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Abstract
Advances	in	remote	sensing	technology	can	help	estimate	biodiversity	at	large	spatial	
extents.	To	assess	whether	we	could	use	hyperspectral	visible	near-	infrared	 (VNIR)	
spectra	to	estimate	species	diversity,	we	examined	the	correlations	between	species	
diversity	and	spectral	diversity	 in	early-	successional	abandoned	agricultural	fields	 in	
the	Ridge	and	Valley	ecoregion	of	north-	central	Virginia	at	the	Blandy	Experimental	
Farm.	We	established	plant	 community	plots	 and	 collected	vegetation	 surveys	 and	
ground-	level	 hyperspectral	 data	 from	 350	 to	 1,025	nm	 wavelengths.	 We	 related	
spectral	diversity	(standard	deviations	across	spectra)	with	species	diversity	(Shannon–
Weiner	 index)	 and	 evaluated	 whether	 these	 correlations	 differed	 among	 spectral	
regions	 throughout	 the	 visible	 and	 near-	infrared	 wavelength	 regions,	 and	 across	
different	 spectral	 transformation	 techniques.	We	 found	positive	 correlations	 in	 the	
visible	regions	using	band	depth	data,	positive	correlations	in	the	near-	infrared	region	
using	first	derivatives	of	spectra,	and	weak	to	no	correlations	in	the	red-	edge	region	
using	either	of	the	two	spectral	transformation	techniques.	To	investigate	the	role	of	
pigment	 variability	 in	 these	 correlations,	we	 estimated	 chlorophyll,	 carotenoid,	 and	
anthocyanin	 concentrations	 of	 five	 dominant	 species	 in	 the	 plots	 using	 spectral	
vegetation	 indices.	 Although	 interspecific	 variability	 in	 pigment	 levels	 exceeded	
intraspecific	variability,	chlorophyll	was	more	varied	within	species	than	carotenoids	
and	anthocyanins,	 contributing	 to	 the	 lack	of	 correlation	between	species	diversity	
and	 spectral	 diversity	 in	 the	 red-	edge	 region.	 Interspecific	 differences	 in	 pigment	
levels,	however,	made	it	possible	to	differentiate	these	species	remotely,	contributing	
to	the	species-	spectral	diversity	correlations.	VNIR	spectra	can	be	used	to	estimate	
species	diversity,	but	the	relationships	depend	on	the	spectral	region	examined	and	
the	spectral	transformation	technique	used.
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1  | INTRODUCTION

1.1 | Remote sensing of diversity

Biodiversity	 can	have	numerous	positive	 effects	 on	 the	 function	of	
ecosystems.	For	example,	it	can	affect	ecosystem	productivity	by	influ-
encing	resource-	use	and	promoting	resource-	use	efficiency	(Cardinale	
et	al.,	2007;	Gustafsson	&	Bostrom,	2011;	Hooper	&	Vitousek,	1998;	
Symstad	&	Jonas,	2011;	Wilsey	&	Potvin,	2000).	It	can	also	positively	
influence	community	stability	by	reducing	fluctuations	in	production	
via	compensatory	effects	(Gustafsson	&	Bostrom,	2011;	Isbell,	Polley,	
&	Wilsey,	2009;	Symstad	&	Jonas,	2011;	Yachi	&	Loreau,	1999).	 In	
addition,	biodiversity	can	affect	infection	resistance	through	increases	
in	heterogeneity	and	 thus	dilution	of	hosts	 (Haas,	Hooten,	Rizzo,	&	
Meentemeyer,	 2011),	 and	 invasion	 resistance	 by	 again	 affecting	
resource-	use	as	well	as	by	competitive	effects	(Cardinale	et	al.,	2007;	
Gustafsson	 &	 Bostrom,	 2011;	 Hooper	 &	 Vitousek,	 1998;	 Scherber	
et	al.,	2010).	Thus,	conserving	biodiversity	is	an	important	means	for	
conserving	ecosystem	function.

Field	methods	are	commonly	used	to	estimate	biodiversity	in	great	
detail	 at	 small	 spatial	 extents	 (Lengyel	 et	al.,	 2008).	However,	 these	
methods	can	be	costly	and	time-	intensive,	and	difficult	to	scale	up	to	
larger	spatial	extents.	Remote	sensing	can	be	used	to	collect	informa-
tion	at	vastly	larger	spatial	extents	more	quickly	and	more	cheaply	per	
unit	area	than	field	sampling	(Lengyel	et	al.,	2008).	It	can	also	be	com-
bined	with	field	data	to	more	efficiently	assess	spatial	and	temporal	
distributions	of	biodiversity	(Bradley	&	Mustard,	2006;	Lengyel	et	al.,	
2008;	Schmidt	&	Skidmore,	2001;	Wilfong,	Gorchov,	&	Henry,	2009;	
Zhang,	Rivard,	Sanchez-	Azofeifa,	&	Castro-	Esau,	2006)	and	to	incor-
porate	 information	 at	 different	 spatial	 scales	 (Lengyel	 et	al.,	 2008).	
Remote	sensing	has	already	been	used	to	measure	various	indicators	
of	 species	 diversity,	 such	 as	 the	 normalized	 difference	 vegetation	
index	(NDVI),	biomass,	land	cover	type,	and	heterogeneity	in	biomass	
and	land	cover	(Foody	&	Cutler,	2003;	Turner	et	al.,	2003).	The	direct	
measurement	of	species	diversity	through	species-	level	characteristics	
is	becoming	possible	with	advances	in	satellite	and	aircraft	technology,	
specifically	 the	 increases	 in	 spatial	 and	 spectral	 resolutions	 (Turner	
et	al.,	2003).	Several	researchers	have	been	able	to	estimate	species	
diversity	and	chemical	diversity	using	remotely	sensed	data	(Asner	&	
Martin,	 2008,	2011;	Asner,	Martin,	 Ford,	Metcalfe,	&	 Liddell,	 2009;	
Asner,	Martin,	&	Suhaili,	 2012;	Carlson,	Asner,	Hughes,	Ostertag,	&	
Martin,	2007;	Feret	&	Asner,	2014;	Rocchini	et	al.,	2010).

Species	 diversity	 may	 be	 estimated	 by	 examining	 variability	 in	
spectral	features	(Asner	&	Martin,	2008;	Rocchini	et	al.,	2010),	includ-
ing	those	associated	with	pigments.	Although	pigment	concentrations	
have	 traditionally	 been	 estimated	 using	 wet	 laboratory	 techniques,	
these	 procedures	 are	 labor-		 and	 time-	intensive,	 cannot	 be	 used	 for	
temporal	analyses	due	to	their	destructive	nature,	need	large	numbers	
of	samples	for	accurate	representation	of	spatial	variability	(Blackburn,	
2006),	 and	 can	 be	 inaccurate	 due	 to	 incomplete	 extractions,	 light-	
absorbing	 impurities,	 and	 pigment	 instability	 (Merzlyak,	 Gitelson,	
Chivkunova,	 Solovchenko,	 &	 Pogosyan,	 2003).	 In	 contrast,	 remote	
sensing,	especially	hyperspectral	remote	sensing,	can	be	used	to	detect	

pigments	quickly	and	nondestructively	(Asner	et	al.,	2007;	Blackburn,	
2006;	 Gamon	 &	 Berry,	 2012;	 Gitelson,	 Keydan,	 &	Merzlyak,	 2006;	
Merzlyak	et	al.,	2003;	Yu,	Lenz-	Wiedemann,	Chen,	&	Bareth,	2014).	
We	estimated	 the	 concentrations	of	 carotenoids,	 anthocyanins,	 and	
chlorophylls,	because	they	encompass	the	major	groups	of	pigments	
in	terrestrial	plants	(Delvin	&	Barker,	1971;	Gitelson,	Zur,	Chivkunova,	
&	 Merzlyak,	 2002),	 and	 the	 equations	 for	 estimating	 these	 three	
pigments	are	 relatively	well	defined	 in	 the	 remote	sensing	 literature	
(Gitelson	et	al.,	2006;	Merzlyak	et	al.,	2003;	Yu	et	al.,	2014).	Alongside	
determining	useful	features	with	which	to	estimate	species	diversity,	
we	examined	different	 spectral	 transformation	 techniques	 to	assess	
their	influence	on	diversity	estimates.

