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Abstract: In the 1980s, Greene defined hypergeometric functions
over finite fields using Jacobi sums. The framework of his theory
establishes that these functions possess many properties that are
analogous to those of the classical hypergeometric series studied by
Gauss and Kummer. These functions have played important roles
in the study of Apéry-style supercongruences, the Eichler-Selberg
trace formula, Galois representations, and zeta-functions of arith-
metic varieties. We study the value distribution (over large finite
fields) of natural families of these functions. For the 2F1 functions,
the limiting distribution is semicircular (i.e. SU(2)), whereas the
distribution for the 3F2 functions is the Batman distribution for
the traces of the real orthogonal group O3.
Keywords: Gaussian hypergeometric functions, Distributions,
Elliptic curves.

1. Introduction and statement of results

In the ’80s, Greene [29, 30] defined Gaussian hypergeometric functions over
finite fields using Jacobi sums. He developed the foundation of a beautiful
theory where these functions possess many properties that are analogous to
those of classical hypergeometric functions. These properties include trans-
formation laws, explicit evaluations, and contiguous relations. These func-
tions have played central roles in the study of combinatorial supercongruences
[1, 3, 36, 44, 47, 48, 52, 55, 56, 57, 58, 59], Dwork hypersurfaces [9, 46], Galois
representations [41, 42], L-functions of elliptic curves [6, 10, 11, 25, 40, 45, 53,
63, 66], hyperelliptic curves [7, 8], K3 surfaces [4, 19, 53], Calabi-Yau three-
folds [2, 3, 68], the Eichler-Selberg trace formula [24, 25, 26, 27, 39, 49, 59, 61],
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among other topics. This body of work meshes well with the framework es-
tablished by Katz [37] and Roberts and Villegas [62] on the analysis and
arithmetic of “hypergeometric varieties”.

Here we initiate the study of the value distribution of Greene’s functions.
We first recall Greene’s original definition. If A1, A2, . . . , An and B1, B2, . . . ,
Bn−1 are multiplicative characters of the finite field Fq, where q = pr, then
we have the Gaussian hypergeometric function

nFn−1

(
A1, A2, . . . , An

B1, . . . , Bn−1
| x
)

q

:= q

q − 1
∑
χ

(
A1χ

χ

)(
A2χ

B1χ

)
· · ·

(
Anχ

Bn−1χ

)
χ(x),

where the summation is over the multiplicative characters1 of F×
q , and where(A

B

)
is the normalized Jacobi sum J(A,B), defined by(

A

B

)
:= B(−1)

q
J(A,B) := B(−1)

q

∑
x∈Fq

A(x)B(1 − x).(1.1)

Many authors (see [30], [31], [35], [38], [53], and [63], to name a few) have
made use of the mantra that Gaussian analogs of classical hypergeometric
results arise when rational parameters 1/n are replaced with a character χ of
order n (resp. a/n with χa). We consider those functions where the parameter
characters have order 1 and 2, which always exist for Fq when q = pr is odd.
The simplest example of these functions are the 2F1-Gaussian hypergeometric
functions

(1.2) 2F1(λ)q := 2F1

(
φ, φ

ε
| λ
)

q

= q

q − 1
∑
χ

(
φχ

χ

)(
φχ

χ

)
χ(λ),

where φ(·) is the quadratic character and ε is the trivial character of Fq. As
our first result, we compute the moments of these Gaussian hypergeometric
functions.

Theorem 1.1. If r and m are fixed positive integers, then as p → +∞ we
have

pr(m/2−1) ∑
λ∈Fpr

2F1(λ)mpr =
{
om,r(1) if m is odd

(2n)!
n!(n+1)! + om,r(1) if m = 2n is even.

1For characters χ, we have that χ(0) := 0.
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Remark. The non-zero moments in Theorem 1.1 (i.e. the Catalan numbers)
arise [23] as the moments of traces of the Lie group SU(2), the 2 × 2 deter-
minant 1 unitary matrices. Namely, for even moments, we have

∫
SU(2)

(TrX)2ndX = (2n)!
n!(n + 1)! ,

where the integral is with respect to the Haar measure on SU(2).

Using these moments, we determine the limiting behavior of the 2F1(λ)pr
as p → +∞. We obtain the limiting distribution of the renormalized values√
pr · 2F1(λ)pr ∈ [−2, 2], which we view as random variables on Fpr . Namely,

we obtain the following result.

Corollary 1.2. If −2 ≤ a < b ≤ 2, and r is a fixed positive integer, then

lim
p→∞

| {λ ∈ Fpr :
√
pr · 2F1(λ)pr ∈ [a, b]} |

pr
= 1

2π

∫ b

a

√
4 − t2dt.

Remark. Theorem 1.1 may be interpreted in terms of the Legendre normal
form elliptic curves

ELeg
λ : y2 = x(x− 1)(x− λ).

If λ ∈ Fq \ {0, 1}, then (see Theorem 11.10 of [54]) q · 2F1(λ)q = −φ(−1) ·
aLeg
λ (q), where

(1.3) aLeg
λ (q) := q + 1 − |ELeg

λ (Fq)| = −
∑
x∈Fq

φ(x(x− 1)(x− λ)).

Corollary 1.2 refines (i.e. restriction to Legendre curves) a classical theorem of
Birch [13] which established this distribution for all elliptic curves over finite
fields. Birch’s Theorem has recently been refined [15] by Bringmann, Kane,
and Pujahari in another direction, where the Frobenius traces are restrictied
to arithmetic progressions. These distributions are renormalizations of the
usual Sato-Tate distribution which was famously proved by Clozel, Harris,
Shepherd-Barron and Taylor in [16]. In their (more difficult) setting, the el-
liptic curve is fixed and the distribution is taken over all primes p. Recent
work along these lines for further abelian varieties have been obtained by
Fité, Kedlaya, and Sutherland (for example, see [23]).
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We also consider these questions for the 3F2 Gaussian hypergeometric
functions

3F2(λ)q := 3F2

(
φ, φ, φ

ε, ε
| λ
)

q

= q

q − 1
∑
χ

(
φχ

χ

)(
φχ

χ

)(
φχ

χ

)
χ(λ).

(1.4)

The power moments for these functions satisfy the following asymptotics.

Theorem 1.3. If r and m are fixed positive integers, then as p → +∞ we
have

pr(m−1) ∑
λ∈Fpr

3F2(λ)mpr =

⎧⎪⎨⎪⎩
om,r(1) if m is odd
m∑
i=0

(−1)i
(m
i

) (2i)!
i!(i+1)! + om,r(1) if m is even.

Remark. The moments in Theorem 1.3 arise [60] as moments of traces of the
real orthogonal group O3. Namely, for even m we have

∫
O3

(TrX)mdX =
m∑
i=0

(−1)i
(
m

i

)
(2i)!

i!(i + 1)! ,

where the integral is with respect to the Haar measure on O3.
In analogy with Corollary 1.2, we obtain the limiting distribution of the

renormalized values pr · 3F2(λ)pr ∈ [−3, 3], that we view as random variables
over Fpr . We obtain the following result.

Corollary 1.4. If −3 ≤ a < b ≤ 3, and r is a fixed positive integer, then

lim
p→∞

| {λ ∈ Fpr : pr · 3F2(λ)pr ∈ [a, b]} |
pr

= 1
4π

∫ b

a
f(t)dt,

where

f(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3−|t|√

3+2|t|−t2
if 1 < |t| < 3,

3+t√
3−2t−t2

+ 3−t√
3+2t−t2

if |t| < 1,
0 otherwise.

Example. For the prime p = 93283 (i.e. r = 1), the histograms of the values√
p·2F1(λ)p and p·3F2(λ)p illustrate Corollary 1.2 (i.e. the near match with the

radius 2 semicircle) and Corollary 1.4 (i.e. the near match with the Batman
distribution f(t)).
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Remark. Theorem 1.3 can be interpreted in terms of the K3 surfaces whose
function fields are

Xλ : s2 = xy(x + 1)(y + 1)(x + λy),

where λ ∈ Fq\{0,−1}. It is known (see Theorem 11.18 of [54] and Proposition
4.1 of [4]) that

|Xλ(Fq)| = 1 + q2 + 19q + q2 · 3F2(−λ)q.

