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Abstract
Advances in remote sensing technology can help estimate biodiversity at large spatial 
extents. To assess whether we could use hyperspectral visible near-infrared (VNIR) 
spectra to estimate species diversity, we examined the correlations between species 
diversity and spectral diversity in early-successional abandoned agricultural fields in 
the Ridge and Valley ecoregion of north-central Virginia at the Blandy Experimental 
Farm. We established plant community plots and collected vegetation surveys and 
ground-level hyperspectral data from 350 to 1,025 nm wavelengths. We related 
spectral diversity (standard deviations across spectra) with species diversity (Shannon–
Weiner index) and evaluated whether these correlations differed among spectral 
regions throughout the visible and near-infrared wavelength regions, and across 
different spectral transformation techniques. We found positive correlations in the 
visible regions using band depth data, positive correlations in the near-infrared region 
using first derivatives of spectra, and weak to no correlations in the red-edge region 
using either of the two spectral transformation techniques. To investigate the role of 
pigment variability in these correlations, we estimated chlorophyll, carotenoid, and 
anthocyanin concentrations of five dominant species in the plots using spectral 
vegetation indices. Although interspecific variability in pigment levels exceeded 
intraspecific variability, chlorophyll was more varied within species than carotenoids 
and anthocyanins, contributing to the lack of correlation between species diversity 
and spectral diversity in the red-edge region. Interspecific differences in pigment 
levels, however, made it possible to differentiate these species remotely, contributing 
to the species-spectral diversity correlations. VNIR spectra can be used to estimate 
species diversity, but the relationships depend on the spectral region examined and 
the spectral transformation technique used.
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1  | INTRODUCTION

1.1 | Remote sensing of diversity

Biodiversity can have numerous positive effects on the function of 
ecosystems. For example, it can affect ecosystem productivity by influ-
encing resource-use and promoting resource-use efficiency (Cardinale 
et al., 2007; Gustafsson & Bostrom, 2011; Hooper & Vitousek, 1998; 
Symstad & Jonas, 2011; Wilsey & Potvin, 2000). It can also positively 
influence community stability by reducing fluctuations in production 
via compensatory effects (Gustafsson & Bostrom, 2011; Isbell, Polley, 
& Wilsey, 2009; Symstad & Jonas, 2011; Yachi & Loreau, 1999). In 
addition, biodiversity can affect infection resistance through increases 
in heterogeneity and thus dilution of hosts (Haas, Hooten, Rizzo, & 
Meentemeyer, 2011), and invasion resistance by again affecting 
resource-use as well as by competitive effects (Cardinale et al., 2007; 
Gustafsson & Bostrom, 2011; Hooper & Vitousek, 1998; Scherber 
et al., 2010). Thus, conserving biodiversity is an important means for 
conserving ecosystem function.

Field methods are commonly used to estimate biodiversity in great 
detail at small spatial extents (Lengyel et al., 2008). However, these 
methods can be costly and time-intensive, and difficult to scale up to 
larger spatial extents. Remote sensing can be used to collect informa-
tion at vastly larger spatial extents more quickly and more cheaply per 
unit area than field sampling (Lengyel et al., 2008). It can also be com-
bined with field data to more efficiently assess spatial and temporal 
distributions of biodiversity (Bradley & Mustard, 2006; Lengyel et al., 
2008; Schmidt & Skidmore, 2001; Wilfong, Gorchov, & Henry, 2009; 
Zhang, Rivard, Sanchez-Azofeifa, & Castro-Esau, 2006) and to incor-
porate information at different spatial scales (Lengyel et al., 2008). 
Remote sensing has already been used to measure various indicators 
of species diversity, such as the normalized difference vegetation 
index (NDVI), biomass, land cover type, and heterogeneity in biomass 
and land cover (Foody & Cutler, 2003; Turner et al., 2003). The direct 
measurement of species diversity through species-level characteristics 
is becoming possible with advances in satellite and aircraft technology, 
specifically the increases in spatial and spectral resolutions (Turner 
et al., 2003). Several researchers have been able to estimate species 
diversity and chemical diversity using remotely sensed data (Asner & 
Martin, 2008, 2011; Asner, Martin, Ford, Metcalfe, & Liddell, 2009; 
Asner, Martin, & Suhaili, 2012; Carlson, Asner, Hughes, Ostertag, & 
Martin, 2007; Feret & Asner, 2014; Rocchini et al., 2010).

Species diversity may be estimated by examining variability in 
spectral features (Asner & Martin, 2008; Rocchini et al., 2010), includ-
ing those associated with pigments. Although pigment concentrations 
have traditionally been estimated using wet laboratory techniques, 
these procedures are labor-  and time-intensive, cannot be used for 
temporal analyses due to their destructive nature, need large numbers 
of samples for accurate representation of spatial variability (Blackburn, 
2006), and can be inaccurate due to incomplete extractions, light-
absorbing impurities, and pigment instability (Merzlyak, Gitelson, 
Chivkunova, Solovchenko, & Pogosyan, 2003). In contrast, remote 
sensing, especially hyperspectral remote sensing, can be used to detect 

pigments quickly and nondestructively (Asner et al., 2007; Blackburn, 
2006; Gamon & Berry, 2012; Gitelson, Keydan, & Merzlyak, 2006; 
Merzlyak et al., 2003; Yu, Lenz-Wiedemann, Chen, & Bareth, 2014). 
We estimated the concentrations of carotenoids, anthocyanins, and 
chlorophylls, because they encompass the major groups of pigments 
in terrestrial plants (Delvin & Barker, 1971; Gitelson, Zur, Chivkunova, 
& Merzlyak, 2002), and the equations for estimating these three 
pigments are relatively well defined in the remote sensing literature 
(Gitelson et al., 2006; Merzlyak et al., 2003; Yu et al., 2014). Alongside 
determining useful features with which to estimate species diversity, 
we examined different spectral transformation techniques to assess 
their influence on diversity estimates.