1.2 | Research objectives

Certain	spectral	 features	might	be	more	useful	 for	estimating	biodi-
versity	than	others.	The	study	of	 interspecific	and	intraspecific	vari-
ability	in	these	features	will	help	elucidate	the	spectral	regions	most	
correlated	with	biodiversity.	Assessing	biodiversity	can	be	important	
in	 early-	successional	 communities,	 where	 biodiversity	 and	 species	
composition	may	influence	successional	trajectory.

Here,	we	studied	correlations	between	species	diversity	and	spec-
tral	diversity	in	a	temperate	ridge	and	valley	early-	successional	ecosys-
tem	in	north-	central	Virginia.	The	Blandy	Experimental	Farm,	our	study	
site	in	Boyce,	Virginia,	includes	chronosequences	of	successional	fields	
inhabited	by	numerous	exotic	invasive	species	that	control	community	
biodiversity.	These	species	can	alter	their	surroundings,	inhibiting	the	
growth	of	other	species	and	promoting	their	own	growth	both	physi-
cally	and	chemically.	In	this	study,	we	asked	(1)	whether	species	diver-
sity	was	correlated	with	spectral	diversity	 in	secondary	successional	
ecosystems	 in	 this	 region,	 (2)	how	these	correlations	differ	by	spec-
tral	 region	 and	 spectral	 transformation	 technique,	 and	 (3)	 whether	
intraspecific	and	interspecific	variabilities	in	pigments	influence	these	
correlations.

2  | METHODS

2.1 | Study site

We	collected	data	at	 the	Blandy	Experimental	Farm	 (BEF;	Figure	1),	
which	 is	 located	 in	the	Shenandoah	Valley	 in	Clarke	County	Virginia	
at	39°09′N,	78°06′W	 (Wang,	Shaner,	&	Macko,	2007).	This	300-	ha	
biological	 field	station	has	been	owned	by	the	University	of	Virginia	
(UVA)	since	1926	and	operated	by	the	Department	of	Environmental	
Sciences	at	UVA	since	1983	(Bowers,	1997).	The	field	station	includes	
120	ha	of	pasture	and	cropland,	40	ha	of	woodland,	the	60	ha	Virginia	
State	Arboretum,	and	80	ha	of	old	fields	in	early,	middle,	and	late	suc-
cession	 (Bowers,	 1997).	 Each	of	 two	 successional	 series	 (southwest	
and	northeast)	at	the	station	is	a	set	of	former	agricultural	fields	and	
contains	 an	 early-	,	 mid-	,	 and	 late-	successional	 field,	 abandoned	 in	
2001	(Early	1),	2003	(Early	2),	1986	(Mid	1),	1987	(Mid	2),	before	1910	
(Late	 1),	 and	 before	 1920	 (Late	 2)	 (Wang,	 Epstein,	 &	Wang,	 2010).	
Spectral	and	species	compositional	data	were	collected	from	the	two	
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early-	successional	fields	and	two	additional	field	sites:	Lake	Arnold	and	
a	site	at	a	field	boundary	near	the	northeast	successional	series	referred	
to	hereafter	as	the	northeast	boundary.	The	additional	field	sites	were	
included	because	 they	were	 inhabited	by	an	exotic	 invasive	 species	
not	 found	 in	 the	other	 field	sites.	 In	 this	 study,	 they	are	considered	
early	 successional	 due	 to	 the	 recency	of	 disturbance.	Vegetation	 at	
Lake	Arnold	consisted	mostly	of	grasses	and	forbs,	whereas	the	north-
east	 boundary	 was	 composed	 of	 mostly	 grasses.	 Early-	successional	
stages	 in	 the	 field	 chronosequences	 mostly	 consisted	 of	 forbs	 and	
some	grasses.	For	more	information	on	species	composition	in	these	
communities,	 see	 Aneece	 and	 Epstein	 (2015).	 Soils	 are	 deep	 collu-
vial	 and	 alluvial	 sediment	 from	karst	 limestone,	 shale,	 and	 siltstone;	
study	 sites	have	well-	drained	 silt	 loam	soil,	 of	 the	 soil	Order	Ultisol	
(Bowers,	1997).	The	average	elevation	of	the	BEF	is	190	m,	and	slopes	
are	<10%	(Bowers,	1997).	Mean	annual	temperature	and	precipitation	
are	11.8°C	and	940	mm,	respectively;	the	average	growing	season	is	
157	days	with	average	annual	primary	productivity	of	approximately	
1.0	kg/m2	in	the	successional	fields	(Bowers,	1997;	Wang	et	al.,	2010).

2.2 | Field methods

In	 the	 summer	 of	 2014,	 we	 established	 three	 randomly	 placed	
5	×	5	m	 community-	level	 plots	 at	 each	 early-	successional	 site,	 Lake	
Arnold,	and	the	northeast	boundary	(Figure	1).	Each	community	plot	
consisted	of	multiple	 species.	 From	early	 June	 to	 late	 July,	we	 col-
lected	community-	level	spectral	data	from	350	to	1,025	nm	using	a	
PANalytical	ASD	Inc.	FieldSpec®3,	as	this	was	the	spectral	 range	of	
the	instrument,	with	a	25°	field	of	view	and	a	pistol	grip.	Spectra	were	
normalized	 for	 light	conditions	with	a	Spectralon	panel	and	viewing	
geometry	was	controlled	for	using	a	level	on	the	pistol	grip.	The	spec-
tral	range	was	defined	by	that	able	to	be	measured	by	the	instrument.	

Spectra	 were	 collected	 from	 approximately	 2.5	m	 height	 from	 the	
ground	so	that	the	footprint	was	approximately	1.15	m	in	diameter;	
footprint	 size	was	 kept	 consistent	 by	 using	 this	 same	height	 for	 all	
measurements.	The	relationship	between	footprint	size	and	diversity	
was	not	determined	in	this	research,	but	would	be	interesting	to	study;	
this	size	was	used	to	obtain	several	subsamples	within	each	plot	that	
included	spectral	signature	from	multiple	plant	species.	We	collected	
spectra	on	cloud-	free	days	between	10	a.m.	and	2	p.m.	in	each	corner	
of	the	plot,	in	the	center,	and	the	middle	of	each	edge	for	a	total	of	12	
spectral	footprints	per	plot	(Figure	2).	This	system	was	used	to	maxi-
mize	coverage	without	trampling	vegetation	and	to	correlate	spectra	
with	vegetation	survey	data.	We	conducted	vegetation	surveys	on	the	
5	×	5	m	grid	at	0.5-	m	intervals	where	grid	lines	intersected,	recording	
species	at	the	ground	level,	subcanopy,	and	canopy	to	assess	the	spe-
cies	diversity	and	species	composition	of	the	spectral	 footprints.	As	
we	knew	which	intersections	from	the	vegetation	surveys	fell	within	
each	spectral	footprint,	we	were	able	to	match	species	compositions	
with	spectral	signatures.

