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ABSTRACT. Many researchers have studied Euler product identities of weight
k =} and k = 3}, often related to the Jacobi Triple Product identity and
the Quintuple Product identity. These identities correspond to theta series of
weight k = {; and k = % , and they exhibit a behavior which is defined as
superlacunary. We show there are no eigen-cusp forms of integral weight which
are superlacunary. For half-integral weight forms with k > % , we give a mild
condition under which there are no superlacunary eigen-cusp forms. These
results suggest the nonexistence of similar Euler-Product identities that arise
from eigen-cusp forms with weight k # § or 3.

1. INTRODUCTION
The Dedekind n-function is defined by

n(z) = x% [J(1-x"),
n=1

where 7 lies in the upper half plane # = {7/ Im(z) > 0} and x = e2"i" . We
maintain this notation throughout the paper. The Dedekind #-function is a
modular form of weight ; on the subgroup I'p(242) of I = SLy(Z), with a
multiplier system. An 7-product is defined to be any function f (1) of the form

m f@) = [In(ye,

SIN

where 7; € Z . This is a modular form of weight k = 1 5, \v s with a multiplier
system [9], [16]. An #-polynomial is defined to be any finite linear combina-
tion of n-products. The study of the Fourier coefficients of n-products and
n-polynomials are related to many well-known number-theoretic functions, in-
cluding partition functions and quadratic form representation numbers. They
also arise from representations of the “monster” group [3] and the Mathieu
group M>4 [15]. The n-products are building blocks of other modular forms in
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the sense that all forms on the full modular group I' are linear combinations of
n-products [9]. To facilitate the subject with examples, we recall Euler’s identity

) n(z) = x*% Z (=1)"x 27,

Jacobi later obtained

(3) n(e) = xb 3 (-1)"(2n + xS,
n=0

Moreover, the classical theta function is defined by

4) 0(x) =Y x"

and has the #z-product
(~x) = n*(r)n~' (27).

When one applies the canonical Fricke involution 7 — —1/27 to the Riemann
surface Xy(2), one obtains the classical identity of Gauss:

() riore) =xt 3 x%.

n=-=-o00

These are all examples of a more general phenomenon—the Jacobi Triple-
Product identity [1]:

o0 o0
(6) JT =1+ 2?1+ 27 = 37 x7 2,
n=1 n=—0o0

There are other identities of weight % of a similar flavor:

(7 (T ~2(27) = x% i (61 + 1)x ™
(8) = (1)n’(21) = x4 Z ~1)"(3n + 1)x3n*+2n
(9) ()n~ ' 2o (4t) = x} Z (3n + 1)x3n+2n,

These follow from the Quintuple-Product identity [6], [28]:

ﬁ(l _xZn)(l - szn_l)(l _ z—-lx2n-l)(l _ Z2x4n—4)(1 _ Z—2x4n*4) —
(1oy ™!

— Z x3n2-2n(23n 4z _ -2 z—3n+2)_
n=-—oo

All of the above 5-product identities also come from McDonald’s Identities
on affine Lie Algebras [14]. They are all weight 3 and weight 3 modular forms
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on congruence subgroups of I'. Moreover, they can all be realized as Shimura’s
[26] theta functions

(11) Oy; )= 3, w(mn'x",

n=-—-0o

where y is a primitive character, y(—1) = (~1)”, and v = 0 corresponds to
weight % forms while » = 1 corresponds to weight % forms. To study this
phenomenon, we first recall the definition of lacunarity:

Definition. A power series is called lacunary if the arithmetic density of its non-
o0
zero coefficients is zero. More precisely, the series x"Zc(n)x" is lacunary

n=0
if
lim card{n | n < t and c(n) # 0} —0.

t—o00 t

Many lacunary forms play important roles in the theory of elliptic curves.
For example, the lacunary form 7n%(4t)n?(81) is the inverse Mellin transform
of the Hasse-Weil L-function of the elliptic curve y? = x3 — x . It is the image
under the Shimura map of the forms of weight % which arise in Tunnell’s work
on the congruent number problem (see [12]} and [30]).