1.2 | Research objectives

Certain spectral features might be more useful for estimating biodi-
versity than others. The study of interspecific and intraspecific vari-
ability in these features will help elucidate the spectral regions most 
correlated with biodiversity. Assessing biodiversity can be important 
in early-successional communities, where biodiversity and species 
composition may influence successional trajectory.

Here, we studied correlations between species diversity and spec-
tral diversity in a temperate ridge and valley early-successional ecosys-
tem in north-central Virginia. The Blandy Experimental Farm, our study 
site in Boyce, Virginia, includes chronosequences of successional fields 
inhabited by numerous exotic invasive species that control community 
biodiversity. These species can alter their surroundings, inhibiting the 
growth of other species and promoting their own growth both physi-
cally and chemically. In this study, we asked (1) whether species diver-
sity was correlated with spectral diversity in secondary successional 
ecosystems in this region, (2) how these correlations differ by spec-
tral region and spectral transformation technique, and (3) whether 
intraspecific and interspecific variabilities in pigments influence these 
correlations.

2  | METHODS

2.1 | Study site

We collected data at the Blandy Experimental Farm (BEF; Figure 1), 
which is located in the Shenandoah Valley in Clarke County Virginia 
at 39°09′N, 78°06′W (Wang, Shaner, & Macko, 2007). This 300-ha 
biological field station has been owned by the University of Virginia 
(UVA) since 1926 and operated by the Department of Environmental 
Sciences at UVA since 1983 (Bowers, 1997). The field station includes 
120 ha of pasture and cropland, 40 ha of woodland, the 60 ha Virginia 
State Arboretum, and 80 ha of old fields in early, middle, and late suc-
cession (Bowers, 1997). Each of two successional series (southwest 
and northeast) at the station is a set of former agricultural fields and 
contains an early-, mid-, and late-successional field, abandoned in 
2001 (Early 1), 2003 (Early 2), 1986 (Mid 1), 1987 (Mid 2), before 1910 
(Late 1), and before 1920 (Late 2) (Wang, Epstein, & Wang, 2010). 
Spectral and species compositional data were collected from the two 
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early-successional fields and two additional field sites: Lake Arnold and 
a site at a field boundary near the northeast successional series referred 
to hereafter as the northeast boundary. The additional field sites were 
included because they were inhabited by an exotic invasive species 
not found in the other field sites. In this study, they are considered 
early successional due to the recency of disturbance. Vegetation at 
Lake Arnold consisted mostly of grasses and forbs, whereas the north-
east boundary was composed of mostly grasses. Early-successional 
stages in the field chronosequences mostly consisted of forbs and 
some grasses. For more information on species composition in these 
communities, see Aneece and Epstein (2015). Soils are deep collu-
vial and alluvial sediment from karst limestone, shale, and siltstone; 
study sites have well-drained silt loam soil, of the soil Order Ultisol 
(Bowers, 1997). The average elevation of the BEF is 190 m, and slopes 
are <10% (Bowers, 1997). Mean annual temperature and precipitation 
are 11.8°C and 940 mm, respectively; the average growing season is 
157 days with average annual primary productivity of approximately 
1.0 kg/m2 in the successional fields (Bowers, 1997; Wang et al., 2010).

2.2 | Field methods

In the summer of 2014, we established three randomly placed 
5 × 5 m community-level plots at each early-successional site, Lake 
Arnold, and the northeast boundary (Figure 1). Each community plot 
consisted of multiple species. From early June to late July, we col-
lected community-level spectral data from 350 to 1,025 nm using a 
PANalytical ASD Inc. FieldSpec®3, as this was the spectral range of 
the instrument, with a 25° field of view and a pistol grip. Spectra were 
normalized for light conditions with a Spectralon panel and viewing 
geometry was controlled for using a level on the pistol grip. The spec-
tral range was defined by that able to be measured by the instrument. 

Spectra were collected from approximately 2.5 m height from the 
ground so that the footprint was approximately 1.15 m in diameter; 
footprint size was kept consistent by using this same height for all 
measurements. The relationship between footprint size and diversity 
was not determined in this research, but would be interesting to study; 
this size was used to obtain several subsamples within each plot that 
included spectral signature from multiple plant species. We collected 
spectra on cloud-free days between 10 a.m. and 2 p.m. in each corner 
of the plot, in the center, and the middle of each edge for a total of 12 
spectral footprints per plot (Figure 2). This system was used to maxi-
mize coverage without trampling vegetation and to correlate spectra 
with vegetation survey data. We conducted vegetation surveys on the 
5 × 5 m grid at 0.5-m intervals where grid lines intersected, recording 
species at the ground level, subcanopy, and canopy to assess the spe-
cies diversity and species composition of the spectral footprints. As 
we knew which intersections from the vegetation surveys fell within 
each spectral footprint, we were able to match species compositions 
with spectral signatures.