Corollary 1.4 gives the limiting Frobenius trace distribution for these K3
surfaces.
Remark. It is natural to consider the asymptotics for the moments of the
general

nFn−1(λ)pr := nFn−1

(
φ, φ, . . . , φ

ε, . . . , ε
| λ
)

pr

= pr

pr − 1
∑
χ

(
φχ

χ

)(
φχ

χ

)
· · ·

(
φχ

χ

)
χ(λ)

hypergeometric functions. It would be very interesting to determine asymp-
totics for the moments, which in turn would lead to distributions that extend
Corollaries 1.2 and 1.4. A solution to this problem in the case of the 4F3
functions is already quite interesting.

The proofs of Theorems 1.1 and 1.3 rely on the fact that the 2F1(λ)q and
3F2(λ)q values arise from the arithmetic of the Legendre and Clausen elliptic
curves

ELeg
λ : y2 = x(x− 1)(x− λ) and ECl

λ : y2 = (x− 1)
(
x2 + λ

)
.(1.5)
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As mentioned above, the 2F1(λ)q are renormalizations of the Frobenius traces
for ELeg

λ /Fq. The 3F2(λ)q (see Theorem 3.1) are related to the squares of the
Frobenius traces of ECl

λ /Fq. Using these arithmetic geometric connections, we
reformulate the moments in terms of the moduli space of these elliptic curves.
We interpret these reformulations in terms of isomorphism classes of elliptic
curves with certain subgroups of Fq rational points. The moments can then
be given as weighted sums of Hurwitz class numbers which enumerate such
isomorphism classes.

To estimate these moments, we make use of the theory of harmonic Maass
forms. More precisely, these weighted sums arise in the Fourier expansions of
nonholomorphic modular forms produced from the Rankin-Cohen brackets
of Zagier’s weight 3/2 nonholomorphic Eisenstein series when paired with
explicit theta functions. The proofs of Theorems 1.1 and 1.3 are then reduced
to an application of Deligne’s Theorem, which bounds the coefficients of the
cuspidal components of the holomorphic projections of these nonholomorphic
modular forms. The recent proof of Cohen’s Conjecture by Mertens [50, 51]
plays a significant role in the 2F1 case.

This paper is organized as follows. In Section 2, we recall the fundamental
facts we require about the 2F1(λ)q functions and the arithmetic of the Leg-
endre curves ELeg

λ . In Section 3, we recall the analogous results for 3F2(λ)q
and the Clausen curves ECl

λ . In Section 4, we recall facts from the theory
of harmonic Maass forms which enable us to analyze these elliptic curves in
terms of weighted class number sums thanks to a theorem of Schoof. We ap-
ply these facts in Section 5, to obtain the asymptotic properties of these class
number sums. In Section 6, we recall the criteria for deducing the distribu-
tions in Corollaries 1.2 and 1.4 in terms of moments. Finally, in Section 7, we
conclude with the proofs of Theorems 1.1 and 1.3.

2. The 2F1(λ)q and the arithmetic of ELeg
λ

Here we recall important facts about the 2F1(λ)q values. The results we re-
quire are obtained by interpreting these values in terms of the trace of Frobe-
nius on the Legendre normal form elliptic curves ELeg

λ . This connection is well
known and has been observed by several authors.

Theorem 2.1 (Th. 11.10 of [54]). If λ ∈ Fq \ {0, 1} and char(Fq) ≥ 5, then

q · 2F1(λ)q = −φ(−1)aLeg
λ (q).

Remark. Theorem 2.1 is analogous to Gauss’ classical hypergeometric formula
for the real period ΩLeg(λ) of ELeg

λ (for example, see Chapter 9 of [33]), where
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for 0 < λ < 1 we have

π · 2F1

(
1
2

1
2
1 | λ

)
= ΩLeg(λ).

2.1. Facts about Legendre normal forms

As mentioned above, the proof of Theorem 1.1 relies on an arithmetic re-
formulation of the moments of 2F1(λ)q. By Theorem 2.1, this task requires
important facts about the ELeg

λ . We now recall these facts.

Proposition 2.2 (Proposition 1.7, Chapter III of [65]). Let K be a field with
char(K) �= 2, 3.

(1) Every elliptic curve E/K is isomorphic over K to an elliptic curve
ELeg

λ .
(2) If λ �= 0, 1, then the j-invariant of ELeg

λ is

j(ELeg
λ ) = 28 · (λ2 − λ + 1)3

λ2(λ− 1)2 .

(3) The only λ for which j(ELeg
λ ) = 1728 are λ = 2,−1, and 1/2.

(4) The only λ for which j(ELeg
λ ) = 0 are λ = 1±

√
−3

2
(5) For every j �∈ {0, 1728}, the map K \ {0, 1} → j(ELeg

λ ) is six to one. In
particular, we have{

λ,
1
λ
, 1 − λ,

1
1 − λ

,
λ

λ− 1 ,
λ− 1
λ

}
→ j(ELeg

λ ).

Since elliptic curves defined over Fq with the same j-invariant are not
necessarily isomorphic over Fq, we must consider the theory of twists. We
only require the standard notion of a quadratic twist. If d ∈ Fq \ {0, 1}, and
E is given by

E : y2 = x3 + a2x
2 + a4x + a6,

then its quadratic twist Ed is given by2

Ed : y2 = dx3 + da2x
2 + da4x + da6.

2We note that this choice is equivalent to the usual convention where one has
Ed : dy2 = x3 + a2x

2 + a4x + a6.
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If d is a square in Fq, then Ed is isomorphic to E over Fq. Moreover, if p is a
prime of good reduction for Ed (and hence also E), we have that

(2.1) q + 1 − |E(Fq)| = φ(d) (q + 1 − |Ed(Fq)|) .

The next result characterizes the quadratic twists of Legendre curves with
common j-invariant.

Proposition 2.3 (Prop. 3.2 of [2]). For λ ∈ Fq \ {0, 1}, the following holds.

(1) ELeg
λ is the λ quadratic twist of ELeg

1/λ .
(2) ELeg

λ is the −1 quadratic twist of ELeg
1−λ.

(3) ELeg
λ is the 1 − λ quadratic twist of ELeg

λ/(λ−1).
(4) ELeg

λ is the −λ quadratic twist of ELeg
(λ−1)/λ.

(5) ELeg
λ is the λ− 1 quadratic twist of ELeg

1/(1−λ).

By Theorem 2.1, we can reformulate the moments of the 2F1 functions as
sums over Legendre normal form elliptic curves. As we shall see in the next
subsection, this requires dividing these curves into isomorphism classes over
Fq. To this end, for λ ∈ Fq \ {0, 1}, we define

(2.2) L(λ) := {β ∈ Fq \ {0, 1} : ELeg
β

∼=Fq E
Leg
λ }.

The following three lemmas determine |L(λ)|. The first concerns j �∈{0, 1728}.

Lemma 2.4. If j(Eλ) �∈ {0, 1728}, then

|L(λ)| =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3 if q ≡ 3 (mod 4)
6 if q ≡ 1 (mod 4), λ and 1 − λ are both squares in Fq

4 if q ≡ 1 (mod 4), either λ or 1 − λ is a square in Fq

2 if q ≡ 1 (mod 4), neither λ nor 1 − λ is a square in Fq.

Proof. Here we consider the case where q ≡ 3 (mod 4). There are exactly two
elements of {λ, 1− λ,−λ, λ− 1} that are squares. Therefore, Proposition 2.3
applies that |L(λ)| = 3. The other cases are handled mutatis mutandis.

For j = 1728, we have the following lemma.

Lemma 2.5. Suppose that ELeg
λ /Fq has j(ELeg

λ ) = 1728.

(1) If q ≡ 3 (mod 4), then aLeg
λ (q) = 0.

