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Abstract

To better understand the distribution of soil microbial communities at multiple spatial scales, a survey was conducted to examine the
spatial organization of community structure in a wheat field in eastern Virginia (USA). Nearly 200 soil samples were collected at a variety
of separation distances ranging from 2.5 cm to 11 m. Whole-community DNA was extracted from each sample, and community structure
was compared using amplified fragment length polymorphism (AFLP) DNA fingerprinting. Relative similarity was calculated between
each pair of samples and compared using geostatistical variogram analysis to study autocorrelation as a function of separation distance.
Spatial autocorrelation was found at scales ranging from 30 cm to more than 6 m, depending on the sampling extent considered. In some
locations, up to four different correlation length scales were detected. The presence of nested scales of variability suggests that the
environmental factors regulating the development of the communities in this soil may operate at different scales. Kriging was used to
generate maps of the spatial organization of communities across the plot, and the results demonstrated that bacterial distributions can be
highly structured, even within a habitat that appears relatively homogeneous at the plot and field scale. Different subsets of the microbial
community were distributed differently across the plot, and this is thought to be due to the variable response of individual populations to
spatial heterogeneity associated with soil properties.
7 2003 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Microorganisms are not distributed uniformly in the
environment, rather their abundance and activity change
along environmental gradients. Even within a homogene-
ous system, biological processes (e.g., growth or colony
formation) may produce aggregations of organisms at var-
ious spatial scales. Soil systems are particularly heteroge-
neous, and this heterogeneity arises as a result of the in-
teraction of a hierarchical series of interrelated variables
that £uctuate at many di¡erent spatial and temporal
scales. The factors that a¡ect microbial survival and com-
munity structure in soils are known to be both biotic (e.g.,
predation and competition) and abiotic (e.g., temperature,

pH, or substrate availability). Some of these processes are
primarily important at microscopic scales (e.g., particle
size and pore space structure), whereas others act over
larger distances (e.g., vegetation cover and precipitation).
These soil properties do not vary independently; rather,
the general perception is that any such variable measured
at a certain point in space and time is the outcome of
several physical, chemical, and biological processes, all
of which are spatially variable.
Given that environmental factors do not necessarily op-

erate independently, or at distinct spatial scales, studying
microbial systems using a single analytical scale cannot
provide a complete understanding of community dynam-
ics. Multi-scale comparisons, in which patterns are ana-
lyzed at several di¡erent spatial scales, may be more useful
when trying to identify the factors that control community
development. Conclusions about the organization of mi-
crobial communities, the e¡ect of disturbance, or the roles
of various limiting factors are likely to di¡er at di¡erent
spatial scales [1]. Moreover, the characterization of micro-
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bial communities at several di¡erent scales may help ex-
plain paradoxes that arise when di¡erent investigators,
studying similar communities but at di¡erent scales, arrive
at di¡erent conclusions about the factors that structure
those communities. These disagreements may re£ect view-
points of di¡erent scales, and not di¡erences in the way
communities are organized [2].
Previous work studying spatial organization in soil mi-

crobial systems has primarily focused on the distribution
of individual cells [3^6], speci¢c types of organisms [7^11],
or collective parameters such as bacterial abundance or
total biomass [12^17]. There are fewer studies that have
considered variations in community structure [15,18^21] or
function/activity [13,22^24]. In general, these studies have
concentrated on understanding spatial variability at a sin-
gle analytical scale, and have found signi¢cant spatial au-
tocorrelation at a variety of separation distances, ranging
from Wm to km depending on the spatial extent studied.
Recently, scientists have begun to focus on multi-scale
comparisons, and have found evidence for nested scales
of spatial structure [18,25^28]. For example, Nunan et
al. [3] studied the spatial distribution of soil bacteria at
three di¡erent scales, ranging from Wm to meters, and
found that the distribution of individual bacterial cells
was organized at two scales in the subsoil, and at a single
scale in the topsoil. Studies conducted in agricultural and
shrub^steppe ecosystems suggest that microbial biomass
and activity may be spatially dependent at scales less
than 1 m, nested within a larger scale related to variations
at the landscape level [14,16,29]. The presence of nested
scales of variation suggests that the various factors regu-
lating the development of microbial communities in the
soil ecosystems may operate at di¡erent scales [27], and
a simultaneous analysis of the multi-scale spatial variabil-
ity of microbial community structure and soil microenvi-
ronment could help identify these factors and determine
their relative in£uence.
The present study was designed to address the general

need for increased research into multi-scale patterns of
spatial organization in soil systems. In particular, the re-
search focused on quantifying the spatial patterns associ-
ated with microbial community structure at the cm to
meter scale using geostatistical techniques. Nested levels
of spatial autocorrelation were observed (ranging from
30 cm to more than 6 m), and, in some locations, up to
four distinct ranges of spatial in£uence were quanti¢ed.