In	the	summer	of	2015,	we	collected	leaf-	level	spectra	for	pigment	
analysis	 from	 five	 of	 the	 dominant	 species	 in	 the	 community	 plots:	
Achillea millefolium	 (common	 yarrow),	 Dactylis glomerata	 (orchard	
grass),	 Festuca rubra	 (red	 fescue),	 Solidago altissima	 (tall	 goldenrod),	
and	Symphoricarpos orbiculatus	(coralberry)	(Table	1,	see	Appendix	S1	
for	 species	 descriptions).	All	 of	 these	 species	 have	 the	 potential	 to	
become	invasive,	especially	in	disturbed	areas.	Ten	individual	plants	of	
each	species	were	examined,	except	for	F. rubra,	of	which	five	individ-
ual	plants	were	sampled	due	to	time	and	weather	constraints.	Three	
leaf	samples	were	collected	from	each	 individual.	We	obtained	 leaf-	
level	spectra	from	detached	leaves,	which	we	wrapped	in	wet	paper	
towels,	put	into	zippered	plastic	bags,	and	stored	on	ice	until	measure-
ments	were	taken	within	20	min	of	detachment.

F IGURE  1 Blandy	Experimental	Farm	in	
north-	central	Virginia	(39°09′N,	78°06′W)	
with	study	sites	Southwest	Early	(SWE),	
Northeast	Early	(NEE),	Northeast	boundary	
(NEB),	and	Lake	Arnold	(LA)
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2.3 | Statistical analysis

We	 used	 two	 spectral	 transformation	 techniques	 to	 examine	
whether	 the	 correlation	 between	 species	 and	 spectral	 diversi-
ties	depends	on	the	technique	used.	Such	spectral	 transformation	
techniques	are	often	used	to	enhance	spectral	features	(Neumann,	
Forster,	Kleinschmit,	&	Itzerott,	2016;	Weber	et	al.,	2008).	We	used	

band	depth,	or	continuum	removal,	 instead	of	original	 reflectance	
values	 to	 reduce	 noise	 from	 the	 sensor,	 atmosphere,	 soil	 back-
ground,	topographic	variation,	and	differences	in	albedo	(Crowley,	
Brickey,	&	Rowan,	1989;	Kokaly	&	Clark,	1999).	Despite	being	nor-
malized	with	a	Spectralon,	 there	was	still	variability	 in	 reflectance	
values	at	 the	near-	infrared	 shoulder	by	day	and	 time	of	day.	This	
was	corrected	for	using	band	depth,	which	is	used	on	dry	and	live	
plant	 matter	 to	 minimize	 variability	 due	 to	 differences	 in	 illumi-
nation	 and	 enhance	 spectral	 features	 (Thulin,	Hill,	Held,	 Jones,	&	
Woodgate,	2012;	Youngentob	et	al.,	2011).	To	obtain	band	depth,	
a	continuum	hull	was	matched	to	the	original	spectral	profile,	and	
this	 continuum	was	 removed	 to	 get	 normalized	 reflectance	 using	
ENVI	(versions	5.0	and	Classic,	Exelis	Visual	Information	Solutions,	
Boulder,	Colorado).	We	then	subtracted	these	continuum-	removed	
reflectance	values	from	one	to	get	the	band	depth	profile	(Figure	3).	
Continuum	removal	results	differ	by	the	spectral	subset	used;	the	
spectra	should	be	subset	based	on	the	features	of	 interest	 (Harris	
Geospatial	 Solutions,	 2017).	 In	 this	 study,	 we	 anchored	 the	 con-
tinuum	 hull	 to	 the	 red-	edge	 shoulder	 to	 minimize	 variability	 in	
the	 location	 of	 the	 red-	edge	 plateau	 due	 to	 differences	 in	 illumi-
nation	and	 to	enhance	differences	 in	 the	green	peak.	Band	depth	
transformations	 are	based	on	a	priori	 information	on	 the	 location	
of	features	of	 interest	 (like	the	green	peak)	and	thus	can	be	more	
stable	(Shi,	Zhuang,	&	Niu,	2004).	With	this	a	priori	knowledge,	con-
tinuum	removal	can	be	used	to	detect	more	subtle	absorption	fea-
tures	overlapping	a	continuum	of	absorptions	(Huang,	Turner,	Dury,	
Wallis,	&	Foley,	2004).

We	 also	 assessed	 spectral	 diversity	 using	 first	 derivatives	 of	 the	
original	reflectance	profile	as	the	second	spectral	transformation	tech-
nique.	First	derivatives	are	often	used	in	remote	sensing	to	emphasize	
important	spectral	features,	remove	background	noise,	and	lessen	the	
influence	of	leaf	water	content	(Inoue,	Sakaiya,	Zhu,	&	Takahashi,	2012;	
Ramoelo,	 Skidmore,	 Schlerf,	 Mathieu,	 &	 Heitkonig,	 2011).	 They	 are	
assumed	to	decrease	the	influence	of	differences	in	illumination	levels	

TABLE  1 Rank	abundance	of	Achillea millefolium	(common	yarrow),	Dactylis glomerata	(orchard	grass),	Festuca rubra	(red	fescue),	Solidago 
altissima	(tall	goldenrod),	and	Symphoricarpos orbiculatus	(coralberry)	in	community	plots	at	Blandy	Experimental	Farm	in	north-	central	Virginia

A. millefolium D. glomerata F. rubra S. altissima S. orbiculatus Total # sps.

LACP4 – – 9 – – 9

LACP5 – – 7 – – 19

LACP6 – – 8 – – 23

NEBCP1 – 12 1 – – 30

NEBCP2 – 12 2 – – 22

NEBCP3 – 2 3 – – 28

NEECP1 3 12 24 – 26 26

NEECP2 – – 15 – 3 19

NEECP3 – – – – 9 21

SWECP1 – – – 2 – 21

SWECP2 – – – 3 19 20

SWECP3 – – – 4 28 28

F IGURE  2 Layout	of	5	×	5	m	community	plots.	Circles	represent	
spectral	footprints	taken	from	outside	the	plots	and	from	the	very	
center	so	as	not	to	trample	vegetation.	Spectra	from	each	corner	of	
the	plot,	the	center,	and	the	middle	of	each	edge	for	a	total	of	12	
spectral	footprints	per	plot	were	collected	from	approximately	2.5	m	
height	from	the	ground	so	that	the	footprint	was	approximately	
1.15	m	in	diameter.	Vegetation	surveys	were	conducted	at	each	
0.5-	m	interval	within	a	plot	for	a	total	of	121	points	(11	×	11)	at	the	
ground,	understory,	and	canopy	level
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(Zhang	et	al.,	2006),	looking	at	changes	in	values	relative	to	each	other	
rather	than	absolute	values.	However,	full-	band	based	transformations	
like	first	derivatives	are	highly	influenced	by	the	sampling	environment	
and	date	of	sampling	and	can	emphasize	wavelengths	not	traditionally	
associated	with	certain	absorption	features	(Shi	et	al.,	2004).	When	sin-
gle	regression	analyses	were	conducted	using	original	reflectance,	the	
correlations	between	species	diversity	and	spectral	diversity	were	lower	
than	when	using	band	depth	and	first	derivatives;	thus,	these	spectral	
transformations	were	beneficial	in	correlating	the	two	diversities.