Serre [24] has determined all the even integers r for which 5(t)" is lacunary.
The result is as follows:

Theorem 1 (Serre). Suppose r > 0 is even. Then n(t)" is lacunary if and only
ifr=2,4,6,8,10, 14, or 26.

Serre shows the connections between the density of the nonzero Fourier co-
efficients of f(7), an integral weight modular form, and the representablity
of f(t) as a linear combination of Hecke character forms [18], [24). Similar
methods have been used [8] to show there are only finitely many lacunary forms
n"(t)n*(27) for all r +s even, and they are all listed.

Serre asks [24] if there are any other odd values of r for which 5(t)" is
lacunary. We will give evidence supporting Serre’s conjecture. The following
definition, due to Gordon, captures an essential property of all of the above
_identities:

Definition. A power series is called superlacunary if it has the form

f(x)="Y" d(an®+bn+ c)xn+hn+e

n=-—0o0
where a>0 and a,b,ceZ.

We lose no generality by assuming that a, b, ¢ are integers since we can
always replace x by a power of x to clear the denominators. More generally,
we may define any finite linear combination of such forms to be superlacunary.
Because of the Serre-Stark basis theorem for modular forms of weight % [25],
it follows that any weight % modular form on a congruence subgroup of I" is a
linear combination of ‘twisted’ theta series and is hence a superlacunary form.

We note that the product of two superlacunary series is lacunary by an easy
extension of Landau’s theorem on quadratic forms [13], [21]. Examples (2)
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and (3) show that n(t) and n3(t) are both superlacunary. Hence if n?(7) is
superlacunary, then #%*!(1) and n%+3(t) are both lacunary. By Serre, the only
possible values of @ are a =1,3,5, and 7. Itis easy to verify that #°(t)
and 7n’(t) both are not superlacunary. Consequently, the only superlacunary
powers of the Dedekind n-function are 7n(z) and n3(t). We will show that
it is difficult for a superlacunary eigen-cusp form to have weight k > % . As
corollaries to our main theorems we obtain

Corollary 1. There are no superlacunary integer weight cuspidal Dedekind n-
polynomials which are eigenforms of the Hecke operators T, .

Corollary 2. Let k € % + Z, and let f(t) be a superlacunary Dedekind n-
polynomial which is a cuspidal eigenform of the Hecke operators T,.. Let

flo)= Z d(an? + bn + ¢)xan +on+e

n=—

[NI™
s

be its Fourier expansion at infinity. If b*> — 4ac #0, then k=1 or k =

2. GALOIS REPRESENTATIONS AND SHIMURA'’S LIFT

Our theorems are a consequence of the theory of Galois representations as-
sociated to modular forms [4] and the Shimura lift for half-integral weight cusp
forms [2], [26]. These theorems were tumlng points of research in the 70s and
we quote them below:

Theorem (Deligne-Serre). Let f be a modular form of type (k, €) on Th(N)
with € a real character satisfying the following two conditions:

(a) f is an eigenform of the Hecke operators T, for all primes p € Z with
PIN.

(b) The Fourier coefficients a(n) of f are rational integers, and a(1) =1.

If k > 1, then for every rational prime |, there is a continuous linear repre-

sentation
p - Gal(Q/Q) — GLy(Z))
such that for all primes p with p{IN we have:

tr(p;(Frob(p)) = a(p) mod (/),
det(p;(Frob(p)) = e(p)p*~"' mod (J).

Given a modular form f and its associated representation p;, congruences
on the Fourier coefficients a(n) hold when the image p;(Gal(Q/Q)) does not
contain SL,;(Z;). For ! > 3, this happens only if 5;,(Gal(Q/Q)) does not
contain SL,(F;), where p, is the reduction of p; modulo /. Such primes /
are called exceptional. These ideas go back to Serre and Swinnerton-Dyer [29].
Moreover, it is known that only forms of weight 1 or of CM-type have infinitely
many exceptional primes [17], [19].

