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 R?sum?

 Plusieurs anomalies ont ?t? r?cemment relev?es par Jensen et Ramirez (2008) dans les fondements th?oriques de la
 "ridge regression" consid?r?e dans une perspective de moindres carr?s constraints. Certaines de ces anomalies ont ?t?
 attribu?es au comportement non monotone de la norme des "ridge-estimateurs" non contraints, ainsi qu'au caract?re
 non suffisant du principe de Lagrange. Nous indiquons dans cet article que, pour une valeur fix?e de Y, la norme
 des ridge-estimateurs correspondant ? une base donn?e sont strictement monotones. En outre, les conditions assurant
 le caract?re suffisant du principe de Lagrange sont satisfaites pour un ensemble ad?quat de valeurs du param?tre
 contraint. L'origine des anomalies relev?es se trouve donc ailleurs. Cette apparente contradiction prend son origine,
 dans le contexte de l'?tude d'un ensemble de donn?es particulier, dans la confusion entre les estimateurs du vecteur de
 param?tres ? correspondant ? diff?rentes param?trisations (associ?es ? diff?rents choix d'une base) et/ou ? diff?rentes
 normes. Afin d'?viter ce type de confusion, il est sugg?r? d'indexer le param?tre de fa?on ad?quate au moyen de la
 base choisie.

 [Received October 2008, accepted February 2010]
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 1 Introduction

 We wish to thank Professors Kapat and Goel (2010) (hereafter KG(2010)) for clarifying
 the non-invariance of ridge regression to the choice of parametrization, a concern voiced by
 Smith and Campbell (1980), their discussants, and others. KG(2010) focus mainly on one aspect
 of our "Foundations" paper (hereafter JR(2008)), namely, constrained optimization in linear
 inference. We mostly concede their corrections, noting that essentials are found in Marquardt
 (1963), Meeter (1966), Hoerl & Kennard (1970), and recently Davidov (2006). However, the
 principal anomaly of JR(2008) remains: The theory and practice of ridge regression do not rest
 on constrained optimization.
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 216  D. R. Jensen & D. E. Ramirez

 Here we trace conventions for taking{ f = X? + ?}, in original coordinates, through centering
 and scaling into [Y = + e} with A = Z'Z'm "correlation form", the model MR of KG(2010),
 but now distinguishing from ?. In practice, the original scale typically is of overriding concern
 to the analyst; hence the routine mapping back to that scale. In fact, an algorithm in section 4.2 of
 JR(2008) shows connections between { = + e}, where solutions diminish monotonically
 in length, and lengths of projections back onto the original scale, which need not be monotone.

 2 Standardization

 Constrained optimization in regression traces to Marquardt (1963), seeking a compromise
 between Gauss-Newton and gradient methods in non-linear estimation, and solving iteratively
 through locally linear models. Noting that gradient methods are not scale invariant, Marquardt
 (1963, p. 436) for convenience scales the j8-space using standard deviations of the columns
 of X, transforming elements of X'X into "simple correlation coefficients", as used widely in
 least-squares problems "for improving the numerical aspects of computing procedures". As
 in Belsley (1986), the latter includes the conditioning of linear systems and stability of their
 solutions. This standardization pervades much of the ridge regression literature, beginning with
 Hoerl & Kennard (1970) and onward.

 That solutions are mapped routinely back onto the original scale is seen in the Ridge option
 of Proc Reg in the SAS system, as used in Myers (1990) for the Hospital Manpower Data and
 as verified in JR(2008). An antecedent is Marquardts (1963) algorithm: At each iteration the
 local linear model is transformed into "correlation form"; the constrained solution is found; and
 this is projected back onto the original scale before proceeding to the next iterate. Letting Ds =

 DiagC^1, Spl) as in KG(2010), the constraint { ' = c2} maps back to {?'D~2? = c\
 often counter-intuitive to the user and subject to the vagaries of typically irrelevant lengths of

 the columns of X. That ridge solutions || 0Rk \\2 = ?RkDr2?Rk decrease monotonically in k is an
 artifact of an algorithm chosen for numerical stability. To the contrary, users instead may insist

 that II ?^\\ is essential, and then seek the value ?R(k) so as (i) to achieve a natural constraint
 (II y = c}, and (ii) to minimize the residual sum of squares on that scale. To these ends, the
 algorithm in section 4.2 of JR(2008) bridges this gap, demonstrating explicitly the manner in
 which solutions from { = + e}, when projected as lengths onto the original scale, will be
 minimizing there. Specifically, for fixed c again define the set