(2) If q ≡ 1 (mod 8), then L(2) = {−1, 2, 1/2}.
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(3) If q ≡ 5 (mod 8), then L(2) = {−1, 2} and L(1/2) = {1/2}.

Proof. Curves with j = 1728 have complex multiplication by Q(i). There
are no ideals in Z[i] with norm q ≡ 3 (mod 4), and so (1) follows easily
(for example, see [34, Section 4]). If q ≡ 1 (mod 4), then a similar counting
argument as in the proof of Lemma 2.4 gives (2) and (3).

For j = 0, we have the following lemma.

Lemma 2.6. Suppose ELeg
λ /Fq has j(ELeg

λ ) = 0.

(1) There are no such ELeg
λ when q ≡ 2 (mod 3).

(2) If q ≡ 1 (mod 12), then |L
(

1±
√
−3

2

)
| = 2, and 1±

√
−3

2 are squares in Fq.

(3) If q ≡ 7 (mod 12), then |L
(

1±
√
−3

2

)
| = 1, and 1±

√
−3

2 are both not
squares in Fq.

Proof. Claim (1) follows from the unsolvability of

j(ELeg
λ ) = 28 · (λ2 − λ + 1)3/λ2(λ− 1)2 = 0.

The proofs of claims (2) and (3) are analogous to the proof of Lemma 2.4.

To obtain the desired reformulation of the power moments of the 2F1
hypergeometric functions, we make use of the fact that Z2× Z2 ⊆ ELeg

λ (Fq).
Our final reformulation makes use of this observation, combined with the fact
that certain Hurwitz class numbers enumerate isomorphism classes of elliptic
curves with prescribed subgroups and fixed Frobenius traces.

Lemma 2.7. If q ≡ 3 (mod 4), and E/Fq is an elliptic curve for which
Z2 × Z2 ⊆ E(Fq), then E is isomorphic to a Legendre normal form elliptic
curve over Fq.

Proof. Since Z2 × Z2 ⊆ E(Fq), E is given by

E : y2 = (x− α)(x− β)(x− γ),

where α, β, γ ∈ Fq. After possibly exchanging α and β, we may assume that
β − α is a square. Under the transformations y = (β − α)3/2Y and x =
(β − α)X + α, E ∼= ELeg

λ , where λ = γ−α
β−α .

As the previous lemma indicates, if q ≡ 3 (mod 4), then every E/Fq with
Z2 × Z2 ⊆ E(Fq) is isomorphic over Fq to a Legendre normal form curve.
Unfortunately, this is not the case when q ≡ 1 (mod 4), and we call those E
without such isomorphic Legendre forms inconvenient.
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Lemma 2.8. Suppose that q ≡ 1 (mod 4) and that E/Fq is inconvenient.

(1) We have that |E(Fq)| �≡ 0 (mod 8).
(2) There is a λ ∈ Fq\{0, 1} and d ∈ Fq, where d �∈ F2

q, such that Z4×Z4 ⊆
ELeg

λ (Fq) and Ed
∼= ELeg

λ over Fq.
(3) The phenomenon in (2) induces a bijection between Fq-isomorphism

classes of inconvenient curves and those classes for which Z4×Z4 is a
subgroup of Fq-rational points.

Proof. Let E be an elliptic curve defined by

E : y2 = x(x− α)(x− β),

where α, β, α − β are non-squares in Fq. The classical 2-descent lemma (for
example, see Proposition X.1.4 of [65]) indicates when a rational point P is
a double of another rational point, say Q. By our assumptions on α and β,
we find that none of the 2-torsion points are doubles, and so we have that
|E(Fq)| �≡ 0 (mod 8). Furthermore, the α-twist Eα is

Eα : y2 = αx(x− α)(x− β),

and under the transformation x = αX, y = Y/α2, this is equivalent to

ELeg
β/α : Y 2 = X(X − 1)(X − β/α).

One then applies the 2-descent lemma again.

We conclude with a classification of those Legendre normal form with
Z4 × Z4 ⊆ ELeg

λ (Fq).

Lemma 2.9. Suppose that q ≡ 1 (mod 4) and λ ∈ Fq \ {0, 1}. Then we have
that Z4 × Z4 ⊆ ELeg

λ (Fq) if and only if λ and 1 − λ are both squares in Fq.

Proof. This claim follows easily again by the 2-descent lemma.

2.2. Isomorphism classes of elliptic curves with prescribed
subgroups

We have reformulated the moments of the 2F1 functions as sums over isomor-
phism classes of elliptic curves for which Z2×Z2 ⊆ E(Fq). Therefore, we seek
formulas for the number of such classes. Thankfully, these are known due to
work of Schoof [64], and they involve Hurwitz class numbers.

To make this precise, we first recall some notation. If −D < 0 such that
−D ≡ 0, 1 (mod 4), then denote by O(−D) the unique imaginary quadratic
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order with discriminant −D. Let h(D) = h(O(−D)) denote3 the order of the
class group of O(−D) and let ω(D) = ω(O(−D)) denote half the number of
roots of unity in O(−D). Furthermore, define

(2.3) H(D) :=
∑

O⊆O′⊆Omax

h(O′) and H∗(D) :=
∑

O⊆O′⊆Omax

h(O′)
ω(O′) ,

where the sum is over all orders O′ between O and the maximal order Omax.
The following theorem of Schoof [64] gives the results we require.

Theorem 2.10 (Section 4 of [64]). If p ≥ 5 is prime, and q = pr, then the
following are true.

(1) If n ≥ 2 and s is a nonzero integer for which p|s and s2 �= 4q, then there
are no elliptic curves E/Fq with |E(Fq)| = q + 1 − s and Zn × Zn ⊆
E(Fq).

(2) If r is even and s = ±2pr/2, then the number of isomorphism classes of
elliptic curves over Fq with Z2×Z2 ⊆ E(Fq) and |E(Fq)| = q+1− s is

(2.4) S(p) := 1
12

(
p + 6 − 4

(
−3
p

)
− 3

(
−4
p

))
,

where
( ·
p

)
is the Legendre symbol.

(3) Suppose that n and s are integers such that s2 ≤ 4q, p � s, n2 | (q+1−s),
and n | (q − 1). Then the number of isomorphism classes of elliptic
curves over Fq with |E(Fq)| = q + 1 − s and Zn × Zn ⊆ E(Fq) is
H
(

4q−s2

n2

)
.

Remark. Theorem 2.10 is a compilation of various results from [64]. Namely,
(1) follows from Theorem 4.2 (ii-iii) and Lemma 4.8 (i). Claim (2) follows
from Theorem 4.6 and Lemma 4.8 (ii). Finally, (3) is a consequence of the
proof of Theorem 4.9 (i).
Remark. The number S(p) defined in(2.4) also happens to be the number of
isomorphism classes of supersingular elliptic curves over Fp (for example, see
Proposition 2.49 of [54]).

2.3. Formulas for 2F1 moments

Finally, we assemble the results of the previous subsections to obtain the
desired weighted class number sum expressions for the power moments.

3We note that H(D) = H∗(D) = h(D) = 0 whenever −D is neither zero nor a
negative discriminant.
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Proposition 2.11. Suppose that p ≥ 5 is prime. If r and m are positive
integers, then the following are true for q = pr, where in each summation we
have that −2√q ≤ s ≤ 2√q.

(1) If r is odd and m is even, then we have

qm
∑
λ∈Fq

2F1(λ)mq = 1 + 3
∑

gcd(s,p)=1
s≡q+1 (mod 4)

H∗
(

4q − s2

4

)
sm.

(2) If r and m are both even, then there is a rational number C(q) ∈ [0, 6]
for which

qm
∑
λ∈Fq

2F1(λ)mq =1+C(q)S(p)·qm/2+3
∑

gcd(s,p)=1
s≡q+1 (mod 4)

H∗
(

4q − s2

4

)
sm.

(3) If q ≡ 3 (mod 4) and m is odd, then we have qm
∑

λ∈Fq

2F1(λ)mq = 1.