2. Materials and methods

2.1. Site description and sample collection

Soil samples were collected from an agricultural ¢eld on
the eastern shore of Virginia (USA) in May 2000
(37‡17.62PN, 75‡55.53PW). The ¢eld was planted with du-
rum wheat (Triticum turgidum), and the crop was approx-

imately 75 days old on the day of sampling. Samples were
collected with separation distances ranging from 2.5 cm to
11 m, using the sampling scheme detailed below. At each
sampling location, the loose layer of surface material was
removed, and a small hole (1.5 cm diameter) was dug to
collect 5^10 g of soil. The samples were placed on ice for
transport to the lab, where they were sifted (approximately
750-Wm mesh size) to remove gravel, plant, and root ma-
terial, and stored at 380‡C.

2.2. Sampling scheme

The basic sampling design was a square with 7.1-m
edges and 10-m diagonals (Fig. 1). Samples were collected
at regular intervals around the perimeter of the block
(1.8-m separation distance), and at 1-m intervals along
the diagonals. At each node (A, B, C, D, and X), more
concentrated sampling e¡orts were employed.
Nested within the original sampling grid, a second set of

samples were collected at 10-cm increments in a cross
shape surrounding each node. Five samples were collected
in each direction ^ north, south, east, and west ^ from the
center node. Nested within this area, a third set of samples
was collected at 2.5-cm increments around each node, fol-
lowing the same pattern (2.5, 5.0, 7.5, and 10 cm in each
direction). A total of 193 soil samples were collected, 33 at
each node and 28 at larger separation distances.

2.3. DNA extraction and quanti¢cation

Whole-community DNA was extracted from 0.25-g sub-
samples of soil with the MoBio Soil DNA isolation kit
(Solana Beach, CA, USA) using the alternative heat shock
lysis procedure described in the kit documentation. Puri-
¢ed DNA was resuspended in 10 mM Tris bu¡er and
stored at 320‡C. The concentration of DNA in each sam-
ple was determined using the PicoGreen reagent (Molec-
ular Probes, Eugene, OR, USA).

2.4. AFLP

Ampli¢ed fragment length polymorphism (AFLP) anal-
ysis was performed using the Perkin Elmer Microbial Fin-
gerprinting Kit (PE Applied Biosystems, Foster City, CA,
USA). For community analysis, the manufacturer’s in-
structions for analysis of individual bacterial strains were
modi¢ed as described below. For details regarding the
primer and adapter sequences, and an explanation of
primer selection criteria, readers should consult the kit
documentation.
With AFLP, a restriction digest is performed on a DNA

sample (similar to restriction fragment length polymor-
phism (RFLP)), and then a set of primer recognition se-
quences (adapters) is used to amplify the restriction frag-
ments using polymerase chain reaction (PCR) [30]. The
primers and restriction enzymes used are not speci¢c for
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a gene or group of genes, but can, theoretically, interact in
numerous random places throughout a genome. AFLP is
very similar in premise and application to randomly am-
pli¢cation of polymorphic (RAPD) DNA ¢ngerprinting,
which has been used a number of times to compare micro-
bial community structure [31^33] ; the speci¢c use of
AFLP for community analysis is discussed in Franklin et
al. [34]

2.4.1. Restriction/ligation procedure and preselective
ampli¢cation

The restriction and ligation steps of the AFLP reaction
were performed simultaneously by adding 10 ng of DNA,
2 U of MseI, 4 U of EcoRI, and 10 U of T4 DNA ligase
(enzymes purchased from New England Biolabs, Beverly,
MA, USA) to a reaction mixture containing: 1UT4 DNA
ligase bu¡er (50 mM Tris^HCl, 10 mM MgCl2, 10 mM
dithiothreitol, 1 mM ATP, and 25 Wg ml31 bovine serum
albumin (BSA, New England Biolabs)), 0.05 M NaCl, 0.5
Wg BSA, 0.2 WM EcoRI adapter, and 2 WM MseI adapter
(PE Applied Biosystems); the total reaction volume was
11 Wl. The reactions were incubated for 6 h at 37‡C, and
then diluted by adding 189 Wl of TE0:1 bu¡er (20 mM
Tris^HCl, 0.1 mM EDTA, pH 8.0).
Preselective ampli¢cation was performed following the

manufacturer’s protocol, though the PCR mixture was
supplemented with 400 Wg ml31 BSA. Successful ampli¢-
cation was veri¢ed by agarose gel electrophoresis of 10 Wl
of PCR product in a 1.5% agarose gel. The remaining
product from the preselective ampli¢cation (10 Wl) was
then diluted with 190 Wl TE0:1 bu¡er.