To	quantify	spectral	diversity	across	an	entire	plot,	we	used	stan-
dard	deviations	of	areas	under	the	band	depth	profile	curve	and	the	
first	derivative	profile	curve	for	 the	following	regions	corresponding	
with	 key	 spectral	 features:	 350–499	nm	 (before	 the	 green	 peak),	
500–589	nm	(green	peak),	590–674	nm	(between	green	peak	and	red	
trough),	675–754	nm	(red	edge),	755–924	nm	(near-	infrared	plateau	
before	water	absorption	feature),	and	925–1,025	nm	(water	absorp-
tion	feature;	Figure	4).	We	calculated	area	under	the	curve	as	a	way	
to	 incorporate	 information	 from	all	wavelengths	 in	a	spectral	 region	
without	the	problem	of	autocorrelation.

We	calculated	species	diversity	using	the	Shannon	Diversity	Index	
(Eq.	1),	where	pi	 is	 the	 proportion	 of	 species	 i	 and	n	 is	 the	 number	

of	species.	To	make	a	more	direct	comparison	with	spectral	diversity,	
only	the	sampling	points	that	were	within	the	spectral	footprints	were	
included	in	calculating	species	diversity.	We	conducted	single,	multi-
ple,	and	stepwise	regression	analyses	in	R	(R	Core	Team,	2015)	using	
the	lm	and	stepAIC	packages	to	assess	the	relationship	between	spe-
cies	and	spectral	diversities	using	spectra	and	vegetation	surveys	from	
the	summer	of	2014	for	the	early-	successional	fields,	Lake	Arnold,	and	
the	northeast	boundary.	

To	 assess	whether	 the	 relationships	 between	 spectral	 diversity	
and	species	diversity	may	be	influenced	by	the	interspecific	and	intra-
specific	diversity	of	specific	vegetation	characteristics,	we	used	the	
leaf-	level	reflectance	spectra	of	five	species	in	the	community	plots	
to	estimate	pigment	content	of	those	five	species	and	assess	 inter-
specific	 and	 intraspecific	diversity	of	 chlorophyll	 (Eq.	2),	 carotenoid	
(Eq.	3),	 and	 anthocyanin	 (Eq.	4)	 levels	 using	 equations	 by	 Gitelson,	
Merzlyak,	 and	 Gritz	 (2003),	 Gitelson	 et	al.	 (2006),	 and	 Gitelson,	
Merzlyak,	 and	 Chivkunova	 (2001),	 respectively,	 where	 R770,	 R705,	
R515,	R565,	R550,	and	R700	are	reflectance	values	at	770,	705,	515,	565,	

(1)H�
=−

n
∑

i=1

pi ∗ ln(pi)

F IGURE  3 An	illustration,	using	an	average	spectral	profile	from	Dahurian	buckthorn	spectra,	of	calculating	band	depth	(normalized	
absorption)	from	original	reflectance	using	continuum	removal.	A	continuum	hull	was	established	over	the	entire	spectral	profile.	Then,	the	
reflectance	profile	was	subtracted	from	the	continuum	hull.	The	normalized	reflectance	was	then	subtracted	from	one	to	obtain	normalized	
absorption
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550,	and	700	nm,	respectively.	These	species	were	selected	because	
they	were	present	 in	many	of	 the	community	plots	and	were	prev-
alent	 in	 several	 of	 those	plots	 [see	 figure	5	 in	Aneece	 and	Epstein	
(2015)].	Reflectance	spectra	were	used	for	these	calculations	because	
the	equations	are	tailored	toward	reflectance	measurements,	rather	
than	 band	 depth.	 Chlorophyll,	 carotenoid,	 and	 anthocyanin	 levels	
were	assessed	using	a	nested	analysis	of	variance	 (ANOVA)	 in	SAS	
(Statistical	 analysis	 software,	 version	 9.4,	 SAS	 Institute	 Inc.,	 Cary,	
North	 Carolina)	 to	 compare	 intraspecific	 and	 interspecific	 pigment	
variability	 among	 Achillea millefolium,	 Dactylis glomerata,	 Festuca 
rubra,	Solidago altissima,	and	Symphoricarpos orbiculatus,	using	among	
and	within	mean	square	and	the	F	value.	As	parametric	assumptions	
were	 not	 met,	 we	 used	 the	 nonparametric	 pairwise	 comparison	
Dwass,	 Steel,	 Critchlow–Fligner	 (DSCF)	method	 to	 assess	whether	
species	were	significantly	different	in	terms	of	the	following	pigment	
estimates	(SAS	support,	2012):	

3  | RESULTS

Overall,	 spectral	 diversity	 was	 positively	 correlated	 with	 species	
diversity	 in	 several	 spectral	 regions	 across	 spectral	 transforma-
tions.	We	found	slightly	greater	R2	values	with	nonlinear	relation-
ships	than	with	linear	relationships	in	most	cases,	although	the	type	
of	nonlinear	 relationship	with	 the	greatest	R2	 value	depended	on	
the	spectral	region	examined.	Although	nonlinear	relationships	had	
larger	R2	values	than	linear	relationships,	the	differences	in	R2	val-
ues	were	small;	thus,	interpretation	of	potential	nonlinear	relation-
ships	must	be	made	with	caution.	For	 this	 reason,	we	used	 linear	
relationships	 to	 compare	 correlations	 between	 species	 diversity	
and	spectral	diversity	across	spectral	transformations	and	spectral	
regions.

