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Understanding the temporal patterns of leaf traits is critical in determining the seasonality andmagnitude of ter-
restrial carbon,water, and energyfluxes. However, we lack robust and efficientways tomonitor the temporal dy-
namics of leaf traits. Here we assessed the potential of leaf spectroscopy to predict and monitor leaf traits across
their entire life cycle at different forest sites and light environments (sunlit vs. shaded) using a weekly sampled
dataset across the entire growing season at two temperate deciduous forests. The dataset includesfieldmeasured
leaf-level directional-hemispherical reflectance/transmittance together with seven important leaf traits [total
chlorophyll (chlorophyll a and b), carotenoids, mass-based nitrogen concentration (Nmass), mass-based carbon
concentration (Cmass), and leaf mass per area (LMA)]. All leaf traits varied significantly throughout the growing
season, and displayed trait-specific temporal patterns. We used a Partial Least Square Regression (PLSR) model-
ing approach to estimate leaf traits from spectra, and found that PLSR was able to capture the variability across
time, sites, and light environments of all leaf traits investigated (R2 = 0.6–0.8 for temporal variability; R2 =
0.3–0.7 for cross-site variability; R2= 0.4–0.8 for variability from light environments).We also tested alternative
field sampling designs and found that formost leaf traits, biweekly leaf sampling throughout the growing season
enabled accurate characterization of the seasonal patterns. Comparedwith the estimation of foliar pigments, the
performance of Nmass, Cmass and LMA PLSRmodels improvedmore significantlywith sampling frequency. Our re-
sults demonstrate that leaf spectra-trait relationships vary with time, and thus tracking the seasonality of leaf
traits requires statistical models calibrated with data sampled throughout the growing season. Our results
have broad implications for future research that use vegetation spectra to infer leaf traits at different growing
stages.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Leaf traits are important indicators of plant physiology and critical
components in numerous ecological processes (Kattge et al., 2011;
Wright et al., 2004). For example, leaf chlorophyll concentration repre-
sents the light harvesting potential and is an indicator of photosynthetic
activity (Niinemets, 2007; Laisk et al. 2009), while accessory pigments
such as carotenoids protect leaves from damage when exposed to ex-
cessive sunlight (Demmig-Adams & Adams, 2000). Leaf mass per area
(LMA) describes plants' investment to leaves in terms of carbon and nu-
trients to optimize sunlight interception (Poorter, Niinemets, Poorter,
, Environment, and Planetary

@mbl.edu (J. Tang).
Wright, & Villar, 2009). Carbon is one of themajor elements in cellulose
and lignin, which are used to build the cell walls of various leaf tissues
(Kokaly, Asner, Ollinger, Martin, & Wessman, 2009). Nitrogen is the
key element in both carbon fixation enzyme RuBisCO and chlorophyll
(Evans, 1989a, 1989b), and thus plays an important role in modeling
leaf and canopy photosynthesis (Bonan, Oleson, Fisher, Lasslop, &
Reichstein, 2012). The aforementioned leaf traits, as well as the corre-
sponding spectral properties, strongly depend on leaf developmental
stages and light environments (Yang, Tang, & Mustard, 2014;
Lewandowska & Jarvis, 1977; Poorter et al., 2009; Wilson, Baldocchi, &
Hanson, 2000;Wu et al., 2016a). Thus, capturing the spatial and tempo-
ral variations of these leaf traits is important for understanding terrestri-
al ecosystem functioning (Schimel et al., 2015).

Despite the importance and increasing interests in the temporal and
spatial variability of these (and many other) leaf traits, the capacity to
monitor these traits over seasons has not progressed accordingly. Wet
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chemical analysis of these leaf traits is considered to be the standard
method, yet the destructive and time-consuming protocols do not
allow for rapid and repeated sampling of some traits. On the other
hand, field spectroscopy can augment traditional approaches, and allows
for repeated sampling of the same leaves and thus tracking time-sensitive
changes such as frost damage (Asner & Martin, 2008; Couture, Serbin, &
Townsend, 2013; Serbin, Singh, McNeil, Kingdon, & Townsend, 2014). Al-
though spectroscopic approaches are promising, many previous efforts
have only focused on mature sunlit leaves (e.g., Asner & Vitousek, 2005;
Ustin, Roberts, Gamon, Asner, & Green, 2004; Wicklein et al., 2012; but
see Sims and Gamon (2002)) and have not explored the ability of leaf
spectral properties to track the continuous and developmental changes
of leaf traits throughout the growing season. The temporal dimension of
the spectra-trait relationship has mostly focused on leaf chlorophyll con-
centration (Belanger, Miller, & Boyer, 1995; Dillen, de Beeck, Hufkens,
Buonanduci, & Phillips, 2012; Shen, Chen, Zhu, & Tang, 2009; Zhang et
al., 2007), while it is largely unknown for other important leaf traits like
nitrogen, carbon, and LMA. Moreover, the availability of high temporal
resolution (~weekly) datasets on important leaf traits and spectra is lim-
ited. These data would be very useful for assessing the utility of leaf spec-
tral properties (i.e. reflectance) for estimating the temporal variability of
leaf traits, as well as scaling to broader regions and informing process
modeling activities.