In the summer of 2015, we collected leaf-level spectra for pigment 
analysis from five of the dominant species in the community plots: 
Achillea millefolium (common yarrow), Dactylis glomerata (orchard 
grass), Festuca rubra (red fescue), Solidago altissima (tall goldenrod), 
and Symphoricarpos orbiculatus (coralberry) (Table 1, see Appendix S1 
for species descriptions). All of these species have the potential to 
become invasive, especially in disturbed areas. Ten individual plants of 
each species were examined, except for F. rubra, of which five individ-
ual plants were sampled due to time and weather constraints. Three 
leaf samples were collected from each individual. We obtained leaf-
level spectra from detached leaves, which we wrapped in wet paper 
towels, put into zippered plastic bags, and stored on ice until measure-
ments were taken within 20 min of detachment.

F IGURE  1 Blandy Experimental Farm in 
north-central Virginia (39°09′N, 78°06′W) 
with study sites Southwest Early (SWE), 
Northeast Early (NEE), Northeast boundary 
(NEB), and Lake Arnold (LA)
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2.3 | Statistical analysis

We used two spectral transformation techniques to examine 
whether the correlation between species and spectral diversi-
ties depends on the technique used. Such spectral transformation 
techniques are often used to enhance spectral features (Neumann, 
Forster, Kleinschmit, & Itzerott, 2016; Weber et al., 2008). We used 

band depth, or continuum removal, instead of original reflectance 
values to reduce noise from the sensor, atmosphere, soil back-
ground, topographic variation, and differences in albedo (Crowley, 
Brickey, & Rowan, 1989; Kokaly & Clark, 1999). Despite being nor-
malized with a Spectralon, there was still variability in reflectance 
values at the near-infrared shoulder by day and time of day. This 
was corrected for using band depth, which is used on dry and live 
plant matter to minimize variability due to differences in illumi-
nation and enhance spectral features (Thulin, Hill, Held, Jones, & 
Woodgate, 2012; Youngentob et al., 2011). To obtain band depth, 
a continuum hull was matched to the original spectral profile, and 
this continuum was removed to get normalized reflectance using 
ENVI (versions 5.0 and Classic, Exelis Visual Information Solutions, 
Boulder, Colorado). We then subtracted these continuum-removed 
reflectance values from one to get the band depth profile (Figure 3). 
Continuum removal results differ by the spectral subset used; the 
spectra should be subset based on the features of interest (Harris 
Geospatial Solutions, 2017). In this study, we anchored the con-
tinuum hull to the red-edge shoulder to minimize variability in 
the location of the red-edge plateau due to differences in illumi-
nation and to enhance differences in the green peak. Band depth 
transformations are based on a priori information on the location 
of features of interest (like the green peak) and thus can be more 
stable (Shi, Zhuang, & Niu, 2004). With this a priori knowledge, con-
tinuum removal can be used to detect more subtle absorption fea-
tures overlapping a continuum of absorptions (Huang, Turner, Dury, 
Wallis, & Foley, 2004).

We also assessed spectral diversity using first derivatives of the 
original reflectance profile as the second spectral transformation tech-
nique. First derivatives are often used in remote sensing to emphasize 
important spectral features, remove background noise, and lessen the 
influence of leaf water content (Inoue, Sakaiya, Zhu, & Takahashi, 2012; 
Ramoelo, Skidmore, Schlerf, Mathieu, & Heitkonig, 2011). They are 
assumed to decrease the influence of differences in illumination levels 

TABLE  1 Rank abundance of Achillea millefolium (common yarrow), Dactylis glomerata (orchard grass), Festuca rubra (red fescue), Solidago 
altissima (tall goldenrod), and Symphoricarpos orbiculatus (coralberry) in community plots at Blandy Experimental Farm in north-central Virginia

A. millefolium D. glomerata F. rubra S. altissima S. orbiculatus Total # sps.

LACP4 – – 9 – – 9

LACP5 – – 7 – – 19

LACP6 – – 8 – – 23

NEBCP1 – 12 1 – – 30

NEBCP2 – 12 2 – – 22

NEBCP3 – 2 3 – – 28

NEECP1 3 12 24 – 26 26

NEECP2 – – 15 – 3 19

NEECP3 – – – – 9 21

SWECP1 – – – 2 – 21

SWECP2 – – – 3 19 20

SWECP3 – – – 4 28 28

F IGURE  2 Layout of 5 × 5 m community plots. Circles represent 
spectral footprints taken from outside the plots and from the very 
center so as not to trample vegetation. Spectra from each corner of 
the plot, the center, and the middle of each edge for a total of 12 
spectral footprints per plot were collected from approximately 2.5 m 
height from the ground so that the footprint was approximately 
1.15 m in diameter. Vegetation surveys were conducted at each 
0.5-m interval within a plot for a total of 121 points (11 × 11) at the 
ground, understory, and canopy level
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(Zhang et al., 2006), looking at changes in values relative to each other 
rather than absolute values. However, full-band based transformations 
like first derivatives are highly influenced by the sampling environment 
and date of sampling and can emphasize wavelengths not traditionally 
associated with certain absorption features (Shi et al., 2004). When sin-
gle regression analyses were conducted using original reflectance, the 
correlations between species diversity and spectral diversity were lower 
than when using band depth and first derivatives; thus, these spectral 
transformations were beneficial in correlating the two diversities.