2.4.2. Selective ampli¢cation
For the selective ampli¢cation, several di¡erent combi-

nations of primers were tested; in each case, one EcoRI
primer, labeled with a £uorescent dye, was paired with one
MseI primer. However, the AFLP patterns obtained using
the bacterial primer pairs were too complex, and primers
from the AFLP Plant Mapping Kit (PE Applied Biosys-
tems) were also tested. These primers were identical to
those designed for the bacterial samples, but contained
an additional selective nucleotide at the 3P end of the prim-
er. After screening several pairs of primers, two sets were
selected for use in this study; the selection was based on
the number and intensity of the peaks in the ¢nal AFLP
¢ngerprint, as well as the reproducibility of these ¢nger-
prints. The primer pairs used were: EcoRI-ACA (FAM-
labeled) with MseI-CAA, and EcoRI-AAC (NED-labeled)
with MseI-CTC.
Selective ampli¢cation was performed as directed in the

kit documentation, with two modi¢cations. Firstly, the
reaction volume was doubled (20 Wl total), and, secondly,
the PCR reaction mixture was supplemented with 800 Wg
ml31 BSA. Successful ampli¢cation was con¢rmed by aga-
rose gel electrophoresis (8 Wl of PCR product, 1.5% aga-
rose gel). The remaining PCR product was then puri¢ed

using the QIAquick PCR Puri¢cation kit (Qiagen, Valen-
cia, CA, USA). To elute DNA from the QIAquick col-
umn, 20 Wl of elution bu¡er was added to the center of the
membrane, allowed to stand for 1 min, and then centri-
fuged for 1 min at 13 000 rpm in a tabletop microcentri-
fuge.

2.4.3. Electrophoresis and data collection
After puri¢cation, the selective ampli¢cation products

were resolved using an ABI Prism 310 Genetic Analyzer.
For the FAM-labeled products, 10 Wl of PCR product was
mixed with 1 Wl of size standard (GeneScan 500 ROX, PE
Applied Biosystems) and 14 Wl of deionized formamide.
For the NED-labeled products, 1.5 Wl of PCR product
was mixed with 1 Wl of the size standard and 22.5 Wl of
deionized formamide. These mixtures were denatured by
heating to 95‡C for 5 min, and then quick-chilled on ice.
The samples were analyzed with the following electropho-
resis parameters: 10-s injection time, 15-kV injection vol-
tage, 13-kV run voltage, and 30-min run time.
The electropherograms of the AFLP products were an-

alyzed using the Genotyper software (PE Applied Biosys-
tems), and the presence or absence of each peak in each
sample was coded as 1 or 0. The data from the two primer
pairs were pooled into a single large dataset for all further
analyses. Collectively, these primers produced a total of
331 bands, and an individual sample contained between
20 and 210 bands. The average number of bands observed
for an individual sample was 88.
The Jaccard coe⁄cient was used to calculate the relative

similarity between each set of samples, based on the pro-
portion of positive bands shared by a sample pair [35].
The similarity matrix was then converted into a dissimi-
larity matrix by subtracting each value from 1. The dis-
similarity matrix represents the relative di¡erence in mi-
crobial community genetic structure between each pair of
soil samples.

2.5. Geostatistical analyses

In most geostatistical analyses, a variance term (usually
semi-variance) is calculated between each pair of samples
and graphed versus spatial separation to produce a vario-
gram. When the overall spatial structure of a multivariate
dataset is of interest, researchers may generate plots using
a ‘resemblance coe⁄cient’ for the y-axis (e.g., a similarity
or dissimilarity matrix [15,36,37]) or information derived
from a principal components analysis (PCA) [13,18,38,39],
rather than a conventional variance estimate. Since the
AFLP analyses generated multivariate binary data, it
was not possible to calculate semi-variance between sam-
ple pairs ; instead, pseudo-variograms were created using
the ‘relative dissimilarity’ values calculated from the Jac-
card similarity matrix. These pseudo-variograms were con-
structed and analyzed using the same techniques as tradi-
tional variograms.
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2.5.1. Analytical approach
An analytical approach was developed to explore two

distinct aspects of spatial variability in these soil microbial
communities. First, the overall spatial autocorrelation
structure was analyzed in order to quantify the relation-
ship between community variability and spatial separation
(lag distance). Data from all sampling locations were in-
cluded to provide an average portrait of the spatial rela-
tionships in the plot. This system was analyzed multiple
times, changing the size of the observational window, to
study this relationship at di¡erent spatial scales. The sec-
ond portion of the analysis was directed toward trying to
understand any changes in spatial pattern and community
organization associated with di¡erent locations in the
¢eld.
For the ¢rst set of analyses, data from all of the sam-

pling locations were analyzed to obtain an average por-
trait of the spatial relationships in this plot. Subsets of
these data, varying in maximum separation distance,
were then analyzed to quantify autocorrelation at di¡erent
spatial scales. These scales were named based on relative
size, and the following designations were used: plot scale
(all sampling locations), large scale (separation distances
up to 5 m), small scale (up to 1 m), and ¢ne scale (up to
0.4 m). For each of these di¡erent sample groupings, geo-
statistical analyses of the overall di¡erence in community
structure were performed.
For the second set of analyses, local spatial autocorre-

lation was quanti¢ed by analyzing samples from di¡erent
sections of the plot. These results were used to help under-
stand whether the spatial autocorrelation structure was
di¡erent in di¡erent areas of the ¢eld. An analysis of
each scale was performed at each of the ¢ve di¡erent no-
des (A^X, Fig. 1): large scale (all samples located within a
2.5-m radius surrounding each node (maximum separation
distance of 5 m)), small scale (all samples located within a
0.5-m radius), and ¢ne scale (all samples located within a
0.2-m radius).
Lastly, in order to determine whether the pattern of

spatial variability changed with direction in the ¢eld (ani-
sotropy), the data were also grouped into two additional
categories. The ‘north^south’ (N/S) analysis included all of
the samples collected along the axis between nodes B and
D, and the ‘east^west’ (E/W) analysis included all of those
points along the line between nodes A and C.