Leaf traits not only changewith time, but alsowith the light environ-
ments, such as moving from sun-lit to shaded light conditions and the
commensurate changes in microclimate which also affect leaf traits
(Ellsworth & Reich, 1993; Niinemets, 2007; Wu et al., 2016b), as a con-
sequence of underlying fundamental evolutionary and eco-
physiological constraints (Terashima, Miyazawa, & Hanba, 2001). For
example, shaded leaves display lower chlorophyll a to b ratio andhigher
LMA compared with sunlit leaves (Niinemets, 2007). This variation in
the vertical domain can be as much as the trait variation across space
(Serbin et al., 2014). As such, it is important to not only explore trait var-
iation across sites but also as in the vertical canopy light gradients to
better capture ecosystem responses to global change.

Three categories of methods to estimate leaf traits from leaf spectral
properties (i.e., reflectance and transmittance) are spectral vegetation
indices (SVIs), statistical inversion methods exploiting the full wave-
length (400–2500 nm), and leaf radiative transfer models like
PROSPECT (Jacquemoud & Baret, 1990), which are limited to only a
few leaf traits (do not include carbon and nitrogen) and thus are not
the focus of this study. SVIs are typically calculated using the reflectance
from two or three wavelengths (Huete et al., 2002; Richardson, Duigan,
& Berlyn, 2002; Sims & Gamon, 2002). With proper calibration across a
diverse range of vegetation types, SVIs can yield relatively robust
models (Féret et al., 2011). Statistical methods such as Partial Least
Square Regression (PLSR) modeling have become more popular in re-
cent decades with the availability of high spectral resolution observa-
tions and increasing computational power (Asner & Martin, 2008;
Couture et al., 2013; Wold, Sjöström, & Eriksson, 2001). Although both
being widely used, these methods have not been thoroughly assessed,
especially with respect to the robustness of PLSR models across time
and different light environments (but see Serbin et al., 2014).

Here our primary goal was to assess the ability of leaf optical proper-
ties to track temporal variability of a suite of leaf traits across sites and
different light environments. To explore this we collected a dataset of
~weekly-sampled leaf traits [including total chlorophyll (and chloro-
phyll a and b), carotenoids, mass-based nitrogen concentration
(Nmass), mass-based carbon concentration (Cmass), and LMA] along
with in situ directional-hemispherical reflectance/transmittance during
the growing season at two temperate deciduous forests. We first pres-
ent the temporal variations of leaf traits and spectra, and then highlight
the ability of leaf spectra to track temporal variability of leaf traits. We
investigate the robustness of the PLSR across season, sites, and light en-
vironments.We further explore the optimal field sampling strategy.We
conclude by discussing the broad implications of our study.
2. Study area and methods

2.1. Study sites

Our field sampling was conducted in two temperate deciduous for-
ests located in the northeastern United States. The first site, on the is-
land of Martha's Vineyard (MV, 41.362N, 70.578W), is a white oak
(Quecus alba) dominated forest with a stand age of 80–115 years after
natural recovery from abandoned cropland and pasture (Foster, Hall,
Barry, Clayden, & Parshall, 2002). Mean annual temperature is 10 °C,
and annual precipitation is about 1200 mm from 1981 to 2010 (Yang
et al., 2014). The second site, in Harvard Forest (HF, 42.538N,
72.171W), has two dominating deciduous tree species: red oak
(Quercus rubra) and red maple (Acer rubrum), with a few scattered yel-
low birch (Betula alleghaniensis). The forest age is 70–100 years. The an-
nual mean temperature is about 7.5 °C (Wofsy et al., 1993), and the
annual precipitation is 1200 mm. Remote sensing studies suggested
that the start of season in Martha's Vineyard was about 10–20 days
later than that of HF (Fisher & Mustard, 2007; Yang, Mustard, Tang, &
Xu, 2012).

2.2. Measurements of leaf spectral properties and traits

We conducted two field campaigns to collect leaf traits at the sites in
Martha's Vineyard and Harvard Forest, respectively. In 2011, weekly
(biweekly in August) sampling of leaves throughout the growing season
(June–November)was conducted at theMartha's Vineyard site on three
white oak trees. For each sampling period, we cut two fully sunlit
branches (each having ~6 leaves) and one shaded branch using a tree
pruner. The spectral properties of the leaves were immediately mea-
sured (see below). Then the leaves were placed in a plastic bag contain-
ing a moist paper towel, and all the samples were kept in a cooler filled
with ice until being transferred back to the lab for further measure-
ments. In 2012, the same weekly (biweekly from mid-July to late Au-
gust) measurements in Harvard Forest were made on five individuals
(two red oaks, two redmaples and one yellow birch) fromMay to Octo-
ber. For each tree, two sunlit and one shaded branchwere collected each
time.

Directional-hemispherical leaf reflectance and transmittance were
measured immediately after the sampling using a spectroradiometer
(ASD FS-3, ASD Inc. Boulder, CO, USA; spectral range: 300–2500 nm,
spectral resolution: 3 nm@700 nm, 10 nm@1400/2100nm) and an inte-
grating sphere (ASD Inc.). The intensity of light source in the integrating
sphere decreases sharply beyond 2200 nm, with the signal in 2200–
2500 nm being noisy (ASD Inc., personal communications), and thus is
excluded from the spectral-leaf traits analysis below.