Linear	 relationships	 using	 untransformed	 reflectance	 were	 not	
as	strong	as	those	using	band	depth	and	first	derivatives	(Figure	5).	
There	were	strong,	significant,	positive	linear	relationships	between	
species	 diversity	 and	 spectral	 diversity	 using	 band	 depth	 in	 the	
summer	of	2014	 for	 the	350–499	nm	wavelength	 region	 (R2	=	.41,	
p	=	.03),	the	500–589	nm	wavelength	region	(R2 =	.35,	p	=	.04),	and	
the	590–674	nm	wavelength	region	(R2	=	.43,	p	=	.02),	and	a	margin-
ally	significant	positive	relationship	in	the	675–754	nm	wavelength	
region	 (R2	=	.26,	p	=	.09;	Figure	6).	However,	 relationships	between	
species	 diversity	 and	 spectral	 diversity	were	 not	 significant	 in	 the	
755–924	nm	wavelength	 region	 (R2	=	.012,	p	=	.74)	or	 in	 the	925–
1,025	nm	wavelength	 region	 (R2	=	.17,	 p	=	.19).	 Using	 first	 deriva-
tives	instead	of	band	depth,	there	was	a	strong	positive	correlation	
between	spectral	diversity	and	species	diversity	in	the	350–499	nm	
wavelength	 region	 (R2	=	.41,	 p	=	.02;	 Figure	7)	 but	 no	 correlations	
in	 the	 500–589	nm	 wavelength	 region	 (R2	=	.039,	 p	=	.54),	 the	
590–674	nm	wavelength	region	(R2	=	.0011,	p	=	.92),	and	the	675–
754	nm	wavelength	 region	 (R2	=	.15,	p	=	.21).	There	was	 a	margin-
ally	 significant	 positive	 correlation	 in	 the	 755–924	nm	wavelength	
region	 (R2	=	.30,	 p	=	.06)	 and	 a	 strong	 positive	 correlation	 in	 the	
925–1,025	nm	wavelength	region	(R2	=	.43,	p	=	.02).	Multiple	regres-
sions	combining	spectral	diversity	across	regions	to	estimate	species	
diversity	revealed	lower	R2	values	than	when	considering	individual	
regions	 for	both	spectral	 transformation	 techniques	and	 thus	were	
not	 further	 considered.	Given	 the	 small	 sample	 size	 in	 conducting	
these	 correlation	 analyses,	we	 repeated	 them	on	 20	 random	 sam-
ples	each	consisting	of	8	of	12	plots.	The	average	R2	values	across	
these	20	samples	 led	 to	 the	same	patterns	 in	comparing	R2	values	
across	 spectral	 regions	 and	 spectral	 transformation	 techniques	 as	
when	using	all	12	plots.	Thus,	 the	comparisons	are	reliable	despite	
sample	size.

Although	 the	 first	 derivative	 and	 band	 depth	 transformations	
resulted	 in	 larger	 R2	 values	 across	 spectral	 regions	 in	 the	 single	
regressions,	 untransformed	 reflectance	 had	 larger	 R2	 values	 than	
the	 spectral	 transformations	 using	 multiple	 linear	 regression	 anal-
yses	 (Table	2).	 This	 was	 also	 supported	 by	 the	 stepwise	 multiple	
regression	 analyses	 (Table	3).	 Looking	 across	 stepwise	 regression	
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)
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)

F IGURE  4 To	quantify	spectral	diversity,	band	depth	was	divided	into	regions	and	areas	under	the	curve	calculated,	and	then	standard	
deviations	of	the	areas	under	the	curve	for	respective	plots	were	calculated
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models,	 the	 most	 influential	 spectral	 regions	 were	 500–589	nm,	
590–674	nm,	and	925–1025	nm,	which	supports	the	results	of	the	
single	regressions	when	considering	only	relationships	significant	at	
the	level	of	p = .05.

The	 analysis	 of	 variance	 for	 pigment	 estimates	 revealed	 that	
there	was	greater	interspecific	variability	than	intraspecific	variabil-
ity	in	terms	of	all	three	pigment	types;	however,	within-	species	vari-
ability	was	proportionally	greater	 in	chlorophyll	 than	 in	carotenoid	
and	 anthocyanin	 estimates	 (Table	4).	 This	 is	 concluded	 based	 on	
the	 F	 value,	which	 is	 the	 ratio	 of	 variance	 among	 species	 (among	
mean	square)	to	variance	within	species	(within	mean	square).	This	

greater	intraspecific	variability	may	account	for	some	of	the	lack	of	
correlation	 between	 spectral	 diversity	 and	 species	 diversity	 in	 the	
red	 trough	 region.	Although	 there	 is	 greater	 intraspecific	 variabil-
ity	 in	 chlorophyll	 than	 the	 other	 pigments,	 interspecific	 variability	
is	 still	 greater	 than	 intraspecific	 variability,	 leading	 to	 significant	
differences	by	species	for	all	three	pigments	(Figure	8).	 In	terms	of	
anthocyanins	and	carotenoids,	all	species	were	significantly	different	
(p <	.001)	except	for	A. millefolium vs. S. orbiculatus	and	D. glomerata 
vs. F. rubra.	 In	 terms	 of	 chlorophyll,	 all	 species	 were	 significantly	
different	 except	 for	 D. glomerata vs. F. rubra	 and	 S. altissima vs. 
S. orbiculatus.

F IGURE  5 Correlations	between	
species	diversity	and	spectral	diversity	for	
six	spectral	regions	using	the	area	under	
the	reflectance	profile

F IGURE  6 Correlations	between	
species	diversity	and	spectral	diversity	for	
six	spectral	regions	using	the	area	under	
the	band	depth	profile
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4  | DISCUSSION

As	 biodiversity	 can	 influence	 ecosystem	 function	 and	 stability,	 its	
study	 is	 clearly	 important	 to	 aid	 conservation	 efforts.	 Small-	scale	
analyses	 of	 diversity	 are	 possible	 using	 field	methods,	 but	 remote	
sensing	 is	 typically	 needed	 for	 assessment	 at	 large	 spatial	 scales.	
To	 estimate	 species	 diversity,	 we	may	 be	 able	 to	 use	 diversity	 of	
spectral	features	such	as	those	associated	with	pigments.	In	this	arti-
cle,	we	asked	whether	species	diversity	and	spectral	diversity	were	
correlated,	 especially	 diversity	 in	 pigment	 features;	we	 also	 asked	
whether	spectral	transformation	techniques	influenced	the	correla-
tion	between	species	and	spectral	diversities.	Nonlinear	relationships	

F IGURE  7 Correlations	between	
species	diversity	and	spectral	diversity	for	
six	spectral	regions	using	the	area	under	
the	first	derivative	profile

TABLE  2 A	comparison	between	multiple	regression	results	of	
linear	and	nonlinear	relationships	between	species	and	spectral	
diversities	across	different	spectral	transformations	and	spectral	
regions

Transformation

Relationship type

Linear Logarithmic Exponential

Reflectance 0.56	(0.10) 0.56	(0.10) 0.43	(0.18)

First	derivative 0.23	(0.27) 0.29	(0.28) 0.30	(0.27)

Band	depth 0.14	(0.39) 0.19	(0.36) 0.28	(0.29)

R2-	value	(p-	value).	Multiple	regressions	with	2nd-	order	polynomi-
als	were	not	possible	due	to	sample	size.