(4) If q ≡ 1 (mod 4) and m is odd, then there is a rational number D(q) ∈
[−6, 6] for which

qm
∑
λ∈Fq

2F1(λ)mq

= −1 − 2
∑

gcd(s,p)=1
s≡q+1 (mod 8)

H∗
(

4q − s2

4

)
sm

− 4
∑

gcd(s,p)=1
s≡q+1 (mod 16)

H∗
(

4q − s2

16

)
sm −D(q)S(p)qm/2.

Remark. The rational number C(q) is the average number of Legendre form
curves in an Fq-isomorphism class with aLeg(q)λ = ±2 · pr/2. Similarly, D(q)
is the average number of such curves in an isomorphism class with aLeg

λ (q) =
2pr/2 minus the average number with aLeg

λ (q) = −2pr/2.

Proof. We first prove (3) as it is a triviality. By Theorem 4.4 of [30], if q ≡
3 (mod 4) and λ ∈ Fq \ {0, 1}, then 2F1(λ)q = −2F1(1 − λ)q. Therefore,
claim (3) follows from the resulting cancellation, combined with the fact that
2F1(1)q = 1/q and 2F1(0)q = 0.



Distribution of values of Gaussian hypergeometric functions 383

The proofs of claims (1), (2), and (4) are very similar. Therefore, we
only prove (4) for brevity. We make use of Theorem 2.10, and Lemmas 2.4
through 2.9. Using Theorem 2.1, we rewrite the sum in terms of −aLeg

λ (q).
We then decompose the sum

−
∑

λ∈Fq\{0,1}
aλ(q)m = −

∑
s

|I(s, q)| · sm,

where I(s, q) =
{
λ ∈ Fq \ {0, 1} : aLeg

λ (q) = s
}
. By Theorem 2.10 and Lem-

mas 2.4-2.6, and Lemma 2.9, we have

−
∑

λ∈Fq\{0,1}
aq(λ)m

= −4
∑

gcd(s,p)=1
s≡q+1 (mod 8)

[
H∗

(
4q − s2

4

)
−H∗

(
4q − s2

16

)]
sm

− 2
∑

gcd(s,p)=1
s
≡q+1 (mod 8)

H∗
(

4q − s2

4

)
sm − 6

∑
gcd(s,p)=1

s≡q+1 (mod 16)

H∗
(

4q − s2

16

)
sm

− |I(2q1/2, q)| · 2qm/2 − |I(−2q1/2, q)| · (−2qm/2) + E(q,m),

where E(q,m) is the sum over equivalence classes which do not contain a
Legendre normal form. However, by Lemma 2.8, we see that

E(q,m) = 2
∑

gcd(s,p)=1
−s≡q+1 (mod 16)

H∗
(

4q − s2

16

)
sm

= 2
∑

gcd(s,p)=1
s≡q+1 (mod 16)

H∗
(

4q − s2

16

)
(−s)m.

The result follows by considering congruence conditions and the fact that m
is odd.

3. The 3F2(λ)q and the arithmetic of ECl
λ

Here we recall important facts about the 3F2(λ)q values, which are related to
the squares of the trace of Frobenius for the Clausen elliptic curves ECl

λ .



384 Ken Ono et al.

Theorem 3.1 (Th. 5 of [53]). If λ ∈ Fq \{0,−1}, char(Fq) ≥ 5 and aCl
λ (q) :=

q + 1 − |ECl
λ (Fq)|, then we have

q + q2φ(λ + 1) · 3F2

(
λ

λ + 1

)
q

= aCl
λ (q)2.

Remark. Theorem 3.1 has a counterpart in terms of classical hypergeometric
functions. For 0 < λ < 1, if ΩCl(λ) is the real period of ECl

λ , then McCarthy
[43] proved that

3F2

(
1
2

1
2

1
2

1 1 | λ

λ + 1

)
=

√
1 + λ

π2 · ΩCl(λ)2.

3.1. Certain moments of traces of Frobenius of the Clausen
elliptic curves

The goal of this subsection is to obtain two types of power moments for the
Clausen curves. To this end, we first fix some notation. We let C denote a
generic isomorphism class of elliptic curves over Fq, where throughout p ≥ 5
is prime and q = pr, where r is a fixed positive integer. We let Iq denote the
set of all isomorphism classes of elliptic curves over Fq, and define

I(s, q) := {C ∈ Iq : ∀ E ∈ C we have |E(Fq)| = q + 1 ± s} ,(3.1)
I2(s, q) := {C ∈ I(s, q) : ∀ E ∈ C we have E(Fq)[2] ∼= Z2 × Z2} ,(3.2)

where 0 < s ≤ 2√q is even. We recall that the size of I(s, q) is given by
Theorem 2.10 as

|I(s, q)| =

⎧⎪⎪⎨⎪⎪⎩
2H(4q − s2) if p � s

2 · S(p) if s2 = 4q and r is even
0 otherwise,

where S(p) is given by (2.4).
For even 0 < s ≤ 2√q, we let

(3.3) L(s, q) =
{
λ ∈ Fq \ {0,−1} : aCl

λ (q) = ±s
}
.

The following proposition about most isomorphism classes with nonzero even
traces of Frobenius will simplify our later calculations.
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Proposition 3.2. If 0 < s ≤ 2√q is even, 1/3,−1/9 �∈ L(s, q), and |E(Fq)| �∈
{q + 1 ± s} for any elliptic curve E/Fq with j(E) = 1728, then the following
is true.

(1) If n is a positive integer, then∑
λ∈Fq\{0,−1}
aCl
λ (q)=±s

aCl
λ (q)2n = s2n ·

(1
2 · |I(s, q)| + |I2(s, q)|

)
.

(2) If n is a positive integer, then∑
λ∈Fpr\{0,−1}
aCl
λ (q)=±s

φ(−λ)aCl
λ (q)2n = s2n ·

(
−1

2 · |I(s, q)| + 2 · |I2(s, q)|
)
.

Proof. As I(s, q) includes quadratic twists, we let Ctw be the isomorphism
class of quadratic twists of curves in C by nonsquares in Fq, which then gives
I(s, q) = {C1, . . . , Ch, Ctw

1 , . . . , Ctw
h }. To study these isomorphism clases, it is

convenient to then define

Ĩ(s, q) =
{
C1 ∪ Ctw

1 , . . . , Ch ∪ Ctw
h

}
and Ĩ2(s, q) =

{
C ∪ Ctw : C ∈ I(s, q)

}
.

By Theorem 2.10, we can compute |Ĩ(s, q)| and |Ĩ2(s, q)|. Therefore, we
aim to relate the cardinalities of L(s, q), Ĩ(s, q) and Ĩ2(s, q). To this end, we
define F : L(s, q) → Ĩ(s, q) by F (λ) := [ECl

λ ] ∪ [ECl
λ ]tw, where [E] is the

Fq-isomorphism class of elliptic curves containing E.
By Lemma 7.1 [24], F is surjective, unless j(E) = 1728, in which case F

misses exactly one isomorphism class. Furthermore, by Lemma 7.2 of [24], if
1/3,−1/9 �∈ L(s, q), then F is three-to-one if and only if −λ is a square in
Fq, and is one-to-one otherwise. To see (1), we note that the above discussion
gives that∑

λ∈Fq\{0,−1}
aCl
λ (q)=±s

aCl
λ (q)2n = s2n ·

(1
2 (|I(s, q)| − |I2(s, q)|) + 3

2 · |I2(s, q)|
)
.

Similarly, to obtain (2), the above discussion gives that

∑
λ∈Fq\{0,−1}
aCl
λ (q)=±s

φ(−λ)aCl
λ (q)2n = s2n ·

(
−1

2 (|I(s, q)| − |I2(s, q)|) + 3
2 · |I2(s, q)|

)
.

These two claims clearly reduce to (1) and (2) respectively.
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The discussion above also provides the following critical bound for |L(s, q)|.

Proposition 3.3. If 0 < s ≤ 2√q is even, then we have |L(s, q)| ≤ 3 ·
max

{
H(4q − s2), S(p), 2

}
.