Themeasured leaf traits include total chlorophyll concentration (in-
cluding chlorophyll a and chlorophyll b, μg/cm2), carotenoids (μg/cm2),
leaf mass per area (LMA, g/m2), nitrogen concentration by mass (Nmass,
%), and carbon concentration bymass (Cmass, %). Each branchwas divid-
ed into two subsets. One subset was used to measure pigment concen-
trations. To measure the chlorophyll and carotenoids concentration,
three leaf discs (~0.28 cm2 each) were taken from each leaf using a
hole puncher, and then ground in a mortar with 100% acetone solution
and MgO (Asner, Martin, Ford, Metcalfe, & Liddell, 2009). After an 8-
minute centrifugation, the absorbance of the supernatantwasmeasured
using a spectrophotometer (Shimadzu UV-1201, Kyoto, Japan). Chloro-
phyll a, b and carotenoids concentrations were calculated using the
readings from 470, 520, 645, 662 and 710 nm (Lichtenthaler &
Buschmann, 2001). The other subset (3 leaves)was scannedusing a dig-
ital scanner (EPSONV300, EPSON, LongBeach, CA, USA), and oven-dried
(65 °C) for at least 48 h for quantification of leaf drymass. LMAwas cal-
culated based on the following equations:

LMA ¼ Wdry=Aleaf



Table 1
Simple vegetation indices (SVI) used in this study. These indices were calibrated using ex-
tensive datasets (Féret et al., 2011). Leaf traits were calculated based on a polynomial re-
lationship: leaf trait = a × index2 + b × index + c.

Leaf traits Index Coefficients

a b c

Chl (μg/cm2) (R780 − R712)/(R780 + R712) 40.65 121.88 −0.77
Car (μg/cm2) (R800 − R530)/(R800 + R530) 8.09 11.18 −0.38
LMA (g/cm2) (R1368 − R1722)/(R1368 + R1722) −0.1004 0.1286 −0.0044
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whereWdry is leaf dry mass weight, Aleaf is the leaf area calculated from
the scanned leaf using ImageJ (Schneider, Rasband, & Eliceiri, 2012).
Dried leaves were then ground and analyzed for Nmass and Cmass with
a CHNS/O analyzer (FLASH 2000, Thermo Scientific, Waltham, MA,
USA).
2.3. Methods to estimate leaf traits using leaf spectral properties

We used two categories of methods to estimate leaf traits based on
leaf spectral properties: vegetation indices that utilize the reflectance
from twowavelengths, and statisticalmethods that exploit the informa-
tion from the full leaf spectrum.

Based on extensive datasets fromvarious types of biomes and plants,
Féret et al. (2011) established polynomial relationships between SVIs
and total chlorophyll concentration, carotenoids and LMA (Table 1).
We also obtained the best estimate of a, b, and c using our own dataset
(see below for the division between training and validation dataset).

The second category of methods essentially is to build multivariate
linear regression models between leaf spectra and leaf traits (Zhao,
Valle, Popescu, Zhang, & Mallick, 2013):

y ¼ X � β þ ε

where y is an n-by-1 matrix of leaf traits (n equals to the number of leaf
samples). X is an n-by-m matrix (m equals the number of bands from
each spectrum, and thus in this study m = 1801: from 400 to
2200 nm). ε is the n-by-1 estimation error that is to be minimized.
PLSR modeling can be used to develop the best model for the given
dataset while avoid over-fitting (Asner & Martin, 2008; Serbin et al.,
2014). The numbers of independent factors used in the regression
were determined by minimizing the Prediction Residual Error Sum of
Squares (PRESS).

The above leaf traits and spectra from two sites were combined as
one single dataset. To test the effectiveness of PLSR on this dataset, the
whole dataset is divided into two parts (70%–30%), for the training
and validation of PLSR, respectively. We used the Kennard-Stone algo-
rithm to select the training subset that provides a uniform coverage of
the whole dataset (Kennard & Stone, 1969). The training dataset was
used to optimize the regressionmodel parameters (β), and then the val-
idation dataset was used to test and evaluate the PLSR models. Evalua-
tion statistics include the R2, Root Mean Square Error (RMSE) and
normalized RMSE (NRMSE), which is the RMSE divided by the range
of the estimated leaf traits.

The relative importance of reflectance or transmittance at each
wavelength is determined by calculating the values of variable impor-
tance on projection (VIP) (Wold et al., 2001). VIP is an indicator of the
importance of each wavelength for the modeling of both leaf traits (y)
and spectra (X). Higher absolute values indicate greater importance of
the corresponding wavelength. Generally, wavelengths with VIP value
larger than 1 are considered being important (Mehmood, Liland,
Snipen, & Sæbø, 2012).
2.4. Robustness of PLSR models and scenarios for field sampling design

To examine the robustness of PLSR models across time, light envi-
ronment, and sites,we designed the following scenarios. In all scenarios,
we used leaf traits and spectra of a subset of the whole dataset (e.g., leaf
samples that are collected during only a certain period of time, or a cer-
tain level of light environment) to train PLSRmodels, and tested theper-
formance of the models against the whole dataset.

For this we created five scenarios to examine how the timing of leaf
sampling affects predictability of seasonality of leaf traits. Leaf traits and
spectra in the first three scenarios were sampled only for the spring,
summer, and fall, respectively. We defined these three seasons based
on variations in total chlorophyll concentration: days before total chlo-
rophyll reached a plateau in the mid-season were defined as spring;
days when total chlorophyll started to decrease were defined as fall;
and between spring and fall, days were defined as summer. The last
two scenarios were that leaf traits and spectra were sampled monthly
or biweekly (instead of weekly as in the full dataset). We then use the
PLSR trained with leaf samples in the above scenarios to predict the
leaf traits of the entire dataset. There are two reasons to choose the
whole dataset for validation: 1) the whole dataset captures the tempo-
ral variability of leaf traits, which is the goal of this test and 2) it is nec-
essary to have the same validation dataset to compare the performance
of these five scenarios. Performance of these sampling strategies was
measured by calculating the RMSE and R2.