To quantify spectral diversity across an entire plot, we used stan-
dard deviations of areas under the band depth profile curve and the 
first derivative profile curve for the following regions corresponding 
with key spectral features: 350–499 nm (before the green peak), 
500–589 nm (green peak), 590–674 nm (between green peak and red 
trough), 675–754 nm (red edge), 755–924 nm (near-infrared plateau 
before water absorption feature), and 925–1,025 nm (water absorp-
tion feature; Figure 4). We calculated area under the curve as a way 
to incorporate information from all wavelengths in a spectral region 
without the problem of autocorrelation.

We calculated species diversity using the Shannon Diversity Index 
(Eq. 1), where pi is the proportion of species i and n is the number 

of species. To make a more direct comparison with spectral diversity, 
only the sampling points that were within the spectral footprints were 
included in calculating species diversity. We conducted single, multi-
ple, and stepwise regression analyses in R (R Core Team, 2015) using 
the lm and stepAIC packages to assess the relationship between spe-
cies and spectral diversities using spectra and vegetation surveys from 
the summer of 2014 for the early-successional fields, Lake Arnold, and 
the northeast boundary. 

To assess whether the relationships between spectral diversity 
and species diversity may be influenced by the interspecific and intra-
specific diversity of specific vegetation characteristics, we used the 
leaf-level reflectance spectra of five species in the community plots 
to estimate pigment content of those five species and assess inter-
specific and intraspecific diversity of chlorophyll (Eq. 2), carotenoid 
(Eq. 3), and anthocyanin (Eq. 4) levels using equations by Gitelson, 
Merzlyak, and Gritz (2003), Gitelson et al. (2006), and Gitelson, 
Merzlyak, and Chivkunova (2001), respectively, where R770, R705, 
R515, R565, R550, and R700 are reflectance values at 770, 705, 515, 565, 

(1)H�
=−

n
∑

i=1

pi ∗ ln(pi)

F IGURE  3 An illustration, using an average spectral profile from Dahurian buckthorn spectra, of calculating band depth (normalized 
absorption) from original reflectance using continuum removal. A continuum hull was established over the entire spectral profile. Then, the 
reflectance profile was subtracted from the continuum hull. The normalized reflectance was then subtracted from one to obtain normalized 
absorption
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550, and 700 nm, respectively. These species were selected because 
they were present in many of the community plots and were prev-
alent in several of those plots [see figure 5 in Aneece and Epstein 
(2015)]. Reflectance spectra were used for these calculations because 
the equations are tailored toward reflectance measurements, rather 
than band depth. Chlorophyll, carotenoid, and anthocyanin levels 
were assessed using a nested analysis of variance (ANOVA) in SAS 
(Statistical analysis software, version 9.4, SAS Institute Inc., Cary, 
North Carolina) to compare intraspecific and interspecific pigment 
variability among Achillea millefolium, Dactylis glomerata, Festuca 
rubra, Solidago altissima, and Symphoricarpos orbiculatus, using among 
and within mean square and the F value. As parametric assumptions 
were not met, we used the nonparametric pairwise comparison 
Dwass, Steel, Critchlow–Fligner (DSCF) method to assess whether 
species were significantly different in terms of the following pigment 
estimates (SAS support, 2012): 

3  | RESULTS

Overall, spectral diversity was positively correlated with species 
diversity in several spectral regions across spectral transforma-
tions. We found slightly greater R2 values with nonlinear relation-
ships than with linear relationships in most cases, although the type 
of nonlinear relationship with the greatest R2 value depended on 
the spectral region examined. Although nonlinear relationships had 
larger R2 values than linear relationships, the differences in R2 val-
ues were small; thus, interpretation of potential nonlinear relation-
ships must be made with caution. For this reason, we used linear 
relationships to compare correlations between species diversity 
and spectral diversity across spectral transformations and spectral 
regions.