4. Harmonic Maass forms and weighted sums of Fourier
coefficients

In this section, we explain how the weighted sums of class numbers in the
previous section arise naturally in the theory of harmonic Maass forms (for
background, see [14]). The connection with harmonic Maass forms stems from
the following well-known theorem about Zagier’s weight 3/2 nonholomorphic
Eisenstein series.

Theorem 4.1 ([67]). The function

H(τ) = − 1
12 +

∞∑
n=1

H∗(n)qnτ + 1
8π√y

+ 1
4
√
π

∞∑
n=1

nΓ(−1
2; 4πn2y)q−n2

,

where τ = x + iy ∈ H and qτ := e2πiτ , is a weight 3/2 harmonic Maass form
with manageable growth at the cusps of Γ0(4).

This theorem asserts that the generating function for Hurwitz class num-
bers4 is the holomorphic part of the harmonic Maass form H(τ). More gener-
ally (for example, see Lemma 4.3 of [14]), every weight k �= 1 harmonic weak
Maass form f(τ) has a Fourier expansion of the form

(4.1) f(τ) = f+(τ) + (4πy)1−k

k − 1 c−f (0) + f−(τ),

where

f+(τ) =
∞∑

n=m0

c+f (n)qnτ and f−(τ) =
∞∑

n=n0
n 
=0

c−f (n)nk−1Γ(1 − k; 4π|n|y)q−n
τ .

(4.2)

Here Γ(α;x) :=
∫∞
α e−ttx−1dt is the usual incomplete Gamma-function. The

function f+(τ) is called the holomorphic part of f .
The weighted sums of class numbers we require appear in formulas for

the Fourier coefficients of certain families of nonholomorphic modular forms.
4Here we adopt the convention that H∗(0) := −1/12.
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These forms are constructed from Zagier’s H(τ) as a simple implementation
of the Rankin-Cohen bracket operators, which are combinatorial expressions
in derivatives of pairs of modular forms. This method was previously applied
by Mertens [50, 51] in his proof of a deep conjecture of Cohen on the Cohen-
Eisenstein series.

4.1. Combinatorial interlude

To carry out the strategy described above, we require a framework of combi-
natorial identities for the degree a− 2 homogeneous polynomials

(4.3) Pa,b(X, Y ) :=
a−2∑
j=0

(
j + b− 2

j

)
Xj(X + Y )a−j−2,

where a ≥ 2 is a positive integer and b is any real number. This framework
captures the nonholomorphic modular forms constructed with the Rankin-
Cohen brackets. The next proposition gives a significant identity for certain
complicated algebraic expressions in these polynomials.

Proposition 4.2. If m > n are positive integers, then we have

2−2ν−1
(

2ν + 1
ν + 1

)(
m− 1

2 (m
1
2 − n

1
2 )2ν+2

)
=

ν∑
μ=0

(
1
2 + ν

ν − μ

)(
1
2 + ν

μ

)
mν−μ ×

(
mμ−2ν−1/2P3+2ν, 12−μ(m− n, n)−n

1
2+μ

)
.

This proposition is analogous to Proposition V.2.7 of [50]. Moreover, its
proof follows along the same lines. The key lemmas we require are as follows,
where binomial and multinomial coefficients with non-integral arguments are
defined using the Gamma-function.

Lemma 4.3. If ν ≥ 1, and j ≥ 0 are integers, then we have

ν∑
μ=0

(−1)μ

μ− j + 1
2
·
(

4ν − 2μ + 1
2ν − μ, μ, 2ν − 2μ + 1

)
= 24ν+2(−1)j (2ν − j + 1)!j!

(2j)!(2ν − 2j + 2)! .

Sketch of the Proof. This claim is analogous to Lemma V.2.6 of [50], which
stems from an expression of the form

∑
cμ = 1

−j + 1
2
·
(

4ν − 1
2ν

)
· 3F2

(
−ν −j + 1

2 −ν + 1
2

−j + 3
2 −2ν + 1

2
| 1
)
.
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The claim is obtained by applying the same steps to the following expression
with sign changes

∑
cμ = 1

−j + 1
2
·
(

4ν + 1
2ν

)
· 3F2

(
−ν −j + 1

2 −ν − 1
2

−j + 3
2 −2ν − 1

2
| 1
)
.

Lemma 4.4. The following are true:

(1) If μ ≤ ν are nonnegative integers, then we have(
ν + 1

2
ν − μ

)(
ν + 1

2
μ

)
= 2−2ν−1

(
2ν + 1
ν + 1

)(
2ν + 2
2μ + 1

)
.

(2) If 0 ≤ μ ≤ ν and j ≥ 0 are integers, then we have(
2ν − μ + 1

2
2ν + 1 − j

)(
j − μ− 3

2
j

)

= (−1)μ+1

j − μ− 1
2
· 2−4ν−2 (4ν − 2μ + 1)!(2μ + 1)!

(2ν − μ)! μ! j! (2ν − j + 1)! .

Sketch of Proof. To prove (1), we emulate Mertens’ proof (see p. 60 of [50])
that (

ν + 1
2

ν − μ

)(
ν − 1

2
μ

)
= 2−2ν

(
2ν
ν

)(
2ν + 1
2μ + 1

)
.

He gives explicit steps involving standard properties of the Gamma-function
that transform the left-hand side into the right-hand side. To obtain (1), one
applies the same steps to (

ν + 1
2

ν − μ

)(
ν + 1

2
μ

)
.

To prove (2), we emulate Mertens’ proof (see p. 61 of [50]) that(
2ν − μ− 1

2
2ν − j

)(
j − μ− 3

2
j

)
= (−1)μ+1

j − μ− 1
2
· 2−4ν (4ν − 2μ− 1)!(2μ + 1)!

(2ν − μ− 1)! μ! j! (2ν − j)! .

He gives explicit steps which transform the left-hand side into the right-hand
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side. To obtain (2), one applies the same steps to(
2ν − μ + 1

2
2ν + 1 − j

)(
j − μ− 3

2
j

)
.

Finally, we recall an important identity for the polynomials Pa,b(X, Y )
obtained by Mertens.

Lemma 4.5 (Lemma V.1.8 of [50]). If b �= 1, 2, then

(4.4) Pa,b(X, Y ) =
a−2∑
j=0

(
a + b− 3
a− 2 − j

)(
j + b− 2

j

)
(X + Y )a−2−j(−Y )j .

Using these lemma above, we are now able to prove Proposition 4.2.

Proof of Proposition 4.2. To prove the proposition, we begin with the right-
hand side of the claimed formula. To start, we absorb the powers of m by

ν∑
μ=0

(
1
2 + ν

ν − μ

)(
1
2 + ν

μ

)
mν−μ ×

(
mμ−2ν− 1

2P3+2ν, 12−μ(r, n) − n
1
2+μ

)

=
ν∑

μ=0

(
ν + 1

2
ν − μ

)(
ν + 1

2
μ

)(
m−ν− 1

2P3+2ν, 12−μ(r, n) − n
1
2+μmν−μ

)
.

By combining Lemma 4.4 (1) with Lemma 4.5, one obtains

= 2−2ν−1
(

2ν + 2
ν + 1

)(
ν∑

μ=0

2ν+1∑
j=0

mν−j+ 1
2

(
2ν − μ + 1

2
2ν + 1 − j

)(
j − μ− 3

2
j

)
(−n)j

−
ν∑

μ=0

(
2ν + 2
2μ + 1

)
n

1
2+μmν−μ

)
.

By the Binomial Theorem, we note that the left-hand side of the claim is

m− 1
2 (m

1
2 − n

1
2 )2ν+2 =

ν+1∑
μ=0

(
2ν + 2

2μ

)
mν−μ+ 1

2nμ −
ν∑

μ=0

(
2ν + 2
2μ + 1

)
nμ+ 1

2mν−μ.