Finally, we also explored our capacity to develop a generalized ap-
proach for capturing seasonality in leaf traits with spectral observations.
Two tests were conducted to examine the robustness of PLSRmodels at
different light environment and sites. Test 1 used sunlit leaf traits and
spectra to train a PLSR model, which was then used to predict shaded
leaf traits with corresponding spectra. We then switched the training
and validation datasets so that shaded leaves were used to train PLSR
model while sunlit leaves were used to validate. Test 2 divided the en-
tire dataset into two subsets by geographic location. For example, we
usedMartha's Vineyard dataset to calibrate themodel, andHarvard For-
est dataset to validate, and vice versa.

3. Results

3.1. Temporal and spatial variability of leaf traits

All leaf traits displayed significant temporal variations throughout
the growing seasons (Figs.1 and 2). Overall, pigments from both sites
displayed similar bell-shaped trajectories, despite being sampled from
different species and locations within the canopy. Chlorophyll concen-
tration rapidly increased from ~10 μg/cm2 at the beginning of the sea-
son, and then stabilized around ~50 μg/cm2 and ~40 μg/cm2 in
Martha's Vineyard andHarvard Forest, respectively, during the summer
followed by a decline in the fall to values similar to the beginning of the
season prior to leaf abscission. The Harvard Forest sampleswere collect-
ed from three different species, and showed much larger variability
compared with Martha's Vineyard, especially for the shaded leaves
(Fig.1e–h). The carotenoids concentration was ~3 μg/cm2 at the begin-
ning/end of the season and ~10 μg/cm2 at the peak season. The total
chlorophyll concentration relative to the carotenoids concentration
(Chl/Car) increased during the early seasons. In the fall, though both
chlorophyll and carotenoids decreased, Chl/Car decreased steadily, as
a result of faster decline of chlorophyll relative to the carotenoids
(Fig. S1a).

The remaining three leaf traits (LMA, Nmass, and Cmass) displayed dif-
ferent seasonal patterns compared with leaf pigments (Fig. 2). For ex-
ample, LMA rapidly increased in the spring, but showed only a minor
decline by the end of the measurement period. Nmass was higher (~4–
5%) at the start of the season, and remained stable around 2% during
the summer, followed by ~1% decrease in the fall, presumably caused
by nitrogen resorption (Eckstein, Karlsson, & Weih, 1999). Similar to



Fig. 1. Seasonal patterns of pigments of sunlit (filled) and shaded (open) leaves from two deciduous forests. Martha's Vineyard, year 2011: (a) Total chlorophyll; (b) chlorophyll a;
(c) chlorophyll b; (d) carotenoids. Harvard Forest year 2012: (e) Total chlorophyll; (f) chlorophyll a; (g) chlorophyll b; (h) carotenoids. Each dot is the mean value of all the samples
collected that day. Error bars are standard deviations.
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LMA, Cmass accumulated 2–4% in the spring and stabilized for the rest of
the growing seasons around 50%. The rapid increase of LMA in the
spring was accompanied by a similar increase of Cmass and decrease of
Nmass, which all ended at the same time (DOY ~194 in Martha's Vine-
yard, and DOY ~170 in Harvard Forest).
Mean annual values of leaf traits from Martha's Vineyard were sig-
nificantly different from those at Harvard Forest (Table 2). For example,
leaf chlorophyll inMartha's Vineyard is 5.64 μg/cm2 (17.5%) higher than
that from Harvard Forest (p b 0.0001). LMA in Martha's Vineyard
showed much larger variation than that from Harvard Forest, and the



Fig. 2. Seasonal patterns of biochemical and biophysical properties of sunlit (filled symbols) and shaded (open symbols) leaves from two deciduous forest sites. Martha's Vineyard, year
2011: (a) Leafmass per area (LMA); (b)mass-based nitrogen concentration (Nmass); (c)mass-based carbon concentration (Cmass). Harvard Forest, year 2012: (d) LMA; (e) Nmass; (f) Cmass.
Each dot is the mean value of all the samples collected that day. Error bars are standard deviations.

5X. Yang et al. / Remote Sensing of Environment 179 (2016) 1–12
mean LMA was 39.85 g/m2 (37.5%) higher than that from Harvard For-
est. Similar situation applies to all other leaf traits except for Cmass, for
which the value at Harvard Forest were higher than that at Martha's
Vineyard.

Sunlit leaves contained more total chlorophyll and carotenoids
(Fig. S2) and the carotenoids to the total chlorophyll ratio was signifi-
cantly higher for sun-lit leaves comparing with shaded leaves (MV,
p b 0.0001; HF, p=0.0182). Chlorophyll a/bwas also significantly larger
for sunlit leaves in both sites (MV, p b 0.0001; HF, p b 0.0001). Similarly,
LMA and Cmass values were significantly higher in the sun-lit leaves
Table 2
Annual mean values and standard deviation of leaf traits at two sites: MV, Martha's Vine-
yard, and HF, Harvard Forest (stars indicate the p-values of t-test between the values of
leaf traits from two sites).

Leaf traits Units MV HF

Total Chl⁎⁎⁎ μg/cm2 31.74 (12.17) 26.19 (9.29)
Chl a⁎⁎ μg/cm2 23.19 (8.81) 18.92 (6.70)
Chl b⁎⁎ μg/cm2 8.70 (3.31) 7.48 (2.73)
Car⁎⁎ μg/cm2 6.16 (2.28) 5.59 (1.33)
Nmass

⁎⁎ % (unitless) 2.17 (0.50) 2.03 (0.50)
Cmass

⁎⁎⁎ % (unitless) 48.34 (1.24) 51.12 (0.87)
LMA⁎⁎⁎ g/m2 106.29 (45.04) 66.44 (15.56)

⁎⁎⁎ p b 0.0001.
⁎⁎ p b 0.01.
versus shaded foliage, with the only exception of Nmass, in which both
sun-lit and shaded leaves were indistinguishable throughout the two
seasons (Fig. 2b).

