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Abstract. In 2010, G.-N. Han obtained the generating function for the number of size t hooks
among integer partitions. Here we obtain these generating functions for self-conjugate partitions,
which are particularly elegant for even t. If nt(λ) is the number of size t hooks in a partition λ
and SC denotes the set of self-conjugate partitions, then for even t we have∑

λ∈SC

xnt(λ)q|λ| = (−q; q2)∞ · ((1− x2)q2t; q2t)
t
2∞.

As a consequence, if a?t (n) is the number of such hooks among the self-conjugate partitions of n,
then for even t we obtain the simple formula

a?t (n) = t
∑
j≥1

q?(n− 2tj),

where q?(m) is the number of partitions of m into distinct odd parts. As a corollary, we find
that t | a?t (n), which confirms a conjecture of Ballantine, Burson, Craig, Folsom and Wen.

1. Introduction and Statement of Results

Integer partitions play many roles in mathematics. They are fundamental objects in combina-
torics, geometry, mathematical physics, number theory, and representation theory. In particular,
Young diagrams (a.k.a. Ferrers graphs) of partitions and their hook lengths are prominent. For
example, they arise in the study of class numbers of imaginary quadratic fields [10], the Seiberg-
Witten theory of random partitions developed by Nekrasov and Okounkov [9], Ramanujan’s
partition congruences [5], and the representation theory of the symmetric group [7], to name a
few applications. In this note, we fill a gap in the literature by counting the number of size t
hooks in self-conjugate partitions. As a consequence, we prove a recent conjecture about the
congruence properties of these numbers.

To make this precise, we recall the fundamental definitions (for example, see [1]). A non-
increasing sequence of natural numbers λ = (λ1, λ2, . . . , λ`) is called a partition of n, denoted
λ ` n, where λ1 through λ` are called its parts, provided these add up to n. Let |λ| :=

∑
λi

denote its size. Partitions are represented by Young diagrams, where the parts are arranged in
left-justified rows. The conjugate of a partition λ, denoted by λ′, is associated to the Young
diagram obtained by reflecting the diagram for λ across the main diagonal. We say that λ is
self-conjugate if λ = λ′. Here we study SC, the set of all self-conjugate partitions.

For a given partition λ, a cell at (i, j) in the Young diagram of λ is the box in the ith-row
from the top and the jth-column from the left. The hook of a cell at (i, j) contains the boxes at
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{(k, j) : k ≥ i} ∪ {(i, k) : k ≥ j}. The hook length h of a box at (i, j) is the number of boxes
directly to the right and directly below the box, plus 1 for the box itself. We denote the multiset
of hook lengths by H(λ).

We are interested in the partition statistic

(1.1) nt(λ) := #{h ∈ H(λ) : h = t},

the number of length t hooks in a partition λ. For the set of all integer partitions P , Han (see
Thm. 1.4 of [6]) obtained the bivariate generating function for nt(λ) as an infinite product:∑

λ∈P

xnt(λ) q|λ| =
∏
k≥1

(1 + (x− 1)qtk)t

1− qk
=

((1− x)qt; qt)t∞
(q; q)∞

,(1.2)

where we have used the q-Pochhammer symbol

(1.3) (a; q)n :=


1 if n = 0,

(1− a)(1− aq) · · · (1− aqn−1) if n ∈ Z+,∏∞
j=0(1− aqj) if n = +∞.

Here we obtain the corresponding generating functions for the set of self-conjugate partitions SC.

Theorem 1.1. The following are true.
(1) If t is even, then we have∑

λ∈SC

xnt(λ) q|λ| = (−q; q2)∞ · ((1− x2)q2t; q2t)
t
2∞.

(2) If t is odd, then we have∑
λ∈SC

xnt(λ) q|λ| = (−q; q2)∞ ·H?(x; qt) · ((1− x2)q2t; q2t)
t−1
2∞ ,

where H?(x; q) is defined in (3.1).