Linear relationships using untransformed reflectance were not 
as strong as those using band depth and first derivatives (Figure 5). 
There were strong, significant, positive linear relationships between 
species diversity and spectral diversity using band depth in the 
summer of 2014 for the 350–499 nm wavelength region (R2 = .41, 
p = .03), the 500–589 nm wavelength region (R2 = .35, p = .04), and 
the 590–674 nm wavelength region (R2 = .43, p = .02), and a margin-
ally significant positive relationship in the 675–754 nm wavelength 
region (R2 = .26, p = .09; Figure 6). However, relationships between 
species diversity and spectral diversity were not significant in the 
755–924 nm wavelength region (R2 = .012, p = .74) or in the 925–
1,025 nm wavelength region (R2 = .17, p = .19). Using first deriva-
tives instead of band depth, there was a strong positive correlation 
between spectral diversity and species diversity in the 350–499 nm 
wavelength region (R2 = .41, p = .02; Figure 7) but no correlations 
in the 500–589 nm wavelength region (R2 = .039, p = .54), the 
590–674 nm wavelength region (R2 = .0011, p = .92), and the 675–
754 nm wavelength region (R2 = .15, p = .21). There was a margin-
ally significant positive correlation in the 755–924 nm wavelength 
region (R2 = .30, p = .06) and a strong positive correlation in the 
925–1,025 nm wavelength region (R2 = .43, p = .02). Multiple regres-
sions combining spectral diversity across regions to estimate species 
diversity revealed lower R2 values than when considering individual 
regions for both spectral transformation techniques and thus were 
not further considered. Given the small sample size in conducting 
these correlation analyses, we repeated them on 20 random sam-
ples each consisting of 8 of 12 plots. The average R2 values across 
these 20 samples led to the same patterns in comparing R2 values 
across spectral regions and spectral transformation techniques as 
when using all 12 plots. Thus, the comparisons are reliable despite 
sample size.

Although the first derivative and band depth transformations 
resulted in larger R2 values across spectral regions in the single 
regressions, untransformed reflectance had larger R2 values than 
the spectral transformations using multiple linear regression anal-
yses (Table 2). This was also supported by the stepwise multiple 
regression analyses (Table 3). Looking across stepwise regression 

(2)Chlorophyll=R770(R
−1
705

−R−1
770

)

(3)Carotenoids=R770(R
−1
515

−R−1
565

)

(4)Anthocyanins=R770(R
−1
550

−R−1
700

)

F IGURE  4 To quantify spectral diversity, band depth was divided into regions and areas under the curve calculated, and then standard 
deviations of the areas under the curve for respective plots were calculated
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models, the most influential spectral regions were 500–589 nm, 
590–674 nm, and 925–1025 nm, which supports the results of the 
single regressions when considering only relationships significant at 
the level of p = .05.

The analysis of variance for pigment estimates revealed that 
there was greater interspecific variability than intraspecific variabil-
ity in terms of all three pigment types; however, within-species vari-
ability was proportionally greater in chlorophyll than in carotenoid 
and anthocyanin estimates (Table 4). This is concluded based on 
the F value, which is the ratio of variance among species (among 
mean square) to variance within species (within mean square). This 

greater intraspecific variability may account for some of the lack of 
correlation between spectral diversity and species diversity in the 
red trough region. Although there is greater intraspecific variabil-
ity in chlorophyll than the other pigments, interspecific variability 
is still greater than intraspecific variability, leading to significant 
differences by species for all three pigments (Figure 8). In terms of 
anthocyanins and carotenoids, all species were significantly different 
(p < .001) except for A. millefolium vs. S. orbiculatus and D. glomerata 
vs. F. rubra. In terms of chlorophyll, all species were significantly 
different except for D. glomerata vs. F. rubra and S. altissima vs. 
S. orbiculatus.

F IGURE  5 Correlations between 
species diversity and spectral diversity for 
six spectral regions using the area under 
the reflectance profile

F IGURE  6 Correlations between 
species diversity and spectral diversity for 
six spectral regions using the area under 
the band depth profile
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4  | DISCUSSION

As biodiversity can influence ecosystem function and stability, its 
study is clearly important to aid conservation efforts. Small-scale 
analyses of diversity are possible using field methods, but remote 
sensing is typically needed for assessment at large spatial scales. 
To estimate species diversity, we may be able to use diversity of 
spectral features such as those associated with pigments. In this arti-
cle, we asked whether species diversity and spectral diversity were 
correlated, especially diversity in pigment features; we also asked 
whether spectral transformation techniques influenced the correla-
tion between species and spectral diversities. Nonlinear relationships 

F IGURE  7 Correlations between 
species diversity and spectral diversity for 
six spectral regions using the area under 
the first derivative profile

TABLE  2 A comparison between multiple regression results of 
linear and nonlinear relationships between species and spectral 
diversities across different spectral transformations and spectral 
regions

Transformation

Relationship type

Linear Logarithmic Exponential

Reflectance 0.56 (0.10) 0.56 (0.10) 0.43 (0.18)

First derivative 0.23 (0.27) 0.29 (0.28) 0.30 (0.27)

Band depth 0.14 (0.39) 0.19 (0.36) 0.28 (0.29)

R2-value (p-value). Multiple regressions with 2nd-order polynomi-
als were not possible due to sample size.

