
Anomalies of the Magnitude of the Bias of the Maximum  
Likelihood Estimator of the Regression Slope 

 

157 

15 
 

Anomalies of the Magnitude of the Bias 
of the Maximum Likelihood Estimator of 

the Regression Slope 
 

Diarmuid O’Driscoll, Mary Immaculate College, Ireland 
Donald Ramirez, University of Virginia, USA 

 

 

The slope of the best-fit line xxhy 10)(    from minimizing a 

function of the squared vertical and horizontal errors is the root of 
a polynomial of degree four which has exactly two real roots, one 
positive and one negative, with the global minimum being the root 
corresponding to the sign of the correlation coefficient. We solve 
second order and fourth order moment equations to estimate the 
variances of the errors in the measurement error model. Using 
these solutions as an estimate of the error ratio in the maximum 

likelihood estimator, we introduce a new estimator kap
1 . We create 

a function   which relates   to the oblique parameter , used in 

the parameterization of the line from ))(,( xhx  to )),(( 1 yyh , to 

introduce an oblique estimator 
lam
1 .  A Monte Carlo simulation 

study shows improvement in bias and mean squared error of each 
of these two new estimators over the ordinary least squares 
estimator. In O’Driscoll and Ramirez (2011), it was noted that the 
bias of the MLE estimator of the slope is monotone decreasing as 

the estimated variances error ratio    approaches the true 

variances error ratio     
    

 . However for a fixed estimated 

variances error ratio   , it was noted that the bias is not monotone 

decreasing as the true error ratio κ approaches   . This paper 

shows this anomaly by showing that as κ approaches a fixed   , the 
bias of the MLE estimator of the slope is also dependent on the 

magnitude of   
 .  

Keywords: Maximum likelihood estimation, Measurement errors, 
Moment estimating equations, Oblique estimators 

 
 



Essays on Mathematics and Statistics 

 

158 

Introduction 
 

With ordinary least squares )( xyOLS  regression we have data 

 ),(),...,,( 111 nnnn xXYxxXYx   and we minimize the sum of the squared 

vertical errors to find the best-fit line xxhy 10)(    where it is assumed 

that the independent or causal variable X is measured without error. The 
measurement error model does not assume that X is measured without error, 
has wide interest with many applications and has been studied in depth by 
many, for example, Carroll et al. (2006) and Fuller (1987). As in the regression 

procedure of Deming (1943) to account for both sets of errors   
  and   

 , we 
determine a fit so that a function of both the squared vertical and the squared 
horizontal errors will be minimized. In Section 2, we outline the Oblique Error 
Method and the measurement error model and introduce second order and 

fourth order equations to estimate     
    

  in the maximum likelihood 

estimator. We also introduce two new estimators 
kap
1  and 

lam
1  and describe 

our Monte Carlo simulations. We report on our findings in Section 3 and 

conclude that that our estimators kap
1 and 

lam
1 greatly reduce the Bias and 

MSE associated with the ordinary least squares estimator
ver
1 . 

 
 
Methodology 
 
Minimizing Squared Oblique Errors  

From the data point ),(
ii

yx  to the fitted line xxhy 10)(   , define 

the vertical length 
iii

xyv
10

   from which it follows that the sum of the 

squares of the oblique lengths from ),( ii yx to 

)))(()),(()(( 11
iiiiii yxhyyhxyh    is  

  ./)1(),,( 222
1

22
10 iio vvSSE      (1) 

In a comprehensive paper by Riggs et al. (1978), the authors state that: “It 
is a poor method indeed whose results depend upon the particular units 
chosen for measuring the variables.” As in O’Driscoll and Ramirez (2011), so 
that our equation is dimensionally correct we consider a standardized 
weighted model  

  222
1

22
10 /)1(),,( ixxiyyo vsvsSSE   

where 
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    and      
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The solution of 
       

   
 = 0 is given by xy 10    and the solutions of  

       

   
 = 0 are the roots of the fourth degree polynomial, )(

14
P , 
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For example, if                                         , 

the graph of               is 

 
   

From O’Driscoll et al. (2008), the Complete Discrimination System

},...,{ 1 nDD of Yang (1999) is a set of explicit expressions that determine the 

number (and multiplicity) of roots of a polynomial. This system is used to 

show that the fourth order polynomial )(
14

P  has exactly two real roots, one 

positive and one negative with the global minimum being the positive 

(respectively negative) root corresponding to the sign of .xys  For     

                                    the graph of )(
14

P is 

 

 
    

With λ = 1 we recover the minimum squared vertical errors with estimated 

slope 
ver
1  and with λ = 0 we recover the minimum squared horizontal errors 

with estimated slope
hor
1 . The geometric mean estimator xxyy

gm
ss /1   

has the fixed oblique parameter λ = 0.5 and for the measurement error model, 
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when both the vertical and horizontal models are reasonable, a compromise 

estimator such as 
gm

1  is widely used and
 

is hoped to have improved 

efficiency. However, Lindley and El-Sayyad (1968) proved that the expected 

value of 
gm

1
 
is biased unless     

    
  . 