Here we show that €~!(p)p'~*a%(p) controls the image of j; in PGL,(F)).
For example, assume that ¢ = p;(Frob(p)) has order 2 in PGL,(F;). Hence
the eigenvalues o and f of o satisfy a = —f . Consequently we get

- - _ tr%(p; (Frob(p))) _ (@a—a)?® _
e~ (p)p'*a2(p) = de1(p (Frob(p)) = —a2 =0 mod ().
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Similarly, if o = j;(Frob(p)) has order 1 in PGL,(F;), then
e Y(p)p'~*a(p) =4 mod ().

We now state a special case Shimura’s fundamental theorem defining a cor-
respondence between half-integral weight modular forms and integral weight
modular forms [26].

Theorem (Shimura). Let y be a Dirichlet character mod 4N, A a positive
integer, and t a positive square-free positive integer. Let

F(1) =) d(n)x" € 5;,,(4N, x)

n=|

be an eigenform of the Hecke operators T,. with eigenvalues A,. Define A,(n)
by the following identity: '

SSA) 1 (o apr, ) 3 )
n=1 m=1

1
=d(t ,
( )IpI 1 - App—s +X2(p)p21‘—l—28

where x(m) = x(m)(:,;‘)l(#) is a Dirichlet character mod 4Nt. Define the

normalized image under the Shimura map by
1 o0
Si(F)=——Y A (n)x".
t( ) d(t) g f(n)

Then for A > 1, S(F) € Su(2N, x?), and for A = 1, S(F) € My (2N, x2).
Note that by construction S,(F) is a normalized eigenform of the integral weight
Hecke operators T, with eigenvalues A, .

By Shimura [26, p. 459] there exists at least one square-free ¢ for which
d(t) # 0. Note that the lift takes half-integral weight cusp forms to integral
weight cusp forms when A > 1. When A = 1, the image S;(F) is not necessarily -
a cusp form. In fact, it is for this reason that superlacunary eigenform identities
exist for weight -23- . Specifically, each of the weight % identities corresponds to
an Eisenstein series under the Shimura lift. In this vein, we note that Sturm [27]
has proved that any weight % cusp form which lifts to a weight 2 Eisenstein
series must be a linear combination of theta series of type (11). Moreover, the
results of the next section suggest that new #-product identities of superlacunary
type, if any, arise in this manner.

3. THE MAIN THEOREMS

Although the theorems below hold in more generality, we shall assume that
our integral weight modular forms have integer Fourier coefficients and real
Nebentypus character. It should be clear from context whether we use the term
eigenform to denote integral weight or half-integral weight forms.
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Theorem 1. There are no superlacunary integer weight cusp forms which are
eigenforms of the Hecke operators T, .

Proof. Suppose k is the weight of the superlacunary eigen-cusp form
flry=>"dn)x".
n=1

By the Chebotarev density theorem, for all primes [/, there must be a positive
density of primes p such that

e~ '(p)p'~*d*(p) =4 mod (I).

Again, these primes correspond to the identity element of the image of the
Galois representation in PGL,(F;) . However, the density of primes represented
by any quadratic polynomial in one variable is zero. The number of primes
p < N satisfying p = an?+bn+c is O(v'N). Moreover, n(N) is asymptotically
equal to % . Since the exponents of a superlacunary form are given by such
a quadratic, the theorem follows. 0O

Because of this theorem we may now assume that a superlacunary eigen-cusp
form has half-integral weight.

Theorem 2. Let F € S, i(4N , X) with A an integer be an eigen-cusp form of
the Hecke operators T, . Let

F(r) = Zd(anz +bn+ C)xan2+bn+c

be superlacunary. If b* —4ac #0, then A=0 or 1.