Therefore, it suffices to show that

ν∑
μ=0

2ν+1∑
j=0

mν−j+ 1
2

(
2ν − μ + 1

2
2ν + 1 − j

)(
j − μ− 3

2
j

)
(−n)j =

ν∑
μ=0

(
2ν + 2

2μ

)
mν−μ+ 1

2nμ.
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Lemma 4.4 (2), followed by an application Lemma 4.3, implies this equal-
ity.

4.2. Families of modular forms obtained from Rankin-Cohen
brackets

As alluded to earlier, the weighted sums of class numbers we require arise
in formulas for the coefficients of certain families of non-holomorphic mod-
ular forms. These families are obtained from Zagier’s H(τ) by making use
of Rankin-Cohen brackets. In this section, we recall several important facts
about the nonholomorphic modular forms obtained by this method, along
with their holomorphic modular form images under the process of holomor-
phic projection.

To make this precise, let f and g be smooth functions defined on the
upper-half of the complex plane H, and let k, l ∈ R>0 and ν ∈ N0. The νth
Rankin-Cohen bracket of f and g is

(4.5) [f, g]ν := 1
(2πi)ν

∑
r+s=ν

(−1)r
(
k + ν − 1

s

)(
l + ν − 1

r

)
dr

dτ r
f · ds

dτ s
g.

As the next proposition illustrates, these operators preserve modularity.

Proposition 4.6 (Th. 7.1 of [17]). Let f and g be (not necessarily holo-
morphic) modular forms of weights k and l, respectively on a congruence
subgroup Γ. Then the following are true.

(1) We have that [f, g]ν is modular of weight k + l + 2ν on Γ.
(2) If γ ∈ SL2(R), then under the usual modular slash operator we have

[f |kγ, g|lγ]ν = ([f, g]ν)|k+l+2νγ.

Remark. Proposition 4.6 (2) is important for studying the behavior of Rankin-
Cohen brackets at cusps. It shows that if f and g are smooth functions that
do not blow up at any cusp, and [f, g]ν vanishes at the cusp i∞, then it
vanishes at all other cusps for ν > 0.

By Proposition 4.6, we have a procedure for producing many nonholomor-
phic modular forms from derivatives of a pair of seed forms f and g. We shall
study forms that arise in this way from f(τ) := H(τ) and certain univari-
ate theta functions for g(τ). To prove our results, we make use of canonical
holomorphic modular forms that have coefficients with the same asymptotic
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properties as [f, g]ν . These forms are obtained by the method of holomorphic
projection.

To make this precise, suppose f : H → C is a (not necessarily holomor-
phic) modular form of weight k ≥ 2 on a congruence subgroup Γ with Fourier
expansion

f(τ) =
∑
n∈Z

cf (n, y)qnτ ,

where τ = x + iy. Let {κ1, . . . , κM} be the cusps of Γ, where κ1 := i∞.
Moreover, for each j let γj ∈ SL2(Z) satisfy γjκj = i∞. Then suppose the
following are true.

(1) There is an ε > 0 and a constant c
(j)
0 ∈ C for which

f
(
γ−1
j w

)( dτ

dw

)k/2
= c

(j)
0 + O(Im(w))−ε,

for all j = 1, . . . ,M and w = γjτ .
(2) For all n > 0, we have that cf (n, y) = O(y2−k) as y → 0. Then, the

holomorphic projection of f is defined by

(4.6) (πholf)(τ) := c0 +
∞∑
n=1

c(n)qnτ ,

where c0 = c
(1)
0 and for n ≥ 1

c(n) = (4πn)k−1

(k − 2)!

∫ ∞

0
cf (n, y)e−4πnyyk−2dy.

The following proposition explains the important role of the projection oper-
ator.

Proposition 4.7 (Prop. 10.2 of [14]). Assuming the hypotheses above, if
k > 2 (resp. k = 2), then πhol(f) is a weight k holomorphic modular form
(resp. weight 2 quasimodular form) on Γ.

Turning to the setting we consider, suppose that f is a harmonic Maass
form of weight k ∈ 1

2Z on Γ0(N) with manageable growth at the cusps, and
that g is a holomorphic modular form of weight l on Γ0(N). Moreover, suppose
that [f, g]ν satisfies the hypothesis in the definition of holomorphic projection.
By additivity, the holomorphic modular form obtained by Proposition 4.7 has
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the following convenient decomposition

(4.7) πhol([f, g]ν) = [f+, g]ν + (4π)1−k

k − 1 c−f (0)πhol([y1−k, g]ν) + πhol([f−, g]ν).

For our applications, the weighted class number sums will arise from the
first summand [f+, g]ν of (4.7), when g(τ) is a univariate theta function,
and f(τ) = H(τ). This term [H, g]ν clearly involves weighted sums of class
numbers via Theorem 4.1.

The other two summands in (4.7) must be bounded for our applications.
The next lemma offers a closed formula for the Fourier expansion of the middle
term.

Lemma 4.8 (Lemma V.1.4 of [50]). Assuming the hypotheses above, if g(τ)
has Fourier series g(τ) =

∑∞
n=0 ag(n)qnτ , then we have

(4π)1−k

k − 1 πhol([y1−k, g]ν) = κ(k, l, ν) ·
∞∑
n=0

nk+ν−1ag(n)qnτ ,

where

κ(k, l, ν) := 1
(k + l + 2ν − 2)!(k − 1)

×
ν∑

μ=0

(
Γ(2 − k)Γ(l + 2ν − μ)

Γ(2 − k − μ)

(
k + ν − 1
ν − μ

)(
l + ν − 1

μ

))
.

Finally, the last term in (4.7) can be bounded thanks to the following
theorem of Mertens that offers a closed formula in terms of the Fourier coef-
ficients of f and g.

Theorem 4.9 (Th. V.1.5 of [50]). If c−f (n) and ag(n) are bounded polynomi-

ally, then we have πhol([f−, g]ν =
∞∑
r=1

b(r)qrτ , where

b(r) = −Γ(1 − k)
∑

m−n=r

ag(m)c−f (n)
ν∑

μ=0

(
k + ν − 1
ν − μ

)(
l + ν − 1

μ

)
mν−μ

×
(
mμ−2ν−l+1Pk+l+2ν,2−k−μ(r, n) − nk+μ−1

)
,

where the sum runs over positive integers m and n.
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Remark. We shall apply Proposition 4.2, the main objective of the previous
subsection, to the formulas in the theorem above. This application yields
convenient formulas for the Fourier expansions of important modular forms
(for example, see (4.2)) constructed in the next section.

5. Bounds for weighted sums of class numbers

Here we assemble the required asymptotics for the weighted sums of class
numbers that lead to the proofs of Theorems 1.1 and 1.3. The proofs of these
asymptotics rely on standard bounds for class numbers and coefficients of
cusp forms, and the results of Section 4 on the holomorphic projection of
those nonholomorphic modular forms arising from the Rankin-Cohen bracket
of Zagier’s H(τ) function with certain univariate theta functions.

5.1. Some standard bounds

Here we recall some simple class numbers bounds, and the celebrated theorem
of Deligne which bounds the coefficients of integer weight cusp forms.

Lemma 5.1. The following are true.

(1) If −D < 0 is a discriminant, then we have H∗(D) ≤
√
D(logD+2)/π.

(2) For fixed positive integers r and m, as the primes p → +∞, we have

∑
s∈Ωpr

H∗
(

4pr − s2

4

)
sm = om,r(pr(m/2+1)),

where Ωpr := {s ∈ [−2
√
pr, 2

√
pr] : p | s and s ≡ pr + 1 (mod 4)}.

Proof. Claim (1) is Lemma 2.2 of [32]. To prove (2), we note that at most
2pr/2−1 nonzero integers s such that s2 ≤ 4pr and p|s. Therefore, we have the
following trivial bound

∑
s∈Ωpr

H∗
(

4pr − s2

4

)
sm ≤ 2pr/2−1(2pr/2)m · max

{
H∗

(
4pr − s2

4

)}
.

Claim (2) follows immediately now from (1).

The following celebrated theorem of Deligne, which bounds the coefficients
of integer weight cusp forms, shall also play a key role in our subsequent work.