TABLE  3 A comparison of stepwise regression results across relationship types and spectral transformations

Transformation Relationship

Spectral Region (nm)

R2-value (p-value)350–499 500–589 590–674 675–754 755–924 925–1,025

Reflectance Linear + + + + + .63 (.04)

Logarithmic + + + + + .61 (.05)

Exponential + + + + + .52 (.09)

First derivative Linear + + + .55 (.03)

Logarithmic + + .59 (.01)

Exponential + + + .55 (.03)

Band depth Linear + + + .37 (.09)

Logarithmic + + .44 (.03)

Exponential + + + + +   .38 (.16)

Stepwise regressions with 2nd-order polynomials were not possible due to sample size. The (+) signs indicate spectral regions that were retained 
in the regressions.
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had only slightly larger R2 values than linear relationships; thus, their 
biological meaning must be interpreted with care. Thus, we focused 
on the linear relationships to compare spectral transformations and 
spectral regions in terms of the relationship between spectral diver-
sity and species diversity. When using band depth, we found that the 
two were strongly linearly positively correlated in the visible region 
(350–674 nm), weakly linearly positively correlated in the red-edge 
region (675–754 nm), and uncorrelated in the near-infrared region 
(755–1,025 nm). When using first derivatives, we found a strong 
linear positive correlation in the 350–499 nm region, but no corre-
lation in the other visible ranges (500–674 nm) or in the red-edge 
region (675–754 nm); however, we found positive linear correlations 
in the near-infrared region (755–1,025 nm). Therefore, the method 
of spectral transformation and the spectral regions considered will 
influence the ability to estimate species diversity using spectral 
diversity.

4.1 | Visible region

The 350–499 nm region had a strong positive correlation with H’ 
using band depth and first derivatives, suggesting that this region 
has large interspecific variability. Using band depth, there were also 
strong positive correlations in the rest of the visible region. However, 
there were no other correlations in the visible region when using first 
derivatives. This may be because first derivatives have been found to 
exaggerate noise due to environmental variation in this region, such as 

aerosol content and differences in illumination, and increase intraspe-
cific spectral reflectance variability (Zhang et al., 2006).

4.2 | Near-infrared region

The lack of correlation in the near-infrared region when using band 
depth may be due to the fact that the continuum removal applied for 
band depth calculations drastically reduced variability in the near-

infrared plateau; this reduction may mask variability in the near-
infrared plateau that may be caused by interspecific differences. 
Therefore, it may be better to use derivatives to correlate species 
diversity and spectral diversity in this region. Indeed, when using first 
derivatives, there was a strong positive correlation between spectral 
diversity and species diversity in the 755–924 nm wavelength region 
(R2 = .30, p = .06) and the 925–1,025 nm wavelength region (R2 = .43, 
p = .02; Figure 7).

4.3 | Red trough and red-edge regions

The most interesting result perhaps is a weak correlation in the red-
edge region using band depth and the lack of correlation using first 
derivatives, due to greater intraspecific variability versus interspecific 
variability in this region. Variability in the red-edge region may be due 
to differences in the red trough or differences in the near-infrared 
plateau; however, since differences in the near-infrared plateau are 
minimized while using band depth, the differences are likely in the red 
trough. To determine how there might be greater interspecific vari-
ability in most of the visible region yet greater intraspecific variability 
in the red-edge region, especially the red trough, the absorption peaks 
of different pigments were considered. Chlorophyll a and b peaks are 
in the visible and red trough regions, and anthocyanin and carotenoid 
peaks occur in the visible region [for more detailed absorption peak 
locations, see Jensen (2007)]. The intraspecific variability in the red-
edge region (675–754 nm) may be due to intraspecific variability in 

TABLE  4 ANOVA results comparing among and within variance 
in pigment estimates by species

Pigment
Among mean 
square

Within mean 
square F value

Chlorophylls 12.454 0.1059 117.59

Anthocyanins 5.8774 0.0467 125.87

Carotenoids 260.21 0.8093 321.52

F IGURE  8 Estimates of (a) chlorophylls, 
(b) anthocyanins, and (c) carotenoids for 
Achillea millefolium (acmi), Dactylis glomerata 
(dagl), Festuca rubra (feru), Solidago altissima 
(soal), and Symphoricarpos orbiculatus (syor) 
using ground-level hyperspectral data
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chlorophyll content, which may be more plastic and more sensitive 
to environmental factors than other pigments. In contrast, carotenoid 
and anthocyanin content may have greater interspecific variability 
than intraspecific variability. This may be because anthocyanin con-
tent and carotenoid content are highly influenced by genetics (Ficco 
et al., 2014; Fournier-Level et al., 2009), whereas chlorophyll con-
tent is influenced by both genetics and environmental conditions and 
stressors (Cao, 2000; Malyshev et al., 2016).

4.4 | Nonlinear relationships

As mentioned above, nonlinear relationships had slightly larger R2 val-
ues and thus the relationship between spectral diversity and species 
diversity may not be linear in all spectral regions and transformations. 
In several cases, the exponential relationship was stronger than the 
linear relationship, with an R2 value maximum difference of approxi-
mately .02 (Table 5). This may mean that as species diversity increases, 
spectral diversity increases to an even greater extent, perhaps due to 
intraspecific variability. In one case, the logarithmic relationship was 
stronger, again with an R2 difference of .02. This may indicate satura-
tion of spectral diversity with an increase in species diversity. In one 
case, a 2nd-order polynomial relationship was stronger by an R2 dif-
ference of .06; however, this seems highly influenced by one point. 
Considering the small R2 differences between these nonlinear and lin-
ear relationships, the meaning of the nonlinear relationships must be 
interpreted with caution.