Proof. Let F(1) = Y d(an?®+bn+c)x’+bn+¢ be an eigen-cusp form of all the

Hecke operators T, of half-integral weight with 4 > 1. This condition forces

the image to be a cusp form. Note the following argument still holds when 4 = 1

and S,(F) is a cusp form. By Shimura’s theorem, f(t) = S;(F) =32, a(n)x"

is a normalized eigen-cusp form of the Hecke operators 7,. As mentioned

earlier, we may choose a positive, square-free integer ¢ such that d(z) # 0.
For any prime p, the Shimura lift gives us

a(p) = xP(p)p*~'d(t) + d(1p?).

We will show that d(tp?) = 0 for a set of primes with density 1.
We are interested in the set of primes p that satisfy

tp? =an® +bn +c.
By completing the square, we reduce this to the Pell equation [20]
x? — Dy? = b? — 4ac,

where x = 2an+ b, y = 2p,and D = at. If D is a perfect square, then
b% —4ac # 0 assures at most finitely many prime factors of x2 — Dy?, since the
positive integer x+vDy can now only take on finitely many values. Hence there
are at most finitely many primes p with d(zp?) # 0 and we have d(zp?) =0
for almost all p.

If D is not a perfect square, then it is well known that the solutions of this
equation are given by

(xo + VDyp)*
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by Dirichlet’s unit theorem in Q(v/D). It is evident that the solutions (x, y)
grow exponentially with k. Therefore the set of primes p such that y = 2p
has density 0. Consequently we again have d(tp?) = 0 for almost all primes

p. B
Hence

(12) a(p) = x* (p)p*~d(t)

for almost all primes p. It follows that for each prime / not dividing d(¢),
the set of primes p satisfying

x"Xp)p'"*a*(p) #0 mod (I)

has density 1. By the Chebotarev density theorem, this means that the Galois
representation j; cannot contain SL,(F;) because the order 2 elements in
PSL,(F;) correspond to

a(p)=0 mod (/).

However, it is clear that SL,(F;) contains

(* 2o)

This implies that all rational primes / are exceptional for our form f(t). By
[18], this forces f to be a CM-form. It is well known that the set of primes
p with a(p) = 0 has positive density for CM-forms. However, by (12) the
set of primes p where a(p) = 0 has density 0. Consequently, F is not a
half-integral weight form. O

4. DISCUSSION AND EXAMPLES

As noted earlier, the product of any two superlacunary series is lacunary. We
can therefore construct infinite families of lacunary forms of weight 1,2, and
3. For example, we list the weight 3 lacunary families from the n-products
(3), (7), (8), and (9) given in §1:

n*(at)n’(br)

n’(at)n’(bt)n~2(2b7)

n’(at)n~2(bt)n’(2b7)

n(at)n?(br)n~" (2b7)n?(4b7)
n*(at)n’(br)n~%(2at)n~%(2b7)
n*(at)n®(2bt)n~2(at)n~%(2b1)
n’(at)n~*(2ar)n*(bt)n~ (2b7)n*(4b7)
n~2(at)n~*(bt)n’(2at)n’(2b7)
n=2(at)n’(2at)n?(bt)n~" (2bt)n*(4b7)
n*(at)n~!(2at)n*(4at)n*(bt)n~" (2bT)n*(4b1).

Note that these forms can be explicitly written as linear combinations of Hecke
character forms for all integers a, and b, by Ribet and Serre [19], [24].

The authors ask the following three questions, the second two of which are
due to Basil Gordon:
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(1) Are there any superlacunary forms of weight other than 1 or 3? In

particular, is there some integer-valued function d(n) for which } 72, d (n)x"*
is an eigen-cusp form of weight k > 3 ?

(2) Is a half-integral weight modular form lacunary if and only if it is super-
lacunary? :

(3) If the cardinality of the set {a(n) # 0|0 < n < N} of Fourier coefficients
of an eigen-cusp form is O(N1¢), is the form necessarily superlacunary? This
would mean that there are no forms ‘between’ a lacunary and a superlacunary
form.
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