Theorem 5.2 (Remark 9.3.15 of [18]). If f =
∑
n≥1

a(n)qnτ is a cusp form

of integer weight k on a congruence subgroup, then for all ε > 0 we have
a(n) = Oε(n(k−1)/2+ε).
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5.2. Weighted sums of class numbers required for Theorem 1.1

We now derive the asymptotic formulas which are crucial for the proof of
Theorem 1.1.

5.2.1. Even moments We begin by recalling the famous classical result
of Eichler.

Theorem 5.3 (Eichler [20, 21]). If N is odd, then

∑
−
√
N≤s≤

√
N

H∗(N − s2) = −λ1(N) + 1
3σ1(N),

where σ1(N) :=
∑
d|N

d, and λ1(N) := 1
2
∑
d|N

min(d, Nd ).

From Eichler’s identity, if q = pr, where p is an odd prime, then we find
that

3
∑

−√
q≤s≤√

q

H∗(q − s2) = q + or(q)

This conclusion is the n = 0 case of the following general family of asymp-
totics.

Lemma 5.4. If n is a nonnegative integer, then

3
∑

s≡q+1 (mod 4)
H∗

(
4q − s2

4

)
s2n = (2n)!

n!(n + 1)! · q
n+1 + on(qn+1).

Proof. Since H∗(D) = 0 for D ≡ 1, 2 (mod 4), we have

∑
s≡q+1 (mod 4)

H∗
(

4q − s2

4

)
s2n = 22n∑

s

s2nH∗(q − s2).

Mertens recently proved Cohen’s Conjecture (see Conjecture I.2.1 of [50] and
[17]) which constructs an infinite sequence of cusp forms from Hurwitz class
numbers. Namely, if n is a positive integer, then he proves (see Theorem 1 of
[51]) that the coefficient of X2n in

∑
l odd

[∑
s∈Z

H∗(l − s2)
1 − 2sX + lX2 +

∞∑
k=0

λ2k+1(l)X2k
]
qlτ
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is a cusp form of weight 2n+2 on Γ0(4), where λ2k+1(l) := 1
2
∑
d|l

min(d, l
d)

2k+1.

On the other hand, Lemma 7.5 of [17] establishes that the coefficient of X2n

is the Fourier series

∑
l odd

qlτ

⎡⎣ ∑
0≤t≤n

(−1)t (2n− t)!lt

t!(2n− 2t)!
∑
s

H∗(l − s2)(2s)n−2t + λ2n+1(l)

⎤⎦ .
We now prove the lemma by mathematical induction on n. Thanks to

Eichler’s Theorem 5.3, the claim holds for n = 0. Now, suppose that the
lemma is true for n′ < n. It is clear that λ2n+1(q) = O(qn+3/4) = o(qn+1) as
q → ∞. Therefore, Deligne’s Theorem 5.2 implies that

∑
1≤t≤n

(−1)t (2n− t)!qt

t!(2n− 2t)!
∑
s

H∗(q − s2)(2s)2n−2t +
∑
s

H∗(q − s2)(2s)2n
(5.1)

= on(qn+1).

By the induction hypothesis, replacing
∑
s
H∗(q − s2)(2s)2n−2t by

(2n−2t)!
3(n−t)!(n−t+1)!q

n−t+1 contributes on(qn−t+1). Therefore, we have

3
∑
s

H∗(q − s2)(2s)2n

= −
∑

1≤t≤n

(−1)t (2n− t)!
t!(n− t)!(n + 1 − t)! · q

n+1 + on(qn+1)

= (2n)!
n!(n + 1)!q

n+1 −
∑

0≤t≤n

(−1)t (2n− t)!
t!(n− t)!(n + 1 − t)! · q

n+1 + on(qn+1).

Cohen computed (1 − t)l+1 · (1 − t)−l−1 in two ways, and proved (see p. 284
of [17]) that ∑

0≤t≤n

(−1)t (2n− t)!
t!(n− t)!(n + 1 − t)! = 0,

thereby completing the proof.

5.2.2. Odd moments The following lemma provides an asymptotic for-
mula for a modified version of the weighted sum of Hurwitz class numbers
which appears in Proposition 2.11 (4).
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Lemma 5.5. If m is a positive odd integer, then the following are true.

(1) As q → ∞ with q ≡ 1 (mod 4), we have

∑
s≡q+1 (mod 8)

H∗
(

4q − s2

4

)
sm = om(qm/2+1).

(2) As q → ∞ with q ≡ 1 (mod 4), we have

∑
s≡q+1 (mod 16)

H∗
(

4q − s2

16

)
sm = om(qm/2+1).

Proof. Here we prove case (1) when q ≡ 1, 5 (mod 8). The proof of (2) is
completely analogous and shall be left to the reader. To this end, let g(τ) =
η(8τ)3, where η(τ) = q

1/24
τ

∞∏
n=1

(1 − qnτ ) is the Dedekind eta-function. It is

the weight 3/2 cuspidal theta function on Γ0(64) for the Dirichlet character
χ−4 :=

(−4
•
)
. By Theorem 4.1 and Proposition 4.7, we have that πhol(H · g) is

a holomorphic modular form of weight 3 on Γ0(64) and Nebentypus character
χ−4. Moreover, since H has manageable growth at cusps and g is a cusp
form, Proposition 4.6 (2) implies that πhol(H · g) is a cusp form. Thanks to
Proposition 4.2, Lemma 4.8, and Theorem 4.9, its Fourier expansion is

∞∑
n=1

⎛⎝ ∑
s≡1 (mod 4)

H∗(n− s2)s

⎞⎠ qnτ + 1
4

∞∑
n=1

⎛⎜⎜⎝ ∑
t2−l2=n
t,l≥1

χ−4(t) · (t− l)2

⎞⎟⎟⎠ qnτ

+ 1
8

∞∑
n=0

χ−4(n) · n2qn
2

τ .

(5.2)

Since we have
∑

t2−l2=n
t,l≥1

(t − l)2 ≤ n
1
2 · d(n), where d(n) is the divisor function,

it is clear that
∑

t2−l2=n
t,l≥1

(t − l)2 = o(n3/2). Claim (1) with m = 1 follows from

Theorem 5.2 as we have

∑
s≡2 (mod 8)

H∗
(

4q − s2

4

)
sm =

∑
s≡1 (mod 4)

H∗
(
q − s2

)
(2s)m.
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We proceed by induction. Suppose that it is true for m′ < m. If ν =
(m− 1)/2, then it is easy to verify that

[H+, g]ν

=
∞∑
n=0

⎛⎝ ν∑
j=0

(−1)j
(
ν + 1

2
j

)(
ν + 1

2
ν − j

) ∑
s≡1 (mod 4)

s2ν−2j+1(n−s2)jH∗(n−s2)

⎞⎠qnτ .

Therefore, as above, we have that

∞∑
n=0

⎛⎝ ν∑
j=0

(−1)j
(
ν + 1

2
j

)(
ν + 1

2
ν − j

) ∑
s≡1 (mod 4)

s2ν−2j+1(n− s2)jH∗(n− s2)

⎞⎠ qnτ

+ 2−2ν−2
(

2ν + 1
ν + 1

) ∞∑
n=1

( ∑
t2−l2=n
t,l≥1

χ(t)(t− l)2ν+2
)
qnτ + κ

8
√
π

∞∑
n=0

χ(n)n2ν+2qn
2

τ ,

where κ = κ(3/2, 3/2, ν) is as in Lemma 4.8, is a cusp form of weight 2ν + 3
on Γ0(64) and Nebentypus character χ−4. The proof follows similarly as in
the case m = 1 with an induction argument for the first sum.

5.3. Weighted sums of class numbers required for Theorem 1.3

We state an asymptotic formula for weighted sums of class numbers which
are important to prove Theorem 1.3. For brevity, we sketch the proof as it
follows the same arguments from the previous section.

Lemma 5.6. If n is a nonnegative integer, then as q → +∞ we have

∑
s even

H∗(4q − s2)s2n = 4
3 · (2n)!

n!(n + 1)!q
n+1 + on(qn+1).