A linear regression analysis highlighted various levels of correlation
among leaf traits (Fig. 3). Close correlation was found among leaf pig-
ments: total chlorophyll concentration was highly correlated with ca-
rotenoids concentration (R2 = 0.85), suggesting a tight coupling
among those pigments throughout the growing season despite the
faster decrease of chlorophyll concentration during the senescence
(Fig. S1). For the entire dataset (across all sunlit and shaded leaves
from different species), Nmass was weakly correlated with pigments.
LMA showed positive correlation with all pigments while a negative
correlation was observed with Nmass and Cmass.

3.2. Seasonal variability of leaf spectral properties

The full leaf reflectance and transmittance spectrum showed signif-
icant variability in both amplitude and shape (Fig.4). The visible (VIS,
400–700 nm) and near infrared (NIR, 700–1000 nm) changed dramati-
cally throughout the season, while shortwave infrared (SWIR 1000–
2500 nm) was relatively stable. Data from Martha's Vineyard showed
larger variability in NIR compared to Harvard Forest.

The R, G, and B reflectance at both sites showed a U-shape pattern
(Fig. S3a, S3c): all of them decreased in the beginning of the season;
and increased in the end of the season after a stable summer. The NIR
from Martha's Vineyard showed a consistent decline in the mid-



Fig. 3. Correlationmatrix of all the leaf traits. Histograms of each leaf traits are on the diagonal positions. Number on each subplot indicates R2 (Redmeans p b 0.05). See Table 2 for units.
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summer and then increased in the fall, while the NIR from Harvard For-
est was relatively stable throughout the season. Leaf transmittance at
each band had similar patterns as the reflectance (Fig. S3b, S3d).

3.3. Comparisons of methods of leaf traits estimation

We compared two categories of methods to estimate leaf traits from
leaf spectra. Overall, PLSR consistently outperformed the SVIs in esti-
mating leaf traits, showing an improved performance when the SVIs
Fig. 4. Examples of leaf directional-hemispherical reflectance and transmitta
were trained by the original datasets or our own dataset (Table 3).
The PLSR models using leaf reflectance (PLSRref hereafter) had slightly
better performance compared with those using leaf transmittance
(PLSRtra hereafter) when assessed with the independent dataset. For
different leaf traits, the performance of these methods varied, as de-
scribed in details below.

Leaf chlorophyll from the validation dataset was well estimated by
PLSRref (Fig.5. R2 N 0.70 and NRMSE b 10%). The SVI for chlorophyll
showed slightly larger prediction error (~0.5 μg/cm2 larger) compared
nce measured on (a, b) Martha's Vineyard and in (c, d) Harvard Forest.



Table 3
Comparisons among methods in terms of the goodness-of-fit (RMSE, NRMSE and R2) for the dataset at both Martha's Vineyard and Harvard Forest. PLSRref indicates models using reflec-
tance dataset to predict leaf traits. PLSRtra indicates models using transmittance dataset to predict leaf traits.

Leaf traits RMSE (NRMSE) R2

Simple indices
(Féret et al., 2011)

Simple indices
(this dataset)

PLSRref PLSRtra Simple indices
(Féret et al., 2011)

Simple indices
(this dataset)

PLSRref PLSRtra

Total Chl (μg/cm2) 5.93 6.04 5.48 (0.09) 5.62 (0.10) 0.71 0.71 0.73 0.64
Chl a (μg/cm2) 3.99 (0.09) 4.14 (0.09) 0.73 0.68
Chl b (μg/cm2) 1.62 (0.07) 1.82 (0.08) 0.66 0.58
Car (μg/cm2) 1.53 1.54 1.07 (0.08) 1.20 (0.09) 0.39 0.40 0.71 0.68
Nmass (%) 0.22 (0.05) 0.24 (0.05) 0.63 0.54
Cmass (%) 0.93 (0.07) 0.95 (0.07) 0.63 0.71
LMA (g/cm2) 40.6 39.7 18.11 (0.08) 19.01 (0.09) 0.20 0.19 0.85 0.79
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with PLSRref and PLSRtra (Table 3). The two components of chlorophyll
(Chl a and b) were also well captured by the PLSRref approach with
NRMSE b10% and R2 of 0.73 and 0.66 respectively. Similarly, carotenoids
were estimated relatively well by PLSRref and PLSRtra (R2 N 0.65) but the
SVI for carotenoids had 30% higher RMSE comparing with PLSRref.

Nmass was well captured by leaf spectra especially with the reflec-
tance dataset (Fig.5. R2 N 0.6 and NRMSE b 5%). Similarly, both PLSRref

and PLSRtra explained ~60% of the variance in Cmass (R2 N 0.6 and
NRMSE b 7%). PLSR also displayed a strong capacity to predict LMA
(R2= ~0.80 and NRMSE b 9%), where the SVI for LMA could not capture
N20% of the variation in LMA and had more than double the RMSE of
PLSRref mainly due to a saturation effect (data not shown).