TABLE  3 A	comparison	of	stepwise	regression	results	across	relationship	types	and	spectral	transformations

Transformation Relationship

Spectral Region (nm)

R2- value (p- value)350–499 500–589 590–674 675–754 755–924 925–1,025

Reflectance Linear + + + + + .63	(.04)

Logarithmic + + + + + .61	(.05)

Exponential + + + + + .52	(.09)

First	derivative Linear + + + .55	(.03)

Logarithmic + + .59	(.01)

Exponential + + + .55	(.03)

Band	depth Linear + + + .37	(.09)

Logarithmic + + .44	(.03)

Exponential + + + + +  .38	(.16)

Stepwise	regressions	with	2nd-	order	polynomials	were	not	possible	due	to	sample	size.	The	(+)	signs	indicate	spectral	regions	that	were	retained	
in	the	regressions.
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had	only	slightly	larger	R2	values	than	linear	relationships;	thus,	their	
biological	meaning	must	be	interpreted	with	care.	Thus,	we	focused	
on	the	linear	relationships	to	compare	spectral	transformations	and	
spectral	regions	in	terms	of	the	relationship	between	spectral	diver-
sity	and	species	diversity.	When	using	band	depth,	we	found	that	the	
two	were	strongly	linearly	positively	correlated	in	the	visible	region	
(350–674	nm),	weakly	linearly	positively	correlated	in	the	red-	edge	
region	 (675–754	nm),	and	uncorrelated	 in	 the	near-	infrared	 region	
(755–1,025	nm).	 When	 using	 first	 derivatives,	 we	 found	 a	 strong	
linear	positive	correlation	in	the	350–499	nm	region,	but	no	corre-
lation	 in	 the	other	visible	 ranges	 (500–674	nm)	or	 in	 the	 red-	edge	
region	(675–754	nm);	however,	we	found	positive	linear	correlations	
in	the	near-	infrared	region	(755–1,025	nm).	Therefore,	the	method	
of	spectral	 transformation	and	the	spectral	 regions	considered	will	
influence	 the	 ability	 to	 estimate	 species	 diversity	 using	 spectral	
diversity.

4.1 | Visible region

The	 350–499	nm	 region	 had	 a	 strong	 positive	 correlation	 with	 H’	
using	 band	 depth	 and	 first	 derivatives,	 suggesting	 that	 this	 region	
has	 large	 interspecific	variability.	Using	band	depth,	there	were	also	
strong	positive	correlations	in	the	rest	of	the	visible	region.	However,	
there	were	no	other	correlations	in	the	visible	region	when	using	first	
derivatives.	This	may	be	because	first	derivatives	have	been	found	to	
exaggerate	noise	due	to	environmental	variation	in	this	region,	such	as	

aerosol	content	and	differences	in	illumination,	and	increase	intraspe-
cific	spectral	reflectance	variability	(Zhang	et	al.,	2006).

4.2 | Near- infrared region

The	 lack	of	correlation	 in	the	near-	infrared	region	when	using	band	
depth	may	be	due	to	the	fact	that	the	continuum	removal	applied	for	
band	 depth	 calculations	 drastically	 reduced	 variability	 in	 the	 near-	

infrared	 plateau;	 this	 reduction	 may	 mask	 variability	 in	 the	 near-	
infrared	 plateau	 that	 may	 be	 caused	 by	 interspecific	 differences.	
Therefore,	 it	 may	 be	 better	 to	 use	 derivatives	 to	 correlate	 species	
diversity	and	spectral	diversity	in	this	region.	Indeed,	when	using	first	
derivatives,	there	was	a	strong	positive	correlation	between	spectral	
diversity	and	species	diversity	in	the	755–924	nm	wavelength	region	
(R2	=	.30,	p	=	.06)	and	the	925–1,025	nm	wavelength	region	(R2	=	.43,	
p	=	.02;	Figure	7).

4.3 | Red trough and red- edge regions

The	most	interesting	result	perhaps	is	a	weak	correlation	in	the	red-	
edge	region	using	band	depth	and	the	 lack	of	correlation	using	first	
derivatives,	due	to	greater	intraspecific	variability	versus	interspecific	
variability	in	this	region.	Variability	in	the	red-	edge	region	may	be	due	
to	 differences	 in	 the	 red	 trough	 or	 differences	 in	 the	 near-	infrared	
plateau;	however,	 since	differences	 in	 the	near-	infrared	plateau	are	
minimized	while	using	band	depth,	the	differences	are	likely	in	the	red	
trough.	To	determine	how	there	might	be	greater	 interspecific	vari-
ability	in	most	of	the	visible	region	yet	greater	intraspecific	variability	
in	the	red-	edge	region,	especially	the	red	trough,	the	absorption	peaks	
of	different	pigments	were	considered.	Chlorophyll	a	and	b	peaks	are	
in	the	visible	and	red	trough	regions,	and	anthocyanin	and	carotenoid	
peaks	occur	 in	the	visible	region	[for	more	detailed	absorption	peak	
locations,	see	Jensen	(2007)].	The	intraspecific	variability	in	the	red-	
edge	 region	 (675–754	nm)	may	be	due	 to	 intraspecific	variability	 in	

TABLE  4 ANOVA	results	comparing	among	and	within	variance	
in	pigment	estimates	by	species

Pigment
Among mean 
square

Within mean 
square F value

Chlorophylls 12.454 0.1059 117.59

Anthocyanins 5.8774 0.0467 125.87

Carotenoids 260.21 0.8093 321.52

F IGURE  8 Estimates	of	(a)	chlorophylls,	
(b)	anthocyanins,	and	(c)	carotenoids	for	
Achillea millefolium	(acmi),	Dactylis glomerata 
(dagl),	Festuca rubra	(feru),	Solidago altissima 
(soal),	and	Symphoricarpos orbiculatus	(syor)	
using	ground-	level	hyperspectral	data



3484  |     ANEECE Et Al.

chlorophyll	 content,	which	may	be	more	plastic	 and	more	 sensitive	
to	environmental	factors	than	other	pigments.	In	contrast,	carotenoid	
and	 anthocyanin	 content	 may	 have	 greater	 interspecific	 variability	
than	 intraspecific	variability.	This	may	be	because	anthocyanin	con-
tent	and	carotenoid	content	are	highly	influenced	by	genetics	(Ficco	
et	al.,	 2014;	 Fournier-	Level	 et	al.,	 2009),	 whereas	 chlorophyll	 con-
tent	is	influenced	by	both	genetics	and	environmental	conditions	and	
stressors	(Cao,	2000;	Malyshev	et	al.,	2016).

4.4 | Nonlinear relationships

As	mentioned	above,	nonlinear	relationships	had	slightly	larger	R2	val-
ues	and	thus	the	relationship	between	spectral	diversity	and	species	
diversity	may	not	be	linear	in	all	spectral	regions	and	transformations.	
In	several	cases,	 the	exponential	 relationship	was	stronger	 than	the	
linear	relationship,	with	an	R2	value	maximum	difference	of	approxi-
mately	.02	(Table	5).	This	may	mean	that	as	species	diversity	increases,	
spectral	diversity	increases	to	an	even	greater	extent,	perhaps	due	to	
intraspecific	variability.	In	one	case,	the	logarithmic	relationship	was	
stronger,	again	with	an	R2	difference	of	.02.	This	may	indicate	satura-
tion	of	spectral	diversity	with	an	increase	in	species	diversity.	In	one	
case,	a	2nd-	order	polynomial	relationship	was	stronger	by	an	R2	dif-
ference	of	 .06;	however,	 this	seems	highly	 influenced	by	one	point.	
Considering	the	small	R2	differences	between	these	nonlinear	and	lin-
ear	relationships,	the	meaning	of	the	nonlinear	relationships	must	be	
interpreted	with	caution.