4.4.1 | Multiple and stepwise regressions

Although first derivative and band depth transformations had stronger 
correlations between spectral diversity and species diversity than 
untransformed reflectance in the single regression analyses, multi-
ple and stepwise regressions combining all spectral regions revealed 
stronger correlations using reflectance. This might be because all spec-
tral regions had slight positive correlations between spectral diversity 
and species diversity using reflectance while only some regions had 
strong positive correlations when using first derivatives and band 
depth. This is demonstrated in the stepwise regression analyses, 
in which almost all regions were retained as important when using 
reflectance while only some regions were retained as important when 
using first derivatives and band depth. When looking across all step-
wise regressions, the spectral regions that were most often deemed 
important were 500–589 nm (green peak), 590–674 nm (red trough), 
and 925–1,025 nm (near-infrared plateau). Thus, future studies may 
be able to focus on these regions when estimating species diversity 
using spectral diversity.

4.5 | Species pigment comparisons

To assess intraspecific and interspecific differences in pigment con-
tents, we used spectra of five dominant species in the community 
plots to calculate indices estimating the amounts of chlorophyll (Eq. 2), 
carotenoids (Eq. 3), and anthocyanins (Eq. 4) in the leaves. There was 

TABLE  5 A comparison between different linear and nonlinear relationships between species diversity and spectral diversity across different 
spectral transformation techniques and spectral regions

Transformation Region

Relationship type

Linear 2nd-order polynomial Logarithmic Exponential

Reflectance 350–499 nm 0.34 (0.05) 0.36 (0.04)

500–589 nm

590–674 nm 0.37 (0.04) 0.38 (0.03)

675–754 nm

755–924 nm

925–1,025 nm

First Derivative 350–499 nm 0.41 (0.02) 0.48 (0.02) 0.41 (0.02)

500–589 nm

590–674 nm

675–754 nm

755–924 nm

925–1,025 nm 0.43 (0.02) 0.40 (0.04) 0.37 (0.04) 0.43 (0.02)

Band Depth 350–499 nm 0.41 (0.03) 0.43 (0.02)

500–589 nm 0.35 (0.04) 0.35 (0.04) 0.37 (0.04)

590–674 nm 0.43 (0.02) 0.40 (0.03)

675–754 nm

755–924 nm

925–1,025 nm

R2-value (p-value). Only relationships significant to p = .05 are included.
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greater intraspecific variability in chlorophyll than in carotenoids and 
anthocyanins (Table 4); however, there was overall greater inter-
specific variability than intraspecific variability. Species were signifi-
cantly different in terms of all spectral pigment estimates (Figure 8). 
A. millefolium had greater chlorophyll content than did S. orbicula-
tus and S. altissima, which had greater chlorophyll content than did 
D. glomerata and F. rubra. A. millefolium and S. orbiculatus had greater 
anthocyanin content than S. altissima, which had greater anthocyanin 
content than D. glomerata and F. rubra. In contrast, Veres et al. (2006) 
found that Festuca pseudovina had higher xanthophyll content than 
A. millefolium. In this study, A. millefolium and S. orbiculatus had greater 
carotenoid content than S. altissima, which had greater carotenoid 
content than D. glomerata and F. rubra. Similarly, Veres et al. (2006) 
found that out of the monocots they tested, Festuca pseudovina had 
the lowest carotenoid content, and of the dicots tested, A. millefolium 
had the greatest carotenoid content. Carotenoid content and compo-
sition of different carotenoids can vary by environment and have high 
interspecific variation (Veres et al., 2006).

There may be several reasons why Festuca rubra and Dactylis 
glomerata had low levels of photoprotective pigments. Grass leaves 
have high Si content, which might help them reflect UV-B radiation 
and thus not need as much photoprotection from pigments (Deckmyn 
& Impens, 1999). Out of Festuca arundinacea, Festuca rubra, Lolium 
perenne, and Poa pratensis, Zhang and Ervin (2009) found that F. rubra 
had the greatest tolerance to UV-B. This higher tolerance may be due 
to narrower leaves and thick waxy cuticles (Zhang & Ervin, 2009). 
Narrow leaves can lead to a reduction in boundary layer growth, thus 
reducing leaf temperature in high light conditions (Letts, Flannagan, 
Van Gaalen, & Johnson, 2009). When treating F. rubra and D. glomer-
ata with increasing levels of UV-B, Deckmyn and Impens (1999) found 
that there was an increase in protective pigments in D. glomerata, but 
not in F. rubra. This implies that F. rubra may have a different way of 
dissipating excess energy such as antioxidant activity and activation of 
hormones that cue defense mechanisms (Zhang & Ervin, 2009).

Another reason these species were significantly different from 
each other in terms of pigment levels may be that they are from dif-
ferent plant functional types (two grasses, two forbs, and one shrub). 
Forbs have lower foliar support costs than shrubs, which need to invest 
more in woody biomass growth; therefore, forbs may have greater leaf 
dry mass per unit area than do woody species (Niinemets, 2010). This 
greater ability to invest in leaves may explain the high chlorophyll lev-
els of A. millefolium compared with those of S. orbiculatus, although 
those of S. altissima were just as low.