Remark. The q-series H?(x; q) is derived from the generating function for the number of 1-hooks
in self-conjugate partitions by the formula

(1.4) H?(x; q) :=
1

(−q; q2)∞
·
∑
λ∈SC

xn1(λ)q|λ|.

The formula in (3.1) uses Theorem 3.1 (2), which offers an explicit expression for the inner sum.

Motivated by work of Ballantine, Burson, Craig, Folsom and Wen [3] and Craig, Dawsey and
Han [4], we study

(1.5) a?t (n) :=
∑
λ∈SC
λ`n

nt(λ),

the number of size t hook lengths in the self-conjugate partitions of n. We obtain the generating
function for a?t (n), which gives formulas in terms of sc(m), the number of self-conjugate partitions
of m (resp. q?(m), the number of partitions of m into distinct odd parts).
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Theorem 1.2. The following are true.
(1) If t is even, then we have ∑

n≥1

a?t (n) qn = t · q
2t · (−q; q2)∞

1− q2t
.

Furthermore, we have

a?t (n) = t
∑
j≥1

sc(n− 2tj) = t
∑
j≥1

q?(n− 2tj).

(2) If t is odd, then we have∑
n≥1

a?t (n) qn =
qt(1 + (t− 1)qt + tq2t)

(1− q2t)(1 + qt)
· (−q; q2)∞.

Furthermore, we have

a?t (n) =
∑
j≥1

(
(−1)j−1j · sc(n− tj) + t · sc(n− 2tj)

)
=
∑
j≥1

(
(−1)j−1j · q?(n− tj) + t · q?(n− 2tj)

)
.

Example. Figure 1 gives the self-conjugate partitions of 16, and Table 1 lists the values of a?t (16).

Figure 1. Hook lengths of the self-conjugate partitions of 16

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ≥ 16
a?t (16) 14 14 12 12 8 6 2 8 1 0 1 0 1 0 1 0

Table 1. Values of a?t (16)

The first few terms of the generating function for sc(n) and q?(n) are:
∞∑
n=0

q?(n)qn =
∞∑
n=0

sc(n)qn =
∞∏
n=0

(1 + q2n+1)

= 1 + q + q3 + q4 + q5 + q6 + q7 + 2q8 + 2q9 + 2q10 + 2q11 + 3q12 + · · · .
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Using these terms, we illustrate Theorem 1.2 (1) with the identities:

a?2(16) = 2 (q?(16− 4) + q?(16− 8) + q?(16− 12) + q?(0)) = 14,

a?4(16) = 4 (q?(16− 8) + q?(16− 16)) = 12,

a?6(16) = 6q?(16− 12) = 6,

a?8(16) = 8q?(16− 16) = 8.

Ballantine, Burson, Craig, Folsom and Wen made three conjectures [3] (also see the last section
of [4]) about a?t (n). One of these conjectures concerns the divisibility properties of a?t (n), which
is illustrated in the above example.

Conjecture (BBCFW). For all integers n ≥ 0 and m ≥ 1, we have

a?2m(n) ≡ 0 (mod 2m).

By letting t = 2m in Theorem 1.2 (1), we immediately obtain the following result.

Corollary 1.3. The BBCFW Conjecture is true.

To prove these results, we make use of the classical Littlewood bijective decomposition which
associates a t-core partition and a t-quotient to every partition λ ∈ P . More precisely, we use
Pétréolle’s [11] work on the restriction of these bijections to self-conjugate partitions. We recall
some of his work in Section 2. In Section 3, we recall some classical partition generating functions,
and we obtain two formulas for the 1-hook generating function (see Theorem 3.1)∑

λ∈SC

xn1(λ)q|λ|.