4.4.1 | Multiple and stepwise regressions

Although	first	derivative	and	band	depth	transformations	had	stronger	
correlations	 between	 spectral	 diversity	 and	 species	 diversity	 than	
untransformed	 reflectance	 in	 the	 single	 regression	 analyses,	 multi-
ple	and	stepwise	regressions	combining	all	spectral	regions	revealed	
stronger	correlations	using	reflectance.	This	might	be	because	all	spec-
tral	regions	had	slight	positive	correlations	between	spectral	diversity	
and	species	diversity	using	reflectance	while	only	some	regions	had	
strong	 positive	 correlations	 when	 using	 first	 derivatives	 and	 band	
depth.	 This	 is	 demonstrated	 in	 the	 stepwise	 regression	 analyses,	
in	which	 almost	 all	 regions	were	 retained	 as	 important	when	 using	
reflectance	while	only	some	regions	were	retained	as	important	when	
using	first	derivatives	and	band	depth.	When	looking	across	all	step-
wise	regressions,	the	spectral	regions	that	were	most	often	deemed	
important	were	500–589	nm	(green	peak),	590–674	nm	(red	trough),	
and	925–1,025	nm	(near-	infrared	plateau).	Thus,	future	studies	may	
be	able	to	focus	on	these	regions	when	estimating	species	diversity	
using	spectral	diversity.

4.5 | Species pigment comparisons

To	assess	 intraspecific	and	 interspecific	differences	 in	pigment	con-
tents,	 we	 used	 spectra	 of	 five	 dominant	 species	 in	 the	 community	
plots	to	calculate	indices	estimating	the	amounts	of	chlorophyll	(Eq.	2),	
carotenoids	(Eq.	3),	and	anthocyanins	(Eq.	4)	in	the	leaves.	There	was	

TABLE  5 A	comparison	between	different	linear	and	nonlinear	relationships	between	species	diversity	and	spectral	diversity	across	different	
spectral	transformation	techniques	and	spectral	regions

Transformation Region

Relationship type

Linear 2nd- order polynomial Logarithmic Exponential

Reflectance 350–499	nm 0.34	(0.05) 0.36	(0.04)

500–589	nm

590–674	nm 0.37	(0.04) 0.38	(0.03)

675–754	nm

755–924	nm

925–1,025	nm

First	Derivative 350–499	nm 0.41	(0.02) 0.48	(0.02) 0.41	(0.02)

500–589	nm

590–674	nm

675–754	nm

755–924	nm

925–1,025	nm 0.43	(0.02) 0.40	(0.04) 0.37	(0.04) 0.43	(0.02)

Band	Depth 350–499	nm 0.41	(0.03) 0.43	(0.02)

500–589	nm 0.35	(0.04) 0.35	(0.04) 0.37	(0.04)

590–674	nm 0.43	(0.02) 0.40	(0.03)

675–754	nm

755–924	nm

925–1,025	nm

R2-	value	(p-	value).	Only	relationships	significant	to	p	=	.05	are	included.
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greater	intraspecific	variability	in	chlorophyll	than	in	carotenoids	and	
anthocyanins	 (Table	4);	 however,	 there	 was	 overall	 greater	 inter-
specific	variability	 than	 intraspecific	variability.	Species	were	signifi-
cantly	different	 in	terms	of	all	spectral	pigment	estimates	(Figure	8).	
A. millefolium	 had	 greater	 chlorophyll	 content	 than	 did	 S. orbicula-
tus	 and	S. altissima,	which	 had	 greater	 chlorophyll	 content	 than	 did	
D. glomerata	and	F. rubra. A. millefolium	and	S. orbiculatus	had	greater	
anthocyanin	content	than	S. altissima,	which	had	greater	anthocyanin	
content	than	D. glomerata	and	F. rubra.	In	contrast,	Veres	et	al.	(2006)	
found	 that	Festuca pseudovina	 had	higher	 xanthophyll	 content	 than	
A. millefolium.	In	this	study,	A. millefolium	and	S. orbiculatus	had	greater	
carotenoid	 content	 than	 S. altissima,	 which	 had	 greater	 carotenoid	
content	 than	D. glomerata	 and	F. rubra.	 Similarly,	Veres	et	al.	 (2006)	
found	that	out	of	the	monocots	they	tested,	Festuca pseudovina	had	
the	lowest	carotenoid	content,	and	of	the	dicots	tested,	A. millefolium 
had	the	greatest	carotenoid	content.	Carotenoid	content	and	compo-
sition	of	different	carotenoids	can	vary	by	environment	and	have	high	
interspecific	variation	(Veres	et	al.,	2006).

There	 may	 be	 several	 reasons	 why	 Festuca rubra	 and	 Dactylis 
glomerata	 had	 low	 levels	 of	 photoprotective	 pigments.	Grass	 leaves	
have	high	Si	content,	which	might	help	 them	reflect	UV-	B	 radiation	
and	thus	not	need	as	much	photoprotection	from	pigments	(Deckmyn	
&	 Impens,	 1999).	 Out	 of	 Festuca arundinacea,	 Festuca rubra,	 Lolium 
perenne,	and	Poa pratensis,	Zhang	and	Ervin	(2009)	found	that	F. rubra 
had	the	greatest	tolerance	to	UV-	B.	This	higher	tolerance	may	be	due	
to	 narrower	 leaves	 and	 thick	waxy	 cuticles	 (Zhang	 &	 Ervin,	 2009).	
Narrow	leaves	can	lead	to	a	reduction	in	boundary	layer	growth,	thus	
reducing	 leaf	 temperature	 in	high	 light	 conditions	 (Letts,	 Flannagan,	
Van	Gaalen,	&	Johnson,	2009).	When	treating	F. rubra	and	D. glomer-
ata	with	increasing	levels	of	UV-	B,	Deckmyn	and	Impens	(1999)	found	
that	there	was	an	increase	in	protective	pigments	in	D. glomerata,	but	
not	 in	F. rubra.	This	 implies	that	F. rubra	may	have	a	different	way	of	
dissipating	excess	energy	such	as	antioxidant	activity	and	activation	of	
hormones	that	cue	defense	mechanisms	(Zhang	&	Ervin,	2009).

Another	 reason	 these	 species	 were	 significantly	 different	 from	
each	other	in	terms	of	pigment	levels	may	be	that	they	are	from	dif-
ferent	plant	functional	types	(two	grasses,	two	forbs,	and	one	shrub).	
Forbs	have	lower	foliar	support	costs	than	shrubs,	which	need	to	invest	
more	in	woody	biomass	growth;	therefore,	forbs	may	have	greater	leaf	
dry	mass	per	unit	area	than	do	woody	species	(Niinemets,	2010).	This	
greater	ability	to	invest	in	leaves	may	explain	the	high	chlorophyll	lev-
els	 of	A. millefolium	 compared	with	 those	 of	 S. orbiculatus,	 although	
those	of	S. altissima	were	just	as	low.

These	plants	also	differ	in	shade	tolerance;	S. altissima	is	less	shade	
tolerant	 than	 S. orbiculatus	 and	 A. millefolium,	 which	 are	 less	 shade	
tolerant	 than	D. glomerata	 and	 F. rubra.	 Shade-	tolerant	 species	 usu-
ally	have	 lower	 leaf	dry	mass	per	unit	 area	and	greater	 specific	 leaf	
area	 to	 intercept	more	 light	 in	 the	 shade	 (Niinemets,	 2010).	 These	
leaves	with	 high	 specific	 leaf	 area	 have	 greater	 longevity	 but	 lower	
net	 photosynthesis	 levels	 and	 lower	 photosynthetic	 nitrogen-	use	
efficiency,	because	of	greater	allocation	to	nonphotosynthesizing	cell	
wall	material	and	large	vein	networks	over	photosynthetic	machinery	
(Johnson	&	Tieszen,	 1976;	Niinemets,	 2010).	 In	 this	 study,	 the	 two	

most	 shade-	tolerant	 species	 also	 had	 the	 lowest	 concentrations	 of	
pigments.