The VIP values of PLSR show the relative importance of each wave-
length in predicting leaf traits (Fig.6). Visible and near-infrared wave-
lengths were important to the prediction of leaf pigments; there are
three peaks (400, 550 and 730 nm) that are related to the chlorophyll
absorption in the red (620–750 nm) and blue (400–450 nm), and re-
flection in the green (495–570 nm). The two components of chlorophyll
(a and b) were also mainly contributing to the red/NIR region (600–
750 nm), and the main contributing bands for chl b shifted towards
green comparing to those for chl a (Fig. 6b and 6c) (Ustin et al., 2009).
Carotenoids have a similar VIP curve comparing with the chlorophyll,
with one distinction: the VIP values for carotenoids between 650 nm
and 700 nm are relatively higher to those of chlorophyll.

Compared with the pigments, Nmass, Cmass and LMA have relatively
smooth VIP curves. For Nmass, wavelengths around 700 nm and beyond
1900 nm are important to the prediction of Nmass, presumably because
the visible region is controlled bypigments and nitrogen is an important
component in leaf pigments, and the SWIR region near 2000 nm is con-
trolled by protein absorption features (Kokaly et al., 2009). Both Cmass

and LMA were related to the leaf structure and were largely contribut-
ing to the reflectance at NIR and SWIR.

3.4. Robustness of the PLSR approach across time, sites and light
environment

We examined the performance of the PLSRref models under five sce-
narios where different sampling strategies were applied. The perfor-
mance of the PLSR models generally improved in the order of spring,
fall, summer, monthly, and biweekly (Table 4). As expected, more sam-
pling throughout the season (and the increasing size and representa-
tiveness of the calibration dataset) increased R2 and reduced RMSE.
When comparing the three seasons, summer-only sampling yielded
higher model performance relative to the other two scenarios, yet the
improvements from scenarios 2 (summer-only) to scenario 4 (month-
ly) were not as obvious for pigments as Nmass, Cmass and LMA. Sampling
scenario 5 (biweekly) largely improved the performance of PLSR, espe-
cially for Nmass and Cmass (R2 increased from b0.4 to ~0.6).

Examining the seasonal patterns of predicted and observed leaf
traits revealed time-dependent performance of each scenario. In
spring-only scenario where leaf samples only from the spring were
used for PLSR calibration, all leaf traits during the first four weeks of
the growing seasons were well estimated. However, fall season leaf
traits were overestimated except for LMA in Martha's Vineyard
(Fig. S4m). By contrast, in the fall-only scenario, spring and summer
leaf traits were underestimated except for Cmass (Fig. S5k). Summer-
only scenario showed a better ability to capture the seasonal patterns
of leaf traits, only underestimated the Nmass peak in the early spring at
Harvard Forest (Fig. S6j). The monthly sampling scenario improved es-
timation of all leaf traits, in which the improvement on estimating LMA
was the most obvious (R2 from 0.26 in the summer case to 0.76 in the
monthly sampling case, Fig. S7m, S7n). Biweekly sampling scenario ap-
peared to produce a satisfactory result for all the leaf traits studied here
(Fig. S8).

PLSRref models trained using sunlit leaves explain 35%–70% of the
variability in shaded leaves with highest R2 for pigments while lowest
R2 for Cmass (Fig. S9, Table S1). However, PLSRref was less accurate for
leaf traits like LMA in terms of RMSE (Fig. S10 m), for which the differ-
ence between sun-lit and shaded leaveswas significant (Fig. 2). Similar-
ly, PLSRref models trained with shaded leaves were able to predict the
sunlit leaf traits, but with lower model performance compared to
when trained with sunlit foliage. Depending on the leaf traits, the vari-
ability explained by PLSR ranges from 35% to 70% (Fig. S10m).

PLSRref models trained using data fromHarvard Forest (Test 1) were
able to capture 60–70% of variability of the pigments from Martha's
Vineyard, except for Nmass and Cmass (Table 5). Similar results were ob-
tained from PLSRref trained using Martha's Vineyard data (Test 2) and
validated with Harvard Forest data. VIP values for pigments in Test 1
were similar to those from Test 2. This is in stark contrast with VIP
values for Nmass, Cmass, and LMA fromboth experiments. The locations
of important wavelengths were quite different between two tests
(Fig. S11).

4. Discussion

4.1. Can we track the seasonality of leaf traits using leaf spectroscopy?

Here we show that the seasonal variability of leaf traits can be well
captured with leaf spectroscopy approaches (Fig.5, Table 3). All leaf
properties (seven leaf traits and leaf spectra) display seasonal dynamics
that are also related to the location and microclimate (i.e., sunlit vs.
shaded, and the accompanying changes in humidity and temperature).
The PLSRmodels explain 60%–80%of variability of these leaf traits in our
study, supporting the hypothesis that leaf spectra can capture the sea-
sonal variability of leaf traits. Indeed, each leaf trait has its own spectral
fingerprint (Curran, 1989; Kokaly et al., 2009), as we have seen from the
VIP values of PLSR models (Fig.6). Patterns of VIP values were similar to
previous studies (Asner et al., 2009; Serbin et al., 2014) and consistent
with our understandings of leaf physiology (Ustin et al., 2009). This is
an important result as collecting leaf spectra is much more time-
efficient than traditional approaches and allows for repeated sampling
of the same leaves throughout the season. SVIs can be an alternative



Fig. 5. Comparisons between the observed leaf traits and predicted traits from PLSRref. For detailed statistics, refer to Tables 2 and 3. Observations are from the independent validation
dataset selected using the Kennard-Stone method. The red dashed lines are 1:1 line.
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Fig. 6. Relative importance of each wavelength in variable importance on projection (VIP). VIP values from PLSRref and PLSRtra are on the right and left, respectively.
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for the estimation of total chlorophyll concentration when there are
limits on available instruments or, for example, using two-band LED
sensors (e.g. Garrity, Vierling, & Bickford, 2010; Ryu et al., 2010). The re-
sult also has implications for the current and future use of field spec-
trometers that measure leaf or canopy reflectance at high temporal
frequency (e.g., Hilker et al., 2009). Our well-calibrated PLSR models
can be used on leaf reflectance to track the seasonality of multiple leaf
traits in temperate deciduous forests.