We then combine these results with the restricted Littlewood decomposition to prove Theorems 1.1
and 1.2.
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2. The refined Littlewood decomposition

The Littlewood partition bijections [8], one for every positive integer t, are fundamental
combinatorial tools in the representation theory of the symmetric group. Given t, the bijection
associates partitions of n to a pair consisting of a t-core and a t-quotient. The combinatorics
of these bijections underly many important generating functions (for example, see [5, 6, 7]).
In an analogous way, the results we obtain are based on the restriction of these bijections to
self-conjugate partitions.

To make this precise, suppose that t is a fixed positive integer. We say that a partition is a
t-core if none of its hook lengths equal t (equivalently, none are multiples of t). Given a subset of
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partitions A, write At for those members that are t-cores. Denote the multiset of hook lengths
that are multiples of t by Ht(λ).

The Littlewood bijection φt (see [7, Thm. 2.7.30]) associates to every partition λ ∈ P a t-core
ω ∈ Pt and a t-quotient (ν(0), ν(1), . . . , ν(t−1)) ∈ P t. This bijection φt : P → Pt×P t is defined by

(2.1) φt(λ) := (ω; ν(0), . . . , ν(t−1)),

where |λ| = |ω|+ t
∑t−1

i=0 |ν(i)|. We briefly recall its construction.
Let B be the set of all bi-infinite binary sequences beginning with (resp. ending with) 0’s (resp.

1’s). We denote c ∈ B by a sequence (ci)i∈Z = · · · c−2c−1c0c1c2 · · · , although such a representation
is not unique (for example, simple shifts work). The canonical representation of c is indexed by
choosing c0 so that

#{i ≤ −1 : ci = 1} = #{i ≥ 0 : ci = 0}.
We place a dot “.” between c−1 and c0 for notational convenience.

This set of bi-infinite sequences B is a convenient tool for representing partitions. To be precise,
let λ be a partition with Young diagram Y. The boundary of Y consists of a vertical line on the
left, which captures the number of parts, and a horizontal line at the top, which gives the size of
the largest part λ1. We focus on the remaining piece, the right hand boundary, which generally
has the shape of a “staircase” (a.k.a. “rim”). We mark each horizontal edge (resp. each vertical
edge) by a 1 (resp. by at 0). The resulting sequence of digits obtained by traversing the rim
from the bottom to the top is a binary word u. By appending 0’s (resp. 1’s) to u, we obtain an
element cλ ∈ B. Obviously, this defines a bijection ϕ : P 7→ B.

We refine ϕ to obtain each Littlewood bijection φt. Given t, one views cλ = (ci)i∈Z as t many
interlaced subsequences dictated by the residue classes of the indices modulo t. Namely, one
forms the subsequences b(k) := (cit+k)i∈Z for 0 ≤ k ≤ t− 1. The inverse image ϕ−1(b(k)) gives a
partition ν(k), and the collection of these inverse images for 0 ≤ k ≤ t − 1 defines a vector of
partitions that we call the t-quotient of λ. This is the second component of φt(λ) in (2.1).

To construct the first entry of φt(λ), the t-core, for each 0 ≤ k ≤ t−1, we replace each subword
10 with 01 in b(k) while reading from left to right. We continue until we obtain · · · 000111 · · · ,
which we denote by r(k). As above, we view the r(k) as subsequences of a uniquely determined
r ∈ B, and we let ω := ϕ−1(r). There are two major features of this construction. It turns out
that ω is always a t-core partition, and that φt as given in (2.1) is a bijection.

In his thesis, Pétréolle studied the restriction of the φt to self-conjugate partitions. Here we
recall one of his main results [11, Thm. 2.1] (see also [5], [12]) which refines Littlewood’s bijection
to the setting of self-conjugate partitions.

Theorem 2.1. Let t be a positive integer. The Littlewood decomposition φt maps a self-conjugate
partition λ to (ω; ν(0), . . . , ν(t−1)) := (ω; ν) such that the following are true.