For	 these	 pigment	 analyses,	 leaf-	level	 spectra	 were	 used	 to	
examine	 only	 photosynthetic	 tissue	 and	 thus	 get	 a	 more	 accurate	
	representation	 of	 photosynthetic	 machinery.	 However,	 diversity	
	correlations	were	made	using	 spectra	 that	 included	both	photosyn-
thetic	and	structural	elements.	Structural	signatures	are	more	preva-
lent	in	the	shortwave-	infrared	region	than	the	visible	and	near-	infrared	
regions	 (Mahlein,	 2011),	 but	 a	 component	of	 structure	 is	 leaf	 angle	
distribution,	which	 in	turn	affects	signatures	 in	the	visible	and	near-	
infrared	regions.	Thus,	some	of	the	variability	in	the	correlation	analy-
ses	may	be	due	to	the	structural	component	of	species	diversity.	The	
variability	in	pigment	indices	across	species,	combined	with	structural	
variability,	shows	the	utility	of	hyperspectral	data	for	assessing	species	
diversity	across	landscapes.

Overall,	 band	 depths	 of	 visible	 range	 values	 within	 the	 350–
674	nm	region	can	be	used	to	estimate	species	diversity.	This	finding	
of	a	correlation	between	spectral	diversity	and	species	diversity	sup-
ports	prior	research	(Asner	&	Martin,	2011;	Asner	et	al.,	2007,	2009,	
2012;	Carlson	et	al.,	2007;	Feret	&	Asner,	2014;	Rocchini	et	al.,	2010).	
However,	other	methods	of	spectral	transformation	might	need	to	be	
implemented	 to	 use	 the	 near-	infrared	 region	 for	 estimating	 species	
diversity.	Although	there	are	several	methods	at	the	satellite	level	to	
classify	vegetation	and	estimate	diversity,	these	methods	mostly	use	
reflectance	 values.	 This	 research	 examined	 spectral	 transformation	
techniques	at	the	ground	level	to	illustrate	the	benefits	of	using	band	
depth	and	first	derivatives	over	original	reflectance	to	estimate	species	
diversity.	Additionally,	variability	in	the	red-	edge	region	may	be	due	to	
intraspecific	variability	in	chlorophyll	a	and	b	content	rather	than	dif-
ferences	 in	 species	composition.	Species	plasticity	 in	pigment	 levels	
also	needs	to	be	considered	when	analyzing	species	discriminability;	
however,	 this	 difference	 in	 pigment	 levels	 across	 species	 supports	
the	 possibility	 of	 discriminating	 species	 spectrally.	 Species	 discrimi-
nation	and	diversity	estimation	at	the	satellite	level	will	be	challeng-
ing	because	of	more	complex	 landscapes.	One	such	challenge	is	the	
presence	 of	 nonvegetated	 surfaces,	which	 need	 to	 be	masked	 out,	
perhaps	using	a	normalized	difference	vegetation	index	value	thresh-
old.	Another	 challenge	 is	 presented	when	 there	 is	 a	 high	degree	of	
structural	diversity	within	a	single	species,	such	as	with	clonal	plants.	
This	structural	diversity	and	its	effects	on	spectral	diversity	would	be	
useful	 to	understand.	Additionally,	 there	are	 several	 scales	of	diver-
sity;	a	study	of	how	spectral	diversity	captures	alpha	and	beta	diversity	
would	also	be	useful.	This	may	be	possible	with	airborne	and	satellite-	
based	 imagery	 that	 has	 high	 spatial	 and	 at	 least	moderate	 spectral	
resolution.	Soil	signatures	in	areas	with	low	vegetation	may	also	pose	
challenges;	variability	in	spectral	signatures	in	such	areas	may	be	due	
to	differences	in	soil	types,	textures,	and/or	moisture	levels	as	well	as	
differences	in	vegetation.

Despite	these	challenges,	the	ability	to	estimate	species	diversity	
using	 spectral	 diversity	 would	 facilitate	 several	 practical	 tasks.	 For	
example,	 the	 assessment	 of	 spectral	 diversity	 in	 a	 particular	 region	
over	time	could	provide	a	rapid	and	reliable	way	to	estimate	changes	
in	 species	diversity	over	 time.	Thus,	 remote	 sensing	can	be	used	 to	
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estimate	diversity	and	aid	conservation	efforts	at	large	spatial	extents;	
however,	 methods	 used	 to	 estimate	 diversity	 must	 be	 chosen	 and	
interpreted	carefully.

5  | CONCLUSIONS

The	 correlation	 between	 species	 diversity	 and	 spectral	 diversity	
depends	 on	 the	 spectral	 region	 examined	 and	 the	 spectral	 trans-
formation	 technique	 used.	 Using	 band	 depth,	 regression	 analyses	
revealed	 positive	 correlations	 between	 spectral	 diversity	 and	 spe-
cies	diversity	in	the	visible	ranges	of	350–499	nm	(R2	=	.41,	p	=	.03),	
500–589	nm	 (R2	=	.35,	p	=	.04),	 and	 590–674	nm	 (R2	=	.43,	p	=	.02),	
slight	 positive	 correlation	 in	 the	 red-	edge	 range	 of	 675–754	nm	
(R2	=	.26,	p	=	.09),	 and	no	 correlation	 in	 the	 near-	infrared	 ranges	of	
755–924	nm	(R2	=	.012,	p	=	.74)	and	925–1,025	nm	(R2	=	.17,	p	=	.19).	
Using	first	derivatives,	we	found	a	strong	positive	correlation	 in	the	
visible	 range	 of	 350–499	nm	 (R2	=	.41,	p	=	.02),	 but	 no	 correlations	
in	 the	 visible	 ranges	 of	 500–589	nm	 (R2	=	.039,	 p	=	.54)	 and	 590–
674	nm	(R2	=	.0011,	p	=	.92);	we	found	no	correlation	in	the	red-	edge	
region	(R2	=	.15,	p	=	.21)	and	positive	correlations	in	the	near-	infrared	
ranges	of	755–924	nm	(R2	=	.30,	p	=	.06)	and	925–1,025	nm	(R2	=	.43,	
p	=	.02).	The	lack	of	correlation	in	the	visible	region	using	first	deriva-
tives	may	be	because	first	derivatives	exaggerate	spectral	noise	in	the	
visible	region.	The	lack	of	correlation	in	the	near-	infrared	region	using	
band	depth	may	be	because	band	depth	minimizes	variability	 in	the	
near-	infrared	 region,	 thus	 dampening	 interspecific	 differences.	 The	
lack	of	correlation	in	the	red	edge	may	be	partially	due	to	the	greater	
intraspecific	variability	of	chlorophyll	content	over	content	of	other	
pigments.	This	variability	can	be	expressed	in	the	red	trough	region,	
at	the	base	of	the	red	edge,	dampening	interspecific	differences	and	
thus	lessening	the	correlation	between	species	diversity	and	spectral	
diversity.
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