956 3.1070
20 1 1 2 1 1 1 3.0000 5.1000 0.0521 3.0940
20 1 1 1 0.5 1 1 2.0000 2.0250 0.0260 3.0373
20 1 1 1 2 1 1 2.0000 2.4000 0.3327 3.5417
20 1 1 1 1 0.5 1 1.5000 2.0625 0.0506 3.1463
20 1 1 1 1 2 1 3.0000 2.2500 0.1778 3.1452
20 1 1 1 1 1 0.5 2.0000 1.3125 0.0499 3.0267
20 1 1 1 1 1 2 2.0000 5.2500 0.0998 3.3614
10 1 0.5 1 2 1 2 2.0000 6.2500 0.6144 5.5559
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P [10.8 < (n − 1)S2
Y /σ 2

1 σ 2
Z < 336.5] = 0.95 = P [0.3680 < S2

Y < 11.46]. We find that using the
first 20 terms in the infinite sum is adequate.

For the density of t2
0 = n(Y − μ0

Y )2/S2
Y , set{

ν = n − 1, δ = (μY − μ0
Y )2

σ 2
1 σ 2

Z

, δ(β̂1) = δ

β̂2
1/σ 2

1

}
.

Its density is found on mixing the non-central t2(ν, δ/t) over a non-central chi-squared as
the mixing distribution, which we write as L(t2

0 ) = t2(ν, δ/t)�tχ
2
1 (λ = β2

1/σ 2
1 ). The density

is given by

g(u; ν, δ, λ) =
∫ ∞

0

1

ν

∞∑
j=0

(δ/t/2)j e(−δ/t/2)(u/ν)−1/2+j

j !B((1 + 2j)/2, ν/2)(1 + u/ν)1/2+ν/2+j

e−λ/2−t/2

21/2

×
∞∑

k=0

(λ/4)ktk−1/2

k!
((1 + 2k)/2)
dt. (11)

For the first sum, we use the first N1 = 15 terms, and for the second sum the first N2 = 30 terms.
This distribution is useful for computing the power of the t2 test. For example, with n = 11

so ν = 10, the 95% critical value is 4.9646 with δ = 0. Table 3 gives the power of the test for
δ = {0, 1, 4, 9} and λ = {1, 4, 9}

For the octane data, the power of the test of H0 : μY = μ0
Y , with (μY − μ0

Y )2 = 1, has ν =
10, δ = (μY − μ0

Y )2/σ 2
Zσ 2

1 = [(1)(0.5837)]−2 = 2.9351, λ = β2
1/σ 2

1 = (1.8546/0.5837)2 =
10.0953. The power of the test is 90%.

An equivalent form for L(t2
0 ) is based on t0 as L(t0) = t (ν, δ0/s)�s

√
(χ2

1 (λ = β2
1/σ 2

1 )), mixing
over a shifted half-normal distribution. Its density is

ft0(u) =
∫ ∞

0

e(−(δ0/s)
2)/2
((ν + 1)/2)(ν/(ν + u2))ν/2+1/2

√
πν(
/2)

×
∞∑

j=0


((ν + j + 1)/2)

j !
((ν + 1)/2)

(√
2uδ0/s√
ν + u2

)j

d
√

G2(s) (12)

having the non-centrality parameter δ0 = √
δ and

d
√

G2(s) = e−(s−λ0)
2/2 + e−(−s−λ0)

2/2

√
2π

ds

with the non-centrality parameter λ0 = √
λ. This series has faster convergence and we used

N = 20 terms in the preceding power calculations with non-centrality parameters δ0 = √
δ and

Table 3. Power for the test H0 : μY = μ0
Y , against

H1 : μY 
= μ0
Y for δ ∈ {0, 1, 4, 9} and λ ∈ {1, 4, 9}.

λ

δ 1 4 9

0 0.950 0.950 0.950
1 0.691 0.863 0.928
4 0.485 0.742 0.876
9 0.329 0.608 0.799
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λ0 = √
λ. Computations reported here were executed by the second author using the Maple

software package.

7. Conclusions

In summary, the widespread and necessary use of calibration may have devastating effects, even on
elementary data-analytic procedures pertaining to location and scale parameters. It is unfortunate
that these difficulties cannot be flagged by the ever expanding use of available diagnostic tools.
It is thus incumbent on knowledgeable users of statistical methodology, and the statistical con-
sultants advising them, to assess the extent of these difficulties as they might impact the analysis
and interpretation of data in a particular experimental setting. Let the user be forewarned. Fortu-
nately, comparisons among means and among variances, in the context of comparative one-way
experiments, are largely unaffected by the use of calibrated instruments when subject to errors of
calibration, provided that the results are interpreted accordingly.
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Appendix

It is germane to examine the comparative concentration of probability measures on R
n. Following Sherman [2], the

measure μ(·) is said to be more peaked about 0 ∈ R
n than ν(·) if and only if μ(A) ≥ ν(A) for every set A in the class C(n)

comprising the convex sets in R
n symmetric under reflection through 0 ∈ R

n. For scale mixtures of Gaussian measures
on R

n, their peakedness ordering is tantamount to the stochastic ordering of their mixing distributions. Details follow.
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Lemma A1 Let GMn(θ, �, G1) and GMn(θ, �, G2) be Gaussian mixtures on Rn of type (2) having mixing distributions
G1(·) and G2(·) on R

1+. Then GMn(θ, �, G1) is more peaked about θ ∈ R
n than GMn(θ, �G2) if and only if G1(t) ≤

G2(t) for every t > 0.

Proof The ordering G1(t) ≤ G2(t); i.e., that G1(·) is stochastically larger than G2(·), holds if and only if there
are increasing functions {ψ1(·), ψ2(·)} ordered pointwise as ψ1(t) ≥ ψ2(t), together with a random variable U , such
that G1(t) = P(ψ1(U) ≤ t) and G2(t) = P(ψ2(U) ≤ t); see, for example, [19, Lemma 1, p. 84]. Accordingly, we
provisionally write μ(A) = ∫

A
f (x; θ, �, G1)dx and ν(A) = ∫

A
f (x; θ�, G2)dx and their difference as

μ(A) − ν(A) =
∫ ∞

0

∫
A

[g(x; θ, �/ψ1(t)) − g(x; θ�/ψ2(t))]dx dG(t).

Given that G1(t) ≤ G2(t), so that ψ1(t) ≥ ψ2(t), the ordering
∫
A
[g(x; θ, �/ψ1(t)) − g(x; θ�/ψ2(t))]dx ≥ 0 follows

point wise for each fixed t ∈ R
1+ from [20, Corollary 3], since �/ψ2(t) �L �/ψ1(t) uniformly in t . That [μ(A) − ν(A)] ≥

0 now follows directly. Conversely, suppose that μ(A) ≥ ν(A). We now apply the converse toAnderson’s [20, Corollary 3],
as proved in [21], to infer that ψ1(t) ≥ ψ2(t) for each t > 0, thus establishing the necessity of the condition G1(t) ≤ G2(t),
to complete our proof. �
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