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Abstract. Ramanujan’s celebrated partition congruences modulo ℓ ∈ {5, 7, 11} assert that

p(ℓn+ δℓ) ≡ 0 (mod ℓ),

where 0 < δℓ < ℓ satisfies 24δℓ ≡ 1 (mod ℓ). By proving Subbarao’s Conjecture, Radu showed
that there are no such congruences when it comes to parity. There are infinitely many odd
(resp. even) partition numbers in every arithmetic progression. For primes ℓ ≥ 5, we give a
new proof of the conclusion that there are infinitely many m for which p(ℓm+ δℓ) is odd. This
proof uses a generalization, due to the second author and Ramsey, of a result of Mazur in his
classic paper on the Eisenstein ideal. We also refine a classical criterion of Sturm for modular
form congruences, which allows us to show that the smallest such m satisfies m < (ℓ2 − 1)/24,
representing a significant improvement to the previous bound.

1. Introduction and Statement of Results

A partition of size n is any nonincreasing sequence of positive integers that sums to n. The
partition function p(n) counts the partitions of size n, and has the convenient generating function

∞∑
n=0

p(n)qn =
∞∏
n=1

1

1− qn
= 1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 11q6 + . . . .

Ramanujan famously proved [9] the congruences

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11),

which are uniformly described by the congruence

(1.1) p(ℓn+ δℓ) ≡ 0 (mod ℓ),

where ℓ ∈ {5, 7, 11} and 0 < δℓ < ℓ satisfies 24δℓ ≡ 1 (mod ℓ).
Here we consider the parity of p(n). Table 1 offers some values of

Pr2(N) :=
#{0 ≤ n < N : p(n) is even}

N
,

the proportion of the first N values that are even.
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N Pr2(N)

200,000 0.5012. . .
600,000 0.5000. . .

1,000,000 0.5004. . .
∞ 1

2
?

Table 1. Proportion of even values

These numerics suggest the widely held belief that the parity of the partition function is
randomly distributed [7]. Unfortunately, very little is known. Perhaps the strongest result in
this direction is Radu’s proof [8] of Subbarao’s Conjecture, which asserts that every arithmetic
progression r (mod t) contains infinitely many integers N ≡ r (mod t) for which p(N) is even,
and infinitely many integers M ≡ r (mod t) for which p(M) is odd. Radu’s work built on
previous papers [3, 4] by the second author, which proved the “even cases” of the conjecture,
and offered partial results in the “odd cases”. To be precise, the second author proved that
there are infinitely many M ≡ r (mod t) for which p(M) is odd, provided that there is at least
one such M. Moreover, if there is such an M, then he proved that the smallest one satisfies

(1.2) M <
223+j · 37t6

d2

∏
p|6t

prime

(
1− 1

p2

)
− 2j,

where d := gcd(24r − 1, t) and j is an integer for which 2j > t/24.

Problem. Determine an upper bound for the smallest N ≡ r (mod t) for which p(N) is even.

We offer a new proof of the odd case of Subbarao’s Conjecture for the family of arithmetic
progressions including those in (1.1). Moreover, in these cases we obtain a significant improvement
to the bound in (1.2).

Theorem 1.1. If ℓ ≥ 5 is prime, then there are infinitely many m for which p(ℓm+ δℓ) is odd.
Moreover, the smallest such m satisfies m < (ℓ2 − 1)/24.

Two Remarks.
(1) In a way, Theorem 1.1 is “sharp”. Indeed, for ℓ = 5, we find that p(4), which happens to
equal 5, must be odd, as m = 0 < (52 − 1)/24 = 1 is the only option.
(2) Theorem 1.1 has a generalization where ℓ can be replaced with any t ∈ Z+ coprime to 6. The
smallest m for which p(tm+ δt) is odd, where 0 < δt < t and 24δt ≡ 1 (mod t), satisfies

m <
t

24

∏
p|t

prime

p.

To prove this theorem, we apply a result (see Theorem 2.1) by the second author and Ramsey
[6] that is a generalization of a result of Mazur in his work on the Eisenstein ideal. We also require
a refinement of a classical criterion of Sturm (see Theorem 2.2) for modular form congruences.
In Section 3 we apply these results to specific modular functions obtained by applying Hecke
operators to a weight 0 eta-quotient that encodes the parity of p(n).
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2. Preliminaries about modular form congruences

The proof of Theorem 1.1 makes use of the theory of modular forms (for example, see [5]).
To be precise, we require a “modulo ℓ” Atkin-Lehner theorem, and a refinement of a classical
criterion of Sturm for modular form congruences. Here we recall and derive these results.

2.1. A modulo ℓ Atkin-Lehner theorem. The main result of [6] is a “modulo” ℓ Atkin-
Lehner Theorem1, a generalization of a result of Mazur (suggested by Serre) in his classical
paper on the Eisenstein ideal (see p. 83 of [1]).

Theorem 2.1 (Theorem 1.1 of [6]). Suppose that f(τ) is a meromorphic modular form of
weight k ∈ 1

2
Z on Γ0(N) which has integral Fourier coefficients at i∞. Let p be a prime with

the property that there is an integer c > 1 for which the Fourier expansion of f(τ) at i∞ (i.e.
q := e2πiτ throughout) satisfies

f(τ) ≡
∑
n≥n0

a(n)qcn (mod p).

If gcd(Np, c) = 1 and f has trivial nebentypus character at p (i.e. f is fixed by the diamond
operators at p) if p | N, then we have that

f(τ) ≡ a(0) (mod p).

2.2. Refinement of Sturm’s Criterion. We also require a refinement of the well-known
theorem of Sturm (see Theorem 1 of [11]) that offers a criterion for proving modular form
congruences. Namely, we give its straightforward refinement to infinite dimensional spaces of
weakly holomorphic modular forms, those whose poles (if any) are supported at cusps.

We consider integer weight k modular forms g(τ), and we suppose that T > 1 is an integer
for which

g(τ) =
∑

a(n)qn ∈ Z
((
q1/T

))
.

We let ordq(g) denote the least n ∈ 1
T
Z for which a(n) ̸= 0, and for primes p we let ordp(g) be

the least n for which a(n) ̸≡ 0 (mod p). Our refinement of Sturm’s theorem takes into account
the orders at all the cusps of a congruence subgroup, not just the single cusp at i∞. We recall
that the order of