 A(c) = {k:\\?R(k)\\=c},

 and let kc = min{A(c)}. Then ?R(kc) achieves its designated constraint and is minimizing, all
 on the original scale. KG(2010) claim that A(c) is either a singleton set or is empty. While true
 for solutions in "correlation form", the cardinality of A(c) may increase when projected back
 onto the original scale, as noted and illustrated correctly in JR(2008).

 3 Conclusions

 Pretensions to the contrary, ridge regression remains ill-posed mathematically. Under objective
 constraints, either {?f? = c2} or {?'? < c2} in a generic model {Y = X? + e}9 constrained
 optimization returns a solution [?R(k), k, c2]. That an objective c2 typically is missing, is ack
 nowledged in the myriad choices for k advocated in the literature, including the early "ridge
 trace" of Hoerl & Kennard (1970).

 The overriding determinant of the need for ridge regression, or other biased estimation, is
 conditioning of the system {X'X? = X'Y}. Possibilities to improve the conditioning of XX
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 include {X'X -> (X'X + B)} with positive definite. For k > 0 it is known (Riley, 1955)
 that {X'X + kip) is better conditioned than XX, cited as justification for ridge regression in

 Marshall & Olkin (1970). Nonetheless, constrained optimization is not a panacea: Given any
 "ridge-type" system {{X'X + kA)? = X'Y}, under generalized constraints as in section 1 of
 KG(2010) and McDonald (1982), it remains open (apart from = klp) as to circumstances
 where its conditioning might be enhanced over the original. If not, this could further undermine
 conditioning of the system, and exacerbate the problem through an inappropriate and counter
 productive choice of constrained optimization.

 The focus of KG(2010) on constrained optimization, and our continuation in this reply, are
 largely beside the point, distracting, and obscuring from the main thesis of JR(2008): Whatever
 its niceties, constrained optimization has essentially nothing to do with ridge regression as
 practiced. Numerous procedures have been advanced for determining k, to include ridge traces,
 choices assuring dominance in mean square over Ordinary Least Squares {OLS) or, inter se,
 among other biased estimators; and other approaches. In particular, variances, biases, and
 mean square errors, as given in section 4 of Hoerl & Kennard (1970); and numerous other
 properties of ridge solutions adopted by generations hence: These all assert incorrectly that

 ?^, intended as a constrained estimator, is linear in the OLS solution ?L. Granted, the ridge
 system {{X'X + kIp)?Rk = X'Y} does derive from initial steps of constrained optimization.

 However, this in itself fails to justify repeated claims that ridge regression rests on constrained
 optimization. To be correct, the final step must deliver the constrained solution. As noted earlier,

 conditioning arguments alone deliver the identical system {{X'X + kl^?^ = X'Y] without
 recourse to constraints. In short, once again, estimators constrained to the osphere, or to the
 c-ball in Euclideanjp-space, cannot be linear in ?L, as we emphasized from several perspectives in
 JR(2008). Specifically, a solution constrained to a ball of radius c could be unbiased, depending
 on how its probability is concentrated there. Nothing offered by KG(2010) can alter these facts,
 totally debilitating as they are to claims that constrained optimization is the foundation for ridge
 regression as known and practiced.

 Ridge regression having failed its vaunted credentials, we introduced in JR(2008) surrogate
 estimators as modifications of ridge based on conditioning, and we showed numerically in our
 case study that, in contrast to ridge, surrogate estimators possess desirable monotone properties.
 As the ridge parameter k evolves, we since have shown in theory that ridge estimators typically
 exhibit erratic divergence from those of orthogonal systems, often reverting back to OLS in
 the limit. In contrast, surrogate solutions are seen to converge monotonically to those from
 orthogonal systems. This work appears as Jensen, D.R. & Ramirez, D.E. (2010). Surrogate
 models in ill-conditioned systems. J. Statist. Plann. Inference, 140, 2069-2077.
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