The tests on the robustness of leaf spectra-trait relationships sug-
gested that the overlap between the training dataset and an indepen-
dent validation dataset is important for a good prediction.
Traditionally, the development of the leaf traits-spectra relationship
has been focused on a single time point, typically mid-season and ma-
ture leaves. Summer mature leaves displayed higher pigments concen-
tration and LMA, while lower Nmass comparedwith young leaves (Fig. 1,
Fig. 2). In addition, the corresponding leaf spectra were significantly
Table 4
Performance of all scenarios (spring, summer, fall, monthly, and biweekly) in terms of the goo

Leaf traits RMSE

Spring Summer Fall Monthly Bi

Total Chl (μg/cm2) 8.64 6.64 7.23 6.32 5
Chl a (μg/cm2) 5.97 4.75 5.25 4.65 4
Chl b (μg/cm2) 2.73 1.92 2.06 1.89 1
Car (μg/cm2) 1.71 1.31 1.29 1.22 1
Nmass (%) 1.62 0.42 0.51 0.37 0
Cmass (%) 1.59 1.71 1.74 1.26 1
LMA (g/cm2) 61.13 27.17 24.86 21.78 18
different (Fig. 4). We have shown here that if we apply an empirical re-
lationship between spectra and traits derived from one period (for ex-
ample, summer) to another (spring or fall), leaf traits will likely be
over or under-estimated (Fig. S4–S6). These findings mirror that ob-
served by McKown, Guy, Azam, Drewes, and Quamme, 2013 which
used traditional trait measurements across key phenophases of a tem-
perate forest species, Populus trichocarpa, to show that the direction
and magnitude of many trait-trait relationships is strongly tied to phe-
nological state and can change over a season. However, we have also il-
lustrated that with proper calibration, we can adequately characterize
the seasonality of a range of leaf traits, despite the impacts of phenology,
which is critical for monitoring ecosystems and informing large-scale
modeling activities (Table 5).

VIP values can help to explain the prediction power of PLSR models.
For example, in the case of PLSR models trained with data from one site
to predict another (Tests 1 & 2), VIP values of leaf pigments overlap
dness-of-fit (RMSE, R2).

R2

weekly Spring Summer Fall Monthly Biweekly

.66 0.60 0.70 0.72 0.73 0.77

.15 0.63 0.72 0.72 0.73 0.78

.69 0.48 0.67 0.69 0.69 0.73

.12 0.48 0.65 0.69 0.69 0.73

.29 0.08 0.36 0.07 0.36 0.62

.03 0.20 0.21 0.19 0.39 0.56

.76 0.13 0.71 0.75 0.79 0.85



Table 5
Performance of PLSR reflectancemodels that were calibrated using data from one site and
validated using data from the other site.

Leaf traits RMSE R2

MV ➔ HF HF ➔ MV MV ➔ HF HF ➔ MV

Total Chl (μg/cm2) 6.17 7.44 0.72 0.67
Chl a (μg/cm2) 4.39 5.29 0.73 0.69
Chl b (μg/cm2) 1.85 1.99 0.68 0.66
Car (μg/cm2) 1.19 1.54 0.59 0.59
Nmass (%) 0.56 0.72 0.29 0.20
Cmass (%) 2.89 2.90 0.10 0.23
LMA (g/cm2) 35.62 59.45 0.60 0.72
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well, indicating both sites share similar wavelength regions (Fig. S11). As
a result, cross-site prediction of leaf pigments showed reasonable accura-
cy (Table 5). It also has important implications for the design of multi-
band sensors and imagers as it can select the wavelengths that are most
useful for the leaf traits of interest (Nijland et al., 2014; Ryu et al., 2010).

The variability of our seven leaf traits was not equally captured
(Table 3). The absorption features of pigments are well understood
and clearly represented in the VIP value plots (Fig. 6). While for Cmass

and Nmass, although there have been studies on the possible linkage be-
tween certain components in the leaves (e.g., protein, cellulose) and
leaves' optical properties, the impact on leaf spectra is is less pro-
nounced in any single spectral range as compared with pigments and
instead is more generally spread across the visible and shortwave infra-
red spectral regions (Curran, 1989; Kokaly et al., 2009). This may partly
explain the less accurate PLSRmodels for the Cmass and Nmass. Moreover,
in fresh leaves the spectral absorption by proteins can be partially ob-
scured by water absorption, which can impact the performance of sta-
tistical (e.g. PLSR, SVIs) and other spectral inversion approaches, such
as radiative transfer models (RTMs).

As expected, the PLSR approach, which can exploit the full spectrum
information to estimate leaf traits performed better than traditional
SVIs (Table 3). While SVIs that were calibrated with extensive datasets
displayed a similar performance to PLSR in estimating total chlorophyll
concentration, we observed better performance of PLSR for the caroten-
oids and LMA. Calibrating SVIs with our own datasets did not improve
their performance. In addition, we calculated the correlation coefficient
(r) of all possible two-band SVIswith total chlorophyll, carotenoids, and
LMA (Fig. S13). We found that the highest correlation (in terms of the
absolute value of r) between the SVIs and three leaf traits are −0.8,
−0.7, and −0.65, respectively. This suggests that the variability of leaf
traits in our dataset was not fully captured by the SVIs, despite that
our dataset covering a broad ranges of values observed by others
(Féret et al., 2011). Incorporating more datasets to the calibration of
simple indices could potentially improve the performance of these
methods, but will not alleviate the saturation issue that is pervasive
when using simple SVIs, especially for LMA.