(SC1) We have that ω ∈ SCt is a t-core and (ν(0), . . . , ν(t−1)) are partitions.
(SC2) We have that ν(j) = (ν(t−1−j))′ for each j ∈ {0, 1, . . . , bt/2c − 1}.
(SC2 ′) If t is odd, then ν(

t−1
2

) = (ν(
t−1
2

))′ := µ ∈ SC.
(SC3) We have that

|λ| =

{
|ω|+ 2t

∑ t
2
−1

i=0 |ν(i)| if t is even

|ω|+ 2t
∑ t−3

2
i=0 |ν(i)|+ t|µ| if t is odd.
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(SC4) We have that Ht(λ) = tH(ν). Moreover, φt gives a 1-1 correspondence between these
multisets.

Example. We illustrate Theorem 2.1 with the self-conjugate partition λ = (7, 7, 5, 4, 3, 2, 2)
and t = 4. The partition λ = (7, 7, 5, 4, 3, 2, 2) ` 30 produces the canonical bi-infinite binary
sequence . . . 0001100101.0101100111 . . . . Table 2 gives the “non-trivial” portions (i.e. without
the infinitely many 0s and 1s) of the binary sequences for the respective partitions in the
Littlewood decomposition. The reader should note that the entries for ν(∗) and r(∗) are in fixed
arithmetic progressions modulo 4, which explains the empty spaces in the middle rows of the
table. After compiling the r(∗), we obtain the bi-infinite sequence ω, which one checks gives
the 4-core partition and 4−quotient in Figure 3. This establishes that H4(λ) = 4H(ν), where
H4(λ) = {12, 12, 8, 8, 4, 4} and H(ν) = { } ∪ {3, 2, 1} ∪ {3, 2, 1} ∪ { }. The coloring indicates the
correspondence induced by φ4.

13 12 9 7 5 3 2

12 11 8 6 4 2 1

9 8 5 3 1

7 6 3 1

5 4 1

3 2

2 1

Figure 2. λ = (7, 7, 5, 4, 3, 2, 2) ∈ SC with hook lengths inserted

Table 2. The Littlewood decomposition in binary digits

λ · · · 1 1 0 0 1 0 1 . 0 1 0 1 1 0 0 · · ·
ν(0) · · · 0 0 1 · · ·
ν(1) · · · 1 1 1 0 · · ·
ν(2) · · · 1 0 0 0 · · ·
ν(3) · · · 0 1 1 · · ·
r(0) · · · 0 0 1 · · ·
r(1) · · · 0 1 1 1 · · ·
r(2) · · · 0 0 0 1 · · ·
r(3) · · · 0 1 1 · · ·
ω · · · 0 0 0 0 1 0 1 . 0 1 0 1 1 1 1 · · ·

3. Proofs of Theorem 1.1 and Theorem 1.2.

Here we prove Theorems 1.1 and 1.2. These results follow from Pétréolle’s work on Littlewood’s
decompositions, combined with some known partition generating functions, and a more involved
analysis in the case of 1-hooks in self-conjugate partitions.
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5 3 1

3 1

1

{ } 3 2 1

3

2

1

{ }

Figure 3. The 4-core ω and partitions ν(0), ν(1), ν(2), ν(3) for λ

3.1. Counting 1-hooks in self-conjugate partitions. We begin by counting the number of
1-hooks in self-conjugate partitions. The next theorem offers two expressions for the relevant
generating function.

Theorem 3.1. The following are true.
(1) We have that

∑
λ∈SC

xn1(λ) q|λ| =
(−q; q2)∞

2x

[(
1−

√
1− x
1 + x

)
(−
√

1− x2;−q)∞ +

(
1 +

√
1− x
1 + x

)
(
√

1− x2;−q)∞

]
.

(2) We have that

∑
λ∈SC

xn1(λ) q|λ| = (−q; q2)∞ ·

[(
1− 1

x

)∑
n≥0

(x2 − 1)nq2n
2+n

(q2; q2)n(−q; q2)n+1

+
1

x

∑
n≥0

(x2 − 1)nq2n
2−n

(q2; q2)n(−q; q2)n

]
.