2.5.2. Guidelines used in variogram construction
Prior to constructing each variogram, it was ¢rst neces-

sary to segregate the data into distance classes by calcu-
lating the appropriate number of bins and the appropriate
bin width (lag distance). The purpose of ‘binning’ the data
was to obtain the maximum resolution (the most detail) at
small distances, without being misled by structural arti-
facts resulting from whatever particular size class was
chosen. This approach allowed us to quantify the domi-
nant spatial pattern at each scale, but obscured the auto-

correlation structure at smaller distances. For each analy-
sis, lag distance was calculated by considering the
maximum separation distance between sample pairs, as
discussed in Franklin et al. [15]. Several variograms were
then produced and modeled, for a range of di¡erent lag
distances surrounding this initial estimate, and the results
with the best ¢t (highest R2), the most reasonable param-
eter estimates, and the maximum detail are presented
here.
One problem with using equal distance classes to con-

struct a variogram is that the number of points in some
bins may be quite small (especially bins at the far right of
the variogram), so the average associated with one of these
classes may not be a valid estimate of the mean at that
distance. To help avoid this problem, all bins that con-
tained fewer than 1% of the total number of points (pair-
wise comparisons) in each analysis were removed from the
experimental variograms prior to statistical modeling.

2.5.3. Modeling the experimental variograms
In general, variograms may take one of three di¡erent

forms: nugget (sometimes called ‘nugget e¡ect’), linear,
and linear-sill. A variogram that is categorized with a
nugget model is £at, indicating a lack of spatial structure
in the data at the scales measured. A variogram that dis-
plays a linear pattern represents a system where samples
are autocorrelated at all of the separation distances mea-
sured, and may be modeled with a linear equation:
y=C0+bx, where y is the variance term (in this case, dis-
similarity in genetic community structure), x is the spatial
separation distance, C0 is the y-intercept, and b is the
slope of the variogram model. Most of the time, these
variograms do not pass though the origin of the graph,
but display some variability even at separation distances
of zero; this value, C0, is also referred to as ‘nugget’ be-
cause it represents the variability in the data that cannot
be modeled using the spatial autocorrelation function.
This phenomenon may occur because of random sampling
variance, experimental error, or variability at other spatial
scales.
A linear-sill model is a general term used to describe

variograms that display increasing variance with increas-
ing separation (conceptually similar to the linear model),
and then level o¡ at a sill. In our study, all variograms
displaying this pattern were modeling using the exponen-
tial equation:

y ¼ C0 þ C1 13exp 33
x
a

� �h i

where y is the variance term, and x is the spatial separa-
tion distance. C0 is a parameter quantifying the nugget
e¡ect (the amount of variability at distance = 0), C1 is a
spatially structured component of the model, and a is the
range (the distance beyond which variance is no longer a
function of spatial separation). The range is sometimes
referred to as the correlation length scale (CLS). In the
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exponential model, the (semi-)variogram approaches its
maximum asymptotically, and the range is therefore de-
¢ned as the distance where the (semi-)variance equals 95%
of the sill. The sill (C) is the y value at which the vario-
gram levels o¡, and can be calculated as: C=C0+C1. The
ratio of the spatially structured component of the model
to the total variability captured by the model (C1/C) rep-
resents the proportion of variability in the dataset that was
modeled by the autocorrelation structure function, and is
commonly referred to as spatial dependence. This value
approaches 1 in a strongly spatially structured system,
and 0 when no spatial structure is detected with the sam-
pling scale used.
Each of our experimental variograms was modeled us-

ing either a linear or an exponential equation. All regres-
sions were performed in SigmaPlot (Version 5.0) and R2

was used to measure the ¢t of the model to the data;
P values less than 0.05 were considered statistically signi¢-
cant. From the model, C0, C1, and a were estimated, and
the sill (C) and spatial dependence (C1/C) were calculated.
Situations in which a linear or exponential model could
not be successfully applied (Ps 0.05) were categorized as
‘nugget’.

2.5.4. Kriging
Kriging is a family of generalized least-squares regres-

sion algorithms that may be used to estimate the values of
a given parameter at unsampled locations, by considering
the spatial autocorrelation structure of the variable as de-
termined for the sampled locations. In the variogram anal-
yses discussed above, we used the similarity matrix to de-
scribe the overall relationship between samples, and
determined the autocorrelation associated with variation
in the composition of the entire community. However, it
was not possible for us to generate maps using the sim-
ilarity matrix (we cannot plot paired values across all lo-
cations) or to use the original data matrix (1s and 0s) in
the kriging. Instead, a PCA was performed on the original
data in order to generate numerical values describing com-
munity structure at each sampling location. The ¢rst three
principal components (PCs) were used in the kriging, and
each describes a portion of the variability in microbial
community structure.
A separate geostatistical semi-variogram analysis was

performed on each of the ¢rst three PCs to quantitatively
describe the spatial autocorrelation structure for each PC.
This information was then used in the kriging to generate
maps of the PC scores with the SADA statistical package
(Spatial Analysis and Decision Assistance, Version 3.0.80,
University of Tennessee). This approach was also used to
generate maps of microbial community structure along
each of the main axes of the sampling grid (N/S and
E/W, as analyzed in the directional analysis). In this
case, maps were only produced for the ¢rst PC.

(A) Entire plot

10 mA

North

D

B

XC

(B) First nested sampling

1 mAE-5AW-5

AN-5

AS-5

A
AS-1

(C) Second nested sampling

0.2 mAAW-1 AE-1

AN-1

AS-1
Fig. 1. Map of the sampling scheme. A: The sampling area was a 50-
m2 square (diamond) with 10-m diagonals. Around the perimeter of the
square, samples were collected at 1.8-m increments, and at 1-m incre-
ments along the diagonals. At each node (A^X), more concentrated
sampling e¡orts were employed. A nested sampling pattern was applied
at each location, and node A is presented in the ¢gure as an example.
Additional samples were collected at 10-cm increments (B) and 2.5-cm
increments (C) in a cross shape surrounding each node
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3. Results

3.1. Quantifying multiple scales of spatial autocorrelation
within the plot

In the ¢rst set of analyses, data from all of the sampling
locations were considered in order to obtain an average
portrait of the spatial relationships in the plot (Fig. 2). For
the plot-scale analysis, a bin size of 0.5 m was used, and
the number of points included in each bin varied from a
minimum of approximately 100, for very large separation
distances (s 10.5 m), to more than 3000 points for inter-
mediate separation distances. On average, each point on
the variogram is the mean of approximately 800 pairwise
comparisons. The points on the variogram that were aver-
ages of a small number of comparisons (6 1%) were ex-
cluded from the graph and the geostatistical modeling. A
similar approach was used for the large- (Fig. 2B), small-
(Fig. 2C), and ¢ne-scale analyses (Fig. 2D), where 8288,
2860, and 1670 pairwise comparisons were used, respec-
tively.
Signi¢cant spatial autocorrelation was detected at each

analytical scale (Table 1), and could be modeled using
either the exponential (plot and large scale) or linear equa-
tions (small and ¢ne scale). The plot-scale analysis showed
that the overall spatial pattern was organized with a range

of 6.3 m at this site, and the large-scale analysis showed
another level of organization with a range of 2.0 m. The
small- and ¢ne-scale analyses displayed spatial autocorre-
lation, but range estimates could not be made because a
sill was not reached within either analytical extent.
Because of the techniques and conventions used to con-

struct these variograms, the smaller-scale autocorrelation
structure of these communities was usually not visible in
the variograms constructed for larger spatial extents. For
example, in the plot-scale analysis, the data were binned
with a lag distance of 0.5 m; this action made it impossible
to detect the autocorrelation structure at the ¢ne and
small scales (less than 1 m). Similarly, the resolution asso-
ciated with this bin size was not su⁄cient to allow us to
accurately model spatial autocorrelation at the large scale.
In order to study the autocorrelation structure at these
other spatial scales, only the relevant sections of the vario-
gram were considered. It is generally acceptable to analyze
subsets of a variogram in this way, so long as there are
enough data. A geostatistical ‘rule of thumb’ suggests that
each distance class should contain at least 30 pairs of
points ; however, the greater the number of points, the
greater the statistical reliability [40]. This guideline was
far exceeded in all analyses, except the ¢ne-scale analysis
for the individual nodes, which only included 21 sampling
locations.
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Fig. 2. Variograms used to model the overall spatial autocorrelation structure at each analytical scale. Data from all of the sampling locations were in-
cluded to obtain an average portrait of the spatial relationships in the plot. A: Plot scale, all sampling locations. B: Large scale, separation distances
less than 5 m. C: Small scale, separation distances less than 1 m. D: Fine scale, separation distances less than 0.4 m.
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3.2. Comparing patterns of spatial autocorrelation in
di¡erent regions of the ¢eld

When the data from the di¡erent regions of the plot
were analyzed separately, using each node (A^X) as a
center point, other CLSs were detected (Table 1). For
each scale and each sampling location, variograms were
constructed using either 741, 528, or 210 pairwise compar-
isons (per node) for the large-, small-, and ¢ne-scale anal-
yses, respectively. In general, each dataset displayed an
obvious linear or linear-sill pattern, and the appropriate
model was applied. However, in a few cases, when visual
interpretation of the data was unclear, it was necessary to
¢t the variogram with both a linear and an exponential
equation, and use statistical criteria (R2 and P value) to
determine the most appropriate model.
For any given scale of analysis, the results for the di¡er-

ent nodes were usually similar (Table 1). At the large scale,
spatial autocorrelation was modeled at four of the ¢ve
nodes, using an exponential equation; range estimates var-
ied between 1.3 and 3.3 m, and the average of the di¡erent
estimates was 2.0 m. For the small scale, signi¢cant mod-
els of spatial autocorrelation were only determined at two

of the nodes, which produced identical range estimates of
0.6 m. At the ¢ne scale, the exponential model was applied
to node B, and the range estimate was 0.3 m. At nodes C,
D, and X, a linear model was appropriate, and indicated
that the communities are spatially autocorrelated with a
range greater that 0.4 m, which was the maximum sepa-
ration distance used at that level of analysis.
In general, the results for the di¡erent sampling loca-

tions (nodes) were similar, though each node displayed a
unique multi-scale pattern of organization (Table 1). The
same patterns of spatial organization were found at nodes
D and X (identical CLSs for each scale), and the patterns
observed at nodes B and C were very similar. At node A,
spatial autocorrelation was not detected for any of the
analytical scales.

3.3. Directional variograms

In order to determine whether the pattern of spatial
variability changed with direction in the ¢eld, the data
were also analyzed along each axis of the sampling grid.
For the E/W transect, the variogram could be modeled
using a linear equation (Table 2, Fig. 3B). For the N/S

Table 1
Summary of results from geostatistical analyses of community structural similarity (AFLP pro¢les)

Scale and extent Node Model type R2 P Nugget Sill Spatial dependence Range (m)

Plot (0.025^11 m) Entire plot Exponential 0.67 0.001 0.68 0.80 0.14 6.3
Large (0.025^5 m) Entire plot Exponential 0.70 6 0.0001 0.66 0.78 0.15 2.0

A Nugget 0.72
B Exponential 0.74 0.002 0.67 0.80 0.16 1.3
C Exponential 0.93 6 0.0001 0.63 0.76 0.17 3.3
D Exponential 0.93 6 0.0001 0.65 0.83 0.21 1.9
X Exponential 0.96 0.002 0.56 0.82 0.32 1.8

Small (0.025^1 m) Entire plot Linear 0.83 6 0.0001 0.66 s 1.0
A Nugget 0.73
B Exponential 0.92 0.006 0.66 0.76 0.12 0.6
C Exponential 0.63 0.03 0.60 0.70 0.15 0.6
D Nugget 0.73
X Nugget 0.65

Fine (0.025^0.4 m) Entire plot Linear 0.52 0.0034 0.67 s 0.4
A Nugget 0.73
B Exponential 0.50 0.03 0.66 0.72 0.09 0.3
C Linear 0.76 0.01 0.61 s 0.4
D Linear 0.65 0.05 0.72 s 0.4
X Linear 0.45 0.009 0.60 s 0.4

Table 2
Summary of results of the geostatistical analyses of the directional variograms

Direction Portion of variogram modeled Model type R2 P Nugget Sill Spatial dependence Range (m)

North^southa

Section 1 0^4 m Exponential 0.92 6 0.0001 0.65 0.84 0.23 1.8
Section 2 5^11 m Exponential 0.64 0.01 0.68 0.84 0.18 1.8
East^westb

Entire length 0^11 m Linear 0.72 6 0.0001 0.69 ^ ^ s 11.0

aNorth^south refers to all points along the line from node B to node D.
bEast^west refers to all points along the line from node A to node C.
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transect, multiple scales of spatial autocorrelation were
observed within a single variogram (Fig. 3A); the vario-
gram was divided into two regions, which were analyzed
separately to estimate the range and spatial dependence
using an exponential model (Table 2). A repeating pattern
was evident, and each of the patches had a CLS of 1.8 m
beyond the minimum (nugget) value. The nugget (section
1: 0.65, section 2: 0.68) and sill values (both are 0.84) for
the two patches were identical, suggesting that the same
amount of total variability was associated with each patch.

3.4. Kriging

Kriging was used to generate maps of the spatial distri-
bution of microbial community structure for the entire
plot (Fig. 4), and for each axis in the directional analyses
(Fig. 5). First, the AFLP pro¢les were analyzed using
PCA, and the sample scores from the ¢rst three PCs
were used as derived variables in the geostatistical model-
ing (results not shown). Three separate maps were gener-
ated at the plot scale, one based on each PC. Together,
these components explained 26.4% of the variance in mi-
crobial community structure (PC1: 12.6%, PC2: 8.3%,
PC3: 5.5%). For each directional analysis, an additional
PCA was performed using data from only the respective
sampling locations. The ¢rst PC from each analysis was
then used to generate a map of microbial community

structure along each axis using ordinary kriging. The ¢rst
PC explained 18% of the variance among the samples
located along the N/S axis, and 15% of the variance
among the samples located along the E/W axis.

4. Discussion

In order to more fully characterize the spatial variability
of microbial systems, studies that make use of several dif-
ferent scales of measurement are necessary. In this re-
search, multi-scale analysis of the spatial distribution of
a soil microbial community revealed several di¡erent
scales of organization, ranging from 30 cm to more than
6 m. In some locations, it was possible to identify and
quantify up to four di¡erent CLSs. The patch size esti-
mates varied some at the di¡erent sampling locations
across the plot (di¡erent nodes) indicating that the pat-
terns of spatial organization at a particular level (spatial
scale) are not necessarily ¢xed across this system.
When the multi-scale approach was applied to analyze

the entire plot, two distinct scales of organization were
detected (large scale: 2.0 m, plot scale : 6.3 m). Multiple
scales of spatial organization were also visible on the
kriged maps, and each map showed a di¡erent spatial
pattern (Fig. 4). The PCA used in the construction of
these maps reduced the complex AFLP ¢ngerprints into
a set of derived variables, each of which explains a portion
of the pattern present in the AFLP data. In this way, each
PC describes a di¡erent aspect of the variability among the
microbial communities, and the kriging results indicate
that those distinct aspects have di¡erent patterns of spatial
organization. These distinct patterns may develop as sep-
arate populations or groups of organisms respond to the
spatial distribution of di¡erent environmental variables.
The map generated for the ¢rst PC shows a patchy

structure organized around the center of the plot (node
X). The patch in the center of the plot has a diameter of
approximately 1.5^2 m, the CLS detected in the large-scale
variogram analysis, and the next surrounding ring has a
diameter of 5^6 m, which corresponds well to the CLS
detected at the plot scale. One possible explanation for
this bull’s-eye pattern is that some aspect of the environ-
ment at the center of the plot is unique (e.g., a di¡erent
vegetation patch, a hill or mound, or a large application of
fertilizer), and the map shows the variation in community
structure along a gradient away from this aberration. In
contrast, the maps generated from the second and third
PCs reveal a very di¡erent spatial pattern. The portion of
the communities represented on these maps may be re-
sponding to a suite of variables that are spatially struc-
tured as a gradient extending from the NE corner to the
SW corner of the plot.
In addition to quantifying the overall pattern of spatial

organization in this system, our study was designed to
evaluate how variable the autocorrelation structure was
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Fig. 3. ‘Directional variograms’ used to model the overall spatial auto-
correlation structure along each axis of the sampling grid.

FEMSEC 1510 28-4-03

R.B. Franklin, A.L. Mills / FEMS Microbiology Ecology 44 (2003) 335^346342



in di¡erent locations. In general, the results for the di¡er-
ent sampling locations (nodes) were similar and multiple
CLSs were detected, though spatial autocorrelation was
not detected at node A. The samples collected at this lo-
cation contained an unusually large amount of plant and
root material, which should have been removed by sieving,
but could have contaminated the DNA extracts. However,
given that the AFLP pro¢les for node A are not signi¢-
cantly di¡erent from those obtained at other locations, we
feel this is unlikely. Instead, these results may be corre-
lated with some environmental heterogeneity that altered
the spatial organization, but not the overall composition,
of the communities in this region of the ¢eld.
Spatial dependence is the percent of total model var-

iance that is explained by the spatial autocorrelation func-
tion. When this value is low (all variance in nugget), it
indicates that most of the spatial dependence occurs at
distances greater or smaller than the scale of study, or
that the measurement error associated with the analysis
is high [41]. In the present study, the spatial dependence
for any single location (node) or particular analytical scale
ranged from 0.09 to 0.32. These values are consistent with
other studies considering community structure [15,19]. For

example, when Saetre and Bafiafith [18] performed a geosta-
tistical analysis of the overall microbial community struc-
ture in a forest soil (using phospholipid fatty acid pro¢ling
(PLFA), the spatial dependence varied between 0.12 and
0.25 for an analytical scale of 0.2^20 m. The values dis-
cussed above refer to the spatial dependence for the anal-
ysis of a single spatial scale. However, if the spatial de-
pendence in the present study is summed across each of
the four analytical scales (either for each node, or for the
entire plot), the total estimate increases to between 0.35
and 0.45.
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Communities at this site are expected to display addi-
tional spatial structure at scales larger than the maximum
separation distance used (11 m) and at distances smaller
than the minimum sampling interval (2.5 cm). In this
study, it would have been useful to analyze multiple sub-
samples from each ¢eld sample to determine the variability
within a sampling unit. This would have provided addi-
tional information regarding community variability at
small spatial scales, and would have functionally repre-
sented a separation distance of zero. Unfortunately, in-
creasing the number of analyses was not feasible for this
study. Recently, EllingsWe and Johnsen [42] considered the
in£uence of soil sample size on the analysis of bacterial
community structure (using denaturing gradient gel elec-
trophoresis (DGGE)), and found that sample size did in-
£uence their assessment of community structure for small-
er sample sizes (0.01 and 0.1 g of soil), but less so for
larger sample sizes (1.0 and 10.0 g). In our study, each
DNA extraction was performed on a single 0.25-g subsam-
ple, which may not have been su⁄cient to completely cat-
egorize the community variability of each ¢eld sample (5^
10 g).
In the directional analyses, the variograms (Fig. 3)

matched up very well with the kriged maps generated
from the PC scores (Fig. 5). In the E/W variogram, a
linear pattern was observed; communities that were near-
by along this axis were more similar to one another than
they were to communities at greater separation distances,
though all samples along the transect were spatially auto-
correlated. On the map, patches/communities that are
nearby have similar PC scores (more similar grayscale val-
ues), but there is very little repetition of an individual
community ‘type’. There is a general gradient along the
axis that corresponds to the gradient observed in the maps
for the entire plot (Fig. 4), and it is likely that the same
environmental factors are correlated/responsible for this
pattern in both situations.
Along the N/S axis, two types of communities dominate

on the map of community structure (Fig. 5). The patch
size for these communities is about 2 m, which is the CLS
calculated from the nested variogram (Fig. 3). It is impor-
tant to note that, though the kriged map shows only two
dominate communities, with PC scores ranging from 31.5
to 30.5, a frequency histogram of the entire set of PC
scores showed a normal distribution with values ranging
from 31.5 to 2.5 (results not presented). The presence of a
regular and repeating spatial pattern along this axis sug-
gests that the microbial communities may be partially
structured in response to some agricultural or land man-
agement activity that occurs at ¢xed intervals in the ¢eld.
For example, it has been suggested that spatial structure
may exist in agricultural soils in association with crop
rows and aisles [16,25,43], and compaction due to wheel
tra⁄c may impact microbial activity [44] ; however, we feel
that the CLS of 2 m is too large to correspond with these
particular features.

Often, when scientists research and discuss the existence
of multiple scales of spatial organization in microbial sys-
tems, they are referring to the presence of patterns over a
very wide range. For example, Parkin [44] discussed four
main scales of interest: microscale, plot scale, ¢eld or
landscape scale, and regional scale, and Ettema and War-
dle [25] primarily focused their recent review on the dis-
tribution of soil properties and biota in distance classes of
tens to hundreds of meters, cm to meters, and at micro-
scopic scales. The research presented here demonstrates
that a single variable can manifest an incredible amount
of spatial structure, at multiple scales, within these broad
classi¢cations. For example, at node B, four di¡erent
CLSs were detected: 30 cm, 60 cm, 1.3 m, and 6.3 m.
This is a remarkable degree of spatial variability for a
pedagogically homogeneous site that has been plowed
and cropped as a single ¢eld for several years. Variability
such as this is likely to exist in most ecosystems, and
should be considered when making inferences about eco-
logical relationships and when developing sampling strat-
egies [16].
While many ecological theories and models acknowl-

edge that elements that are close to one another in space
or time are more likely to be in£uenced by the same gen-
erating processes, the classical statistical procedures em-
ployed to analyze these phenomena assume an indepen-
dence of observations. Violations of the assumption of
independence and inappropriate application of these sta-
tistical procedures to spatially autocorrelated data may
lead to incorrect conclusions [45^47]. For example, Frank-
lin et al. [15] found that estimates of microbial abundance
obtained using spatially autocorrelated data were signi¢-
cantly di¡erent from those obtained using independent
samples. The varying degrees of autocorrelation shown
in the present study emphasize that sampling approaches
and experimental designs may need to consider the impact
of spatial autocorrelation, depending on the ecological
question of interest. Because it is not always feasible to
¢rst do an extensive reconnaissance survey, and because
the results presented here suggest that one is not likely to
avoid the impact of spatial autocorrelation, a possible so-
lution is to include spatial separation as a part of routine
data collection. An initial analysis of this information can
then be used to determine the in£uence of spatial autocor-
relation on the dataset. If signi¢cant spatial structure is
found, this information must be considered as a variable
and incorporated into the subsequent data analysis; if not,
traditional parametric statistical techniques may be appro-
priate.
Most of the previous work examining spatial variability

in agricultural systems has been performed by soil scien-
tists who were interested in understanding the distribution
of physical and chemical properties in order to assess soil
quality or determine the impact of land management prac-
tices [16,26,48^50]. These studies have shown that spatial
autocorrelation is a common feature of these systems. The
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spatial variability associated with microbial communities
is less frequently studied [16,23,49], and, in general, e¡orts
to link agricultural soil properties and microbiological
properties have been unsuccessful. To our knowledge,
the work presented here is one of the ¢rst studies of spatial
organization of community structure in this type of envi-
ronment, and is unique in its consideration of multiple
scales of autocorrelation. The results indicate that micro-
bial communities may have several nested levels of orga-
nization, even within the cm- to meter-scale analysis. Dif-
ferent subsets of the community were distributed
di¡erently across the plot, and this is thought to be due
to the variable response of individual populations to the
spatial heterogeneity associated with di¡erent soil proper-
ties (or groups of properties). Future studies that focus on
comparing the spatial structure of microbial communities
with that of environmental properties may yield new in-
sights into how communities develop in soil systems, and
what factors may be important in maintaining and regu-
lating soil ecosystem function.
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