 
Measurement Error Model; Second and Fourth Moment Estimation  

We now consider the measurement error model as follows. In this paper it 
is assumed that X and Y are random variables with respective finite variances

2

X
 and 2

Y
 , finite fourth moments and have the linear functional relationship

.10 XY   The observed data { ),(
ii

yx , ni 1 } are subject to error by 

iii
Xx   and iii

Yy    

where it is also assumed that  

         
             

     
 

                                              and j. 

 
It is well known, in a measurement error model, that the expected value 

for 
ver
1 ( )|( xyOLS ) is attenuated towards zero by the attenuating factor 

)/( 222

 
XX called the reliability ratio by Fuller (1987); and similarly the 

expected value for 
hor
1  ( )|( yxOLS ) is amplified towards infinity by the 

amplifying factor 222 /)(
YY

  .  

From Gillard and Iles (2009), second moment equations are 

                             
    

         
   

    
            

   (3) 

 
and fourth moment equations are 

                                         
   

            
     

     
   

  (4) 
 
These equations yield the estimators 
    

                        2~
      

    

   
    2~

                    (5) 

the Frisch hyperbola of Van Montfort (1987) 
 

       
         

      
  (6) 

and the fourth order equation 
 

             
      

          
                

          (7)

                  
 

We use equations (6) and (7) to find estimators for   
 

 and   
    , namely    

 
  

and     
  , imposing  suitable restrictions on the possible solutions; firstly the 

variances must be positive; secondly the kurtosis of the underlying distribution 
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must be significantly different from the kurtosis of the normal distribution to 
assure the validity of Equation (4) and thirdly the sample sizes must be 
adequately large. We then use these solutions as estimates for the ratio   in 
the maximum likelihood estimator as described in Section 2.3. A typical graph 
of equations (6) and (7) is 
 

                          True Ratio         :     Solution              

 
 
The Maximum Likelihood Estimator  

If the ratio of the error variances 22 /    is assumed finite, then 

Madansky (1959), among others, showed that the maximum likelihood 
estimator for the slope is  

yyxx

yyxxxxyyxxyymle

ss

ssssss






2

4)()(
)(ˆ

22

11


 .   (8) 

For finite   it also follows that the moment estimator agrees with the 
MLE. If   = 1 in Equation (8) then the MLE (often called the Deming 

Regression estimator) is equivalent to the perpendicular estimator, ,1

per first 

introduced by Adcock (1878). In the particular case where            then 

mle
1  has a fixed λ value of 0.5.  

If the researcher knows the true error ratio     
    

  then  

                ( )(ˆ1                                             (9) 

and there are no bias problems. We will discuss the more realistic situation 

when κ is an unknown parameter and must be estimated by   .  
 
 
Monte Carlo Simulation  
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The Bias of the MLE for an Incorrect Choice of κ 

We set the estimated ratio of the error variances       The X data was 

generated from a uniform distribution on              to set   
       

The linear regression model had slope            and sample size n = 50. 
For the measurement error model, we used normal errors with mean equal to 

zero and variances    
    

   varying over {1,2,3,4,5,9 }. We used Minitab for our 

simulation study setting the number of runs N = 5000. The results for the bias 

                are recorded in Table 1.  

 

Table 1. with             
          

    
                 

5000. 

  
    

      
    

        

3 9 0.333 −6.0 −0.0298 
5 9 0.555 −4.0 −0.0201 
2 4 0.500 −2.0 −0.0100 
1 3 0.333 −2.0 −0.0089 
1 2 0.500 −1.0 −0.0048 
2 1 2.000 1.0 0.0047 
3 1 3.000 2.0 0.0103 
4 2 2.000 2.0 0.0107 
9 5 1.800 4.0 0.0204 
9 3 3.000 6.0 0.0318 

    
The rows of Table 1 are sorted in ascending order of the theoretical bias, 

     ,  displayed in Column 5. We make the following observations. Firstly, 

with     , the ranking for the bias concurs with the ranking of the differences 

in the error variances   
    

  but does not concur with the ranking for 

    
    

  in terms of its  closeness to    . The value for κ = 0.555 in Row 2 is 

closer to the assumed value      than the value for κ = 0.500 in Row 3 is. 
However the absolute value for the bias 0.0201 in Row 2 is approximately 
double the absolute value for the bias 0.0100 in Row 3; that is, the magnitude 

of the bias for the MLE estimator        is not monotone in κ.  

Secondly, for equal   = 3/1 in Row 7 and κ = 9/3 in Row 10, the respective 
biases 0.0103 and 0.0318 are approximately proportional to the respective 

differences of the error variances        and      . 
 