These plants also differ in shade tolerance; S. altissima is less shade 
tolerant than S. orbiculatus and A. millefolium, which are less shade 
tolerant than D. glomerata and F. rubra. Shade-tolerant species usu-
ally have lower leaf dry mass per unit area and greater specific leaf 
area to intercept more light in the shade (Niinemets, 2010). These 
leaves with high specific leaf area have greater longevity but lower 
net photosynthesis levels and lower photosynthetic nitrogen-use 
efficiency, because of greater allocation to nonphotosynthesizing cell 
wall material and large vein networks over photosynthetic machinery 
(Johnson & Tieszen, 1976; Niinemets, 2010). In this study, the two 

most shade-tolerant species also had the lowest concentrations of 
pigments.

For these pigment analyses, leaf-level spectra were used to 
examine only photosynthetic tissue and thus get a more accurate 
representation of photosynthetic machinery. However, diversity 
correlations were made using spectra that included both photosyn-
thetic and structural elements. Structural signatures are more preva-
lent in the shortwave-infrared region than the visible and near-infrared 
regions (Mahlein, 2011), but a component of structure is leaf angle 
distribution, which in turn affects signatures in the visible and near-
infrared regions. Thus, some of the variability in the correlation analy-
ses may be due to the structural component of species diversity. The 
variability in pigment indices across species, combined with structural 
variability, shows the utility of hyperspectral data for assessing species 
diversity across landscapes.

Overall, band depths of visible range values within the 350–
674 nm region can be used to estimate species diversity. This finding 
of a correlation between spectral diversity and species diversity sup-
ports prior research (Asner & Martin, 2011; Asner et al., 2007, 2009, 
2012; Carlson et al., 2007; Feret & Asner, 2014; Rocchini et al., 2010). 
However, other methods of spectral transformation might need to be 
implemented to use the near-infrared region for estimating species 
diversity. Although there are several methods at the satellite level to 
classify vegetation and estimate diversity, these methods mostly use 
reflectance values. This research examined spectral transformation 
techniques at the ground level to illustrate the benefits of using band 
depth and first derivatives over original reflectance to estimate species 
diversity. Additionally, variability in the red-edge region may be due to 
intraspecific variability in chlorophyll a and b content rather than dif-
ferences in species composition. Species plasticity in pigment levels 
also needs to be considered when analyzing species discriminability; 
however, this difference in pigment levels across species supports 
the possibility of discriminating species spectrally. Species discrimi-
nation and diversity estimation at the satellite level will be challeng-
ing because of more complex landscapes. One such challenge is the 
presence of nonvegetated surfaces, which need to be masked out, 
perhaps using a normalized difference vegetation index value thresh-
old. Another challenge is presented when there is a high degree of 
structural diversity within a single species, such as with clonal plants. 
This structural diversity and its effects on spectral diversity would be 
useful to understand. Additionally, there are several scales of diver-
sity; a study of how spectral diversity captures alpha and beta diversity 
would also be useful. This may be possible with airborne and satellite-
based imagery that has high spatial and at least moderate spectral 
resolution. Soil signatures in areas with low vegetation may also pose 
challenges; variability in spectral signatures in such areas may be due 
to differences in soil types, textures, and/or moisture levels as well as 
differences in vegetation.

Despite these challenges, the ability to estimate species diversity 
using spectral diversity would facilitate several practical tasks. For 
example, the assessment of spectral diversity in a particular region 
over time could provide a rapid and reliable way to estimate changes 
in species diversity over time. Thus, remote sensing can be used to 
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estimate diversity and aid conservation efforts at large spatial extents; 
however, methods used to estimate diversity must be chosen and 
interpreted carefully.

5  | CONCLUSIONS

The correlation between species diversity and spectral diversity 
depends on the spectral region examined and the spectral trans-
formation technique used. Using band depth, regression analyses 
revealed positive correlations between spectral diversity and spe-
cies diversity in the visible ranges of 350–499 nm (R2 = .41, p = .03), 
500–589 nm (R2 = .35, p = .04), and 590–674 nm (R2 = .43, p = .02), 
slight positive correlation in the red-edge range of 675–754 nm 
(R2 = .26, p = .09), and no correlation in the near-infrared ranges of 
755–924 nm (R2 = .012, p = .74) and 925–1,025 nm (R2 = .17, p = .19). 
Using first derivatives, we found a strong positive correlation in the 
visible range of 350–499 nm (R2 = .41, p = .02), but no correlations 
in the visible ranges of 500–589 nm (R2 = .039, p = .54) and 590–
674 nm (R2 = .0011, p = .92); we found no correlation in the red-edge 
region (R2 = .15, p = .21) and positive correlations in the near-infrared 
ranges of 755–924 nm (R2 = .30, p = .06) and 925–1,025 nm (R2 = .43, 
p = .02). The lack of correlation in the visible region using first deriva-
tives may be because first derivatives exaggerate spectral noise in the 
visible region. The lack of correlation in the near-infrared region using 
band depth may be because band depth minimizes variability in the 
near-infrared region, thus dampening interspecific differences. The 
lack of correlation in the red edge may be partially due to the greater 
intraspecific variability of chlorophyll content over content of other 
pigments. This variability can be expressed in the red trough region, 
at the base of the red edge, dampening interspecific differences and 
thus lessening the correlation between species diversity and spectral 
diversity.
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