In view of (1.4), both identities in Theorem 3.1 can in principle be used to define the q-series
H?(x; q) required by Theorem 1.1. For convenience, we choose the second formula, and we define

(3.1) H?(x; q) :=

[(
1− 1

x

)∑
n≥0

(x2 − 1)nq2n
2+n

(q2; q2)n(−q; q2)n+1

+
1

x

∑
n≥0

(x2 − 1)nq2n
2−n

(q2; q2)n(−q; q2)n

]
.

To prove Theorem 1.2 (2), we will differentiate H?(x; q) in x and let x→ 1. These steps would
require more care had we chosen the formula in Theorem 3.1 (1) due to the vanishing of 1− x2.

The proof of Theorem 3.1 requires a simple observation which leads to two q-series. Using
Young diagrams, we have that every self-conjugate partition λ can be divided into three (possibly
empty) partitions. The Durfee square gives one partition, and the remaining cells define a pair of
identical twin partitions. The columns to the right of the Durfee square give the same partition
as the rows below the square.

There are two natural types of non-empty self-conjugate partitions. We say that λ is of Type 1
if the width of the Durfee square is strictly larger than the largest part of the twins. Otherwise,
we say that λ is of Type 2, which means that the width of the Durfee square equals the largest
part of the twins. Therefore, if we let SC(1) (resp. SC(2)) denote these subsets, and also account
for the empty partition of 0, then we have that∑

λ∈SC

xn1(λ)q|λ| = 1 +D1(x; q) +D2(x; q),
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where

D1(x; q) :=
∑

λ∈SC(1) x
n1(λ)q|λ|(3.2)

D2(x; q) :=
∑

λ∈SC(2) x
n1(λ)q|λ|.(3.3)

The proof of Theorem 3.1 boils down to an explicit determination of these separate generating
functions.

Example. Figure 4 offers two self-conjugate partitions of 17, both with 3 × 3 Durfee squares.
The Durfee squares are colored orange, and the twin partitions are colored green. The partition
on the left is of Type 1, and the other is of Type 2. The 1-hooks are labelled in both Young
diagrams.

1

1

1

1

1

1

1

Figure 4. Self-conjugate partitions of 17 of Type 1 and Type 2

To obtain explicit expressions for these two generating functions, we require the next lemma.

Lemma 3.2. The following are true.

(1) If we let F (A; q) :=
∑

n≥0
qn

2
(A;q2)n

(q2;q2)n
, then we have

F (A; q) =
1

2
· (−q; q2)∞

[
(−
√
A;−q)∞ + (

√
A;−q)∞

]
.

(2) If we let G(A; q) :=
∑

n≥0
qn

2+2n(A;q2)n
(q2;q2)n

, then we have

G(A; q) =
1

2
√
A
· (−q; q2)∞

[
(−
√
A;−q)∞ − (

√
A;−q)∞

]
.

Proof.

(1) By applying Heine’s transformation [1, p.19, Cor.2.3] to F (A; q), we obtain

F (A; q) := lim
y→0

2φ1

(
− q
y

A

y
; q2, y

)
= lim

y→0

(A; q2)∞(−q; q2)∞
(y; q2)2∞

· 2φ1

(
y
A

y
−q ; q2, A

)
= (A; q2)∞ (−q; q2)∞

∑
n≥0

An

(q2; q2)n(−q; q2)n
= (A; q2)∞ (−q; q2)∞

∑
n≥0

An

(−q;−q)2n
.
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Hence, we obtain

F (A;−q) = (A; q2)∞(q; q2)∞ ·
1

2

∑
n≥0

An/2(1 + (−1)n)

(q; q)n

=
1

2
· (A; q2)∞(q; q2)∞ ·

(
1

(
√
A; q)∞

+
1

(−
√
A; q)∞

)
=

1

2
· (q; q2)∞

[
(−
√
A; q)∞ + (

√
A; q)∞

]
.