The Efficiency of Different Slope Estimators 

Using the solutions 
2~
  and 

2~
  from equations (6) and (7) as estimates 

for   in 
mle
1 , we introduce a new estimator 

kap
1  which performs very well 

in our Monte Carlo simulation. 
Relation between Kappa and Lambda 

With  estimated as in Section 2.2, the invertible function 

]1,0[],0[:  defined by yyxx ssccc /),1/()(   , creates a new 

estimator 
lam
1 . This proposed oblique estimator also performs very well in 

our Monte Carlo simulation. Since the range of κ includes infinity, we do not 
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compute its average value in our simulation. Instead, we compute the average 

λ value for 
lam
1 , and use )(

_
1  

 as the effective average ~  for κ. To 

determine the efficiency of the six estimators {
ver
1 , gm

1 , 
hor
1 , per

1 , kap
1 , 

lam
1 }, we conducted a set of Monte Carlo simulations for varying values of the 

true slope 1 . 

We report in Tables 2-5 the MSE, the Bias, the associated parameter  

and the associated oblique angle   for each of the six estimators above. The 

orientation for   is chosen such that for 
ver
1 , 0 <  <      and for 

hor
1 , 

       <      . 

 

Table 2. X is UD(0,20), 1 = 1.0, 0 = 0, N =1000, n =100,  = 1,  = 3 

 MSE 310  %Bias λ    
ver
1  46.569 -21.189 1 51.76 
gm

1
 11.897 -9.947 0.500 95.99 

hor
1  4.402 2.957 0 134.17 
per

1
 15.130 -11.246 0.556 89.93 

kap
1

 4.625 -1.382 0.169 118.37 
lam
1  4.442 -0.029 0.237 123.49 

 

Table 3. X is UD(0,20), 1 = 1.25, 0 = 0, N = 1000, n = 100,  = 1,  = 3 

 MSE 310  %Bias λ    
ver
1  70.809 -20.929 1 45.33 
gm

1
 18.425 -10.036 0.500 83.29 

hor
1  5.708 2.413 0 127.99 
per

1
 15.081 -8.546 0.434 89.90 

kap
1

 6.304 -1.180 0.171 114.70 
lam
1  5.847 0.092 0.145 116.62 

 

In the cases represented by Tables 2 and 3 we can see that 
kap
1  and 

lam
1  

make significant improvement in (MSE, Bias) over the estimator 
ver
1  and 

each of the ‘compromise’ estimators gm
1  and per

1 . Of course 
hor
1 performs 

well in each of these cases but its use would have been based on prior 

knowledge that 22
   . 

 

Table 4. X is UD(0,20), 1 = 1.0, 0 = 0, N = 1000, n =100,  = 2,  = 2 

 MSE 310  %Bias λ    
ver
1  13.403 -10.688 1 48.23 
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gm
1

 2.117 0.0989 0.500 89.94 
hor
1  18.146 12.232 0 131.70 
per

1
 2.672 0.126 0.500 89.92 

kap
1

 4.432 0.295 0.495 90.38 
lam
1  5.962 0.425 0.497 90.14 

Table 5. X is UD(0,20), 1 = 0.75, 0 = 0, N =1000, n =100,  = 2,  = 2 

 MSE 310  %Bias λ    
ver
1  7.791 -10.518 1 56.13 
gm

1
 2.603 4.196 0.500 103.99 

hor
1  28.487 21.417 0 137.68 
per

1
 2.041 0.169 0.640 89.96 

kap
1

 4.233 0.725 0.590 95.55 
lam
1  5.402 -0.029 0.615 92.97 

 

In the cases represented by Tables 4 and 5 we again see that 
kap
1  and 

lam
1  make significant improvement in (MSE, Bias) over the estimators

ver
1  

and 
hor
1 . With 1 , per

1  performed very well in each case as expected 

since   
    

 . The condition of Lindley and El-Sayyad (1968) of      
    

  
is satisfied in the case represented by Table 4 but not by Table 5 and hence 

gm
1  performed very well in Table 4 but not as well in Table 5. Riggs et al. 

(1978) state that “no one method of estimating the true slope is the best 

method under all circumstances.”  Tables 2-5 show that 
kap
1 and 

lam
1  

perform well in all of the above four cases where no prior knowledge of the 
errors is assumed.  

Table 6 reports the effective average for~ , as described in Section 3.3, for 

( 2
 , 2

 )  }9,4,1{}9,4,1{  . 

 

Table 6. Effective ~  average; X is UD(0,20), 1 = 1, 0 = 0, N =1000, n = 100 

 2
 =1 2

 = 4 2
 = 9 

2
 =1 1.1781 3.3975 6.1251 

2
 =4 0.3185 0.9169 1.9514 

2
 =9 0.1701 0.4090 1.1658 

Conclusion  
 

Our simulation study in 3.1 illustrates that the bias of the MLE estimator 

of the regression slope is dependent on the magnitude of   
 , the variance of 

the errors in x. 
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Our simulation studies in 3.3 support the claim that our estimators kap
1

and 
lam
1 , under the conditions outlined in 2.2, greatly reduce the Bias and 

MSE associated with the ordinary least squares estimator
ver
1 .  
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