Sketch of the proof. First, we write∑
s even

H∗(4q − s2)s2n = 22n∑
s

H∗(4q − 4s2)s2n.

To adapt the proof of Lemma 5.5, let g(τ) = θ(4τ), where θ(τ) =
∑
n∈Z

qn
2

τ =

1+2qτ+2q4
τ+. . . is the usual weight 1/2 Jacobi θ function. Then g is a modular

form of weight 1/2 on Γ0(16). The proof for ν = 0 follows from a simple
counting argument for the number of Clausen models. Then the proof by
induction follows the same steps as in the proof of Lemma 5.5 when modified
suitably for the weight 1/2 univariate theta function g(τ) = θ(4τ).
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6. Some distributions

To obtain Corollaries 1.2 and 1.4, we will combine Theorem 1.1 and 1.3 with
the following lemma concerning the semicircular and Batman distributions.
To make this precise, we first let P denote the set of primes, and fix a positive
integer r. For each prime p ∈ P, we have a function

fp : Fpr → [−1, 1].

In this notation, we have the following important lemma.

Lemma 6.1. If r is a fixed positive integer, then the following are true.

(1) Suppose that the following asymptotics hold for every positive integer m:

∑
λ∈Fpr

fp(λ)m =
{
om,r(1) if m is odd

(2n)!
22n(n+1)!n! + om,r(1) if m = 2n is even.

If −1 ≤ a < b ≤ 1, then

lim
p→∞

| {λ ∈ Fpr : fp(λ) ∈ [a, b]} |
pr

= 2
π

∫ b

a

√
1 − t2dt.

(2) Suppose that the following asymptotics hold for every positive integer m:

∑
λ∈Fpr

fp(λ)m =

⎧⎪⎨⎪⎩
om,r(1) if m is odd
m∑
i=0

(−1)i
(m
i

) (2i)!
3mi!(i+1)! + om,r(1) if m is even.

If −1 ≤ a < b ≤ 1, then

lim
p→∞

| {λ ∈ Fpr : fp(λ) ∈ [a, b]} |
pr

= 3
4π

∫ b

a
f(t)dt,

where

f(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3−3|t|√

3+6|t|−9t2
if 1

3 < |t| < 1
3+3t√

3−6t−9t2 + 3−3t√
3+6t−9t2 if |t| < 1

3

0 otherwise.

Proof. This result follows via a standard application of the method of mo-
ments in probability theory (for example, see Theorems 30.1 and 30.2 of [12]).
We prove these two cases separately.
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(1) For each p ∈ P, consider the probability space (Ωp,Fp, μp), where Ωp =
Fpr ,Fp = P(Fpr), and μp(A) = |A|/pr for all A ∈ Fp. For the random variable
Xp = fp, we have

lim
p→∞

E(Xm
p ) =

{
0 if m is odd

(2n)!
22n(n+1)!n! if m = 2n is even.

Furthermore, consider the probability space (Ω,F , μST ), where Ω := [−1, 1],
F is the collection of Lebesgue-measurable subsets of Ω, and μST is the mea-
sure μST ([a, b]) := 2

π

∫ b
a

√
1 − t2 dt.

For the random variable X : Ω → [−1, 1], defined by X(t) := t, we have

E(Xm) =
{

0 if m is odd
(2n)!

22n(n+1)!n! if m = 2n is even.

Since the moment-generating function has a positive radius of convergence,
the distribution of X is determined by its moments, and thus Xp converges
in distribution to X. Therefore, for −1 ≤ a < b ≤ 1, we have

lim
p→∞

|{λ ∈ Fpr : fp(λ) ∈ [a, b]}|
pr

= lim
p→∞

μp({a ≤ Xp ≤ b}) = μST (a ≤ X ≤ b).

(2) The proof of the second case follows mutatis mutandis. The only change
is that

∫ 3

−3
f(t)tmdt =

⎧⎪⎨⎪⎩
0 if m is odd
4π

m∑
i=0

(−1)i
(m
i

) (2i)!
i!(i+1)! if m is even,

where f(t) is as in Corollary 1.4. Since f is odd, it is clear that
∫ 3
−3 f(t)tmdt =

0 when m is odd. By symmetry, when m is even, we have

∫ 3

−3
f(t)tmdt = 2

∫ 3

−1

√
3 − t

1 + t
· tmdt.

By a simple change of variables, we see that∫ 3

−3
f(t)tmdt = 8

∫ 1

0
t−1/2(1 − t)1/2(1 − 4t)mdt.
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Thankfully, we can express this integral in terms of the Appell hypergeometric
series

F1(a, b1, b2; c;x, y) :=
∞∑

k,n=0

(a)k+n(b1)k(b2)n
(c)k+nk!n! · xkyn,

where c is not a nonnegative integer, and (r)n :=
n−1∏
k=0

(r + k) for n ≥ 1, and

(r)0 = 1. By a formula of Bailey (see page 77, (4) of [5]), we have∫ 1

0
tu
(

1 − t

a

)v (
1 − t

b

)w

dt = 1
u + 1 · F1

(
u + 1,−v,−w;u + 2; 1

a
,
1
b

)
.

By letting u = −1
2 , v = 1

2 , w = m, a = 1, and b = 1
4 , we obtain5

(6.1)
∫ 3

−3
f(t)tmdt = 16 · F1

(1
2 ,−

1
2 ,−m; 3

2 ; 1, 4
)
.

To find an exact formula, we will need the classical hypergeometric series

2F1

(
a b

c
|z
)

:=
∞∑
n=0

(a)n(b)n
(c)n

· z
n

n! ,

where c cannot be a nonnegative integer. It is straightforward to see that

F1(a, b1, b2; c; 1, x) = 2F1

(
a b1

c
|1
)
· 2F1

(
a b2

c− b1
|x
)
.

Substituting this identity into (6.1), we obtain

(6.2)
∫ 3

−3
f(t)tmdt = 16 · 2F1

(
1
2 −1

2
3
2

| 1
)
· 2F1

(
1
2 −m

2 | 4
)
.

Using Gauss’ identity (see (1.3) of [5], and [28])

2F1

(
a b

c
| 1
)

= Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) ,

where Re(c− a− b) > 0, we find that∫ 3

−3
f(t)tmdt = 4π · 2F1

(
1
2 −m

2 | 4
)

= 4π
m∑
k=0

(−1)k
(
m

k

)
(2k)!

k!(k + 1)! .

The claim in the proposition follows by an elementary rescaling.
5This series converges since −m is negative integer.
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7. Proofs of Theorems 1.1 and 1.3 and Corollaries 1.2 and
1.4

We now prove Theorems 1.1 and 1.3, and their corollaries.

Proof of Theorem 1.1. Proposition 2.11 gives a formula for the power mo-
ments of the values of the hypergeometric functions 2F1(λ)q in terms of
weighted sums of class numbers. Lemma 5.1 (2) reduces the statement to
Lemmas 5.4 and 5.5, thereby concluding the proof.

Proof of Corollary 1.2. After rescaling, the claim follows from Theorem 1.1
and Lemma 6.1 (1).

Proof of Theorem 1.3. By Proposition 3.2 and Lemma 5.1 (2), we have that

∑
λ∈Fpr

aCl
λ (pr)2n = (2n)!

n!(n + 1)! · p
rn+r + on(prn+r) and

∑
λ∈Fpr

φ(−λ)aCl
λ (pr)2n = on(prn+r),

for all positive integers n. Since 3F2(β)q = φ(−β)3F2(1/β)q for all β ∈ F×
q

(see Theorem 4.2 of [30]), Theorem 3.1 gives us that

φ(λ + 1)aCl
λ (q)2 = φ(λ + 1)aCl

−λ−1(q)2.

Applying the binomial theorem to the equation in Theorem 3.1 concludes the
proof.

Proof of Corollary 1.4. After rescaling, the claim follows from Theorem 1.3
and Lemma 6.1 (2).
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