As the applications of leaf spectra-traits relationship become more
common, we argue that a standardized protocol to calibrate and vali-
date PLSR-type models is needed. This includes independent validation
to avoid evaluating model performance against the calibration dataset
itself and a method to choose the optimal number of PLSR components
to prevent overfitting (Serbin et al., 2014; Wu et al., 2016b). A globally
relevant algorithm for leaf traits that can be used by ground spectral ob-
servations (Hilker, Nesic, Coops, & Lessard, 2010), upcoming
(e.g., EnMAP; Guanter et al., 2015) or existing or planned satellite mis-
sions such as NASA's HyspIRI mission (such as https://hyspiri.jpl.nasa.
gov/; Lee et al., 2015) hinges on a rigorously-tested method and on
datasets covering a wide range of variations in leaf traits.

4.2. The implications for field sampling strategy

The time-series of leaf traits we presented here showed the critical
time windows to capture trait seasonality. These patterns are similar
to observations on other temperate species (e.g. McKown et al.
(2013)). Extensive field sampling is laborious and expensive and the
continual question in plant ecology is “how much is good enough?”
Since the measurements of leaf spectral properties are less labor-
intensive (and non-destructive) compared with the measurements of
most leaf traits, we explored how many destructive measurements of
leaf traits were needed to calibrate the models using full leaf spectra.
For example, LMA showed dramatic changes in the early season, thus
the sampling and calibration process needs to include the data at this
critical phenophase (Fig. 2a). Similarly, Nmass was relatively stable in
the mid season, and most of the variations occurred in the beginning
and end of season, which makes the sampling at these time points im-
portant (Fig. 2b). This explains why our comparisons that only consid-
ered the variability of leaf traits in the summer showed poorer
performance, as compared to a model capturing the full seasonal vari-
ability Therefore, monthly and even biweekly sampling should be con-
sidered, at least for the four temperate deciduous species examined in
this study.

4.3. Broad implications of using leaf spectroscopy for ecological studies

Understanding the seasonality of leaf traits has recently gained at-
tention as an effort to improve our modeling of terrestrial carbon and
water cycles (Bauerle et al., 2012; Grassi, Vicinelli, Ponti, Cantoni, &
Magnani, 2005; Medvigy, Jeong, Clark, Skowronski, & Schäfer, 2013).
For example, in the Community Land Model, Nmass and LMA control
themaximumrate of carboxylation, Vcmax, which is highly variable tem-
porally and across different species and light environments (Oleson,
Lawrence, Bonan, et al., 2013). Our time-series of Nmass capture two im-
portant features: (1) the seasonal peak at the beginning of the spring,
suggesting that nitrogen was allocated to the leaves early in the season.
As leaves matured, other types of elements such as carbon accumulated
at a faster rate, resulting in an increase of Cmass relative to Nmass ratio.
(2) A decline of Nmass by the end of the season. Nmass and LMA was rel-
atively stable at both sites during the summer (Fig. 2a and b), thus leaf
age does not appear to be affecting the nitrogen concentration during
the peak season (Field & Mooney, 1983). This finding as that of others
(McKown et al., 2013; Wilson et al., 2000) highlights the importance
of tracking the seasonality of leaf traits, and our work demonstrates
that leaf spectroscopy can provide a rapid means to routinely measure
leaf traits. Importantly, these results highlight that spectroscopy obser-
vations can provide key information on the individual differences in
multiple leaf traits that can feed into ecosystem models (Medvigy,
Wofsy, Munger, Hollinger, & Moorcroft, 2009) or be used to test key
ecological hypotheses (Rowland et al., 2015). Our results suggest the
important capability of monitoring ecosystem dynamics across a range
of spatial and temporal scales with hyperspectral observations from
leaves, towers, aswell aswith new instrumentsmounted on unmanned
andpiloted aircraft and satellite platforms (Asner &Martin, 2008;Hilker
et al., 2010; Yang et al., 2014; Yang et al., 2015).

5. Conclusion

This paper presents a comprehensive study of the relationship be-
tween leaf spectra and foliar traits across varying leaf developmental
stages, sites, and light environment using a near weekly dataset of
seven leaf traits and spectra at two sites. A Partial Least Square Regres-
sion (PLSR) modeling approach, after proper calibration with leaf traits
from different times of the season, showed a strong capacity to quantify
the seasonal variation of leaf traits within and across sites. The robust-
ness of a PLSR model largely depends on the overlap of leaf trait ranges
between the calibration dataset and the dataset to be estimated, and ex-
trapolation outside the ranges of the calibration dataset can result in a
significant error. We found that biweekly sampling of leaf traits and
spectra would provide a robust PLSR model to estimate the seasonal
variations of leaf traits. This work demonstrated the capability of leaf

https://hyspiri.jpl.nasa.gov/;
https://hyspiri.jpl.nasa.gov/;
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spectra to track seasonally varying leaf traits, and thus supports the use
of automated field spectrometers, airborne and satellite hyperspectral
sensors to track leaf traits repeatedly throughout the season and across
broad regions (Roberts, Quattrochi, Hulley, Hook, & Green, 2012; Singh,
Serbin, McNeil, Kingdon, & Townsend, 2015; Yang et al., 2015).
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