(2) By applying Heine’s transformation to G(A; q), we obtain

G(A; q) := lim
y→0

2φ1

(
− q
y

A

y
; q2, yq2

)
= lim

y→0

(A; q2)∞(−q3; q2)∞
(y; q2)∞(yq2; q2)∞

· 2φ1

(
y
A

yq2

−q3 ; q2, A

)
= (A; q2)∞ (−q3; q2)∞

∑
n≥0

An

(q2; q2)n(−q3; q2)n
= (A; q2)∞ (−q; q2)∞

∑
n≥0

An

(−q;−q)2n+1

=
1

2
· (A; q2)∞(−q; q2)∞

∑
n≥0

A(n−1)/2(1− (−1)n)

(−q;−q)n
.

The same argument that completed (1) proves part (2). �

Proof of Theorem 3.1. For self-conjugate partitions, we have that n1(λ) is odd if and only if
λ is of Type 1. This follows as 1-hooks generally come in pairs due to self-conjugation. The
only counterexamples are the lower right entries of the Durfee squares of Type 1 self-conjugate
partitions, which are fixed points under conjugation. Furthermore, the only 1-hooks that appear
in a twin partition, say the cells to the right of the Durfee square, appear in the lower right hand
entry of each rectangular block, which might consist of multiple repeated parts (see Figure 4).
Therefore, (3.2) and (3.3) are represented as

D1(x; q) =
∑
n≥1

xqn
2
n−1∏
j=1

(1 + x2q2j + x2q4j + · · · ),

D2(x; q) =
∑
n≥1

qn
2

(x2q2n + x2q4n + · · · )
n−1∏
j=1

(1 + x2q2j + x2q4j + · · · ).

By direct algebraic manipulation, we obtain

(3.4)
∑
λ∈SC

xn1(λ)q|λ| = 1 + x ·
∑
n≥1

qn
2 · (1− (1− x)q2n) · ((1− x2)q2; q2)n−1

(q2; q2)n
.

By (3.4) and the definition of F and G, we obtain∑
λ∈SC

xn1(λ)q|λ| = 1 +
1

x
·
∑
n≥1

qn
2 · (1− (1− x)q2n) · (1− x2; q2)n

(q2; q2)n

= 1 +
1

x
·
[
(F (1− x2; q)− 1) + (x− 1) · (G(1− x2; q)− 1)

]
.
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To prove (1) and (2), we make use of the infinite product identities in Lemma 3.2 for F (x2− 1; q)
and G(x2 − 1; q). This substitution immediately proves (1). To prove (2), we take one further
step and utilize Euler’s summation formula for infinite products (for example, see [2, (2.5)])

(−z; q)∞ =
∑
n≥0

q(
n+1
2 )zn

(q; q)n
.

�

3.2. Proof of Theorem 1.1. We require the generating functions of certain arithmetic functions
that enumerate self-conjugate partitions. It is an exercise to see that

(3.5)
∑
n≥0

sc(n) qn = (−q; q2)∞,

where sc(n) is the number of self-conjugate partitions of size n. We also require asct(n), the
number of t-core partitions that are self-conjugate. The following generating functions were
derived by Garvan, Kim, and Stanton.

Lemma 3.3. [5, (7.1a) and (7.1b)] The following are true.
(1) If t is even, then we have∑

n≥0

asct(n) qn = (−q; q2)∞ · (q2t; q2t)
t
2∞.

(2) If t is odd, then we have∑
n≥0

asct(n) qn = (−q; q2)∞ ·
(q2t; q2t)

t−1
2∞

(−qt; q2t)∞
.

Proof of Theorem 1.1. (1) Given λ ∈ SC, Theorem 2.1 associates the unique pair (ω; ν) where
coret(λ) := ω ∈ SCt. Let |ν| :=

∑t−1
i=0 |ν(i)| and n1(ν) :=

∑t−1
i=0 n1(ν

(i)). Thanks to Theorem 2.1
(SC4), we have that

nt(λ) = t
t−1∑
i=0

n1(ν
(i)).

By combining this fact with Theorem 2.1 (SC3), we find that∑
λ∈SC

coret(λ)=ω

xnt(λ) q|λ| = q|ω|
∑
λ∈SC

coret(λ)=ω

xnt(λ) q|λ|−|ω| = q|ω|
∑
ν∈Pt

xn1(ν) qt|ν| .

Theorem 2.1 (SC2) justifies that the t-quotient ν is uniquely determined once we know its first
t/2 components (be mindful that these can attain any partition) and |ν(i)| = |ν(t−i−i)| as well as
H(ν(i)) = H(ν(t−1−i)) for 0 ≤ i ≤ t/2− 1 Therefore, we can break up the inner sum as follows:

∑
ω∈SCt

q|ω|
∑
λ∈SC

coret(λ)=ω

xnt(λ) q|λ|−|ω| =
∑
ω∈SCt

q|ω| ·

(∑
ν∈P

x2n1(ν) q2t|ν|

) t
2

.
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Han’s formula (1.2) then implies that

∑
ω∈SCt

q|ω| ·

(∑
ν∈P

x2n1(ν) q2t|ν|

) t
2

=
∑
ω∈SCt

q|ω| · ((1− x2)q2t; q2t)
t
2∞

(q2t; q2t)
t
2∞

.

For the outer sum, one inserts Lemma 3.3 (1) to obtain

∑
ω∈SCt

q|ω| · ((1− x2)q2t; q2t)
t
2∞

(q2t; q2t)
t
2∞

= (−q; q2)∞ · (q2t; q2t)
t
2∞ ·

((1− x2)q2t; q2t)
t
2∞

(q2t; q2t)
t
2∞

= (−q; q2)∞ · ((1− x2)q2t; q2t)
t
2∞.

This completes the proof of (1).

(2) The proof is analogous to the proof of (1). However, one must take into account Theorem 2.1
(SC2′) and (SC3). In this case, the Littlewood bijection generates an extra self-conjugate partition
µ. Hence, we have

∑
λ∈SC

xnt(λ) q|λ| =
∑
ω∈SCt

q|ω|
∑
ν∈Pt

xn1(ν) qt |ν| =
∑
ω∈SCt

q|ω|

(∑
ν∈P

x2n1(ν) q2t|ν|

) t−1
2 ∑

µ∈SC

xn1(µ) qt|µ|.

Thanks to Han’s formula (1.2) and Lemma 3.3 (2), we get

∑
ω∈SCt

q|ω|

(∑
ν∈P

x2n1(ν) q2t|ν|

) t−1
2

= (−q; q2)∞ ·
((1− x2)q2t; q2t)

t−1
2∞

(−qt; q2t)∞
:=

At(x; qt)

(−qt; q2t)∞
.

Thanks to Theorem 3.1 (2) and the definition of H?(x; q) in (3.1), after replacing q by qt we
obtain ∑

λ∈SC

xnt(λ) qλ = At(x; qt) ·H?(x; qt),

This proves (2). �

3.3. Proof of Theorem 1.2. To prove (1), we differentiate the identity in Theorem 1.1 (1)
with respect to x. After letting x = 1, one obtains∑

n≥1

a?t (n)qn = t · q
2t · (−q; q2)∞

1− q2t
= t · (q2t + q4t + q6t + · · · ) · (−q; q2)∞.

The second claim follows from (3.5) and the fact that the generating function for q?(n) is∑
n≥0

q?(n)qn =
∞∏
n=0

(1 + q2n+1) = (−q; q2)∞.

These two formulas immediately give the desired result.

The proof of (2) is similar to (1) and follows by differentiating the formula in Theorem 1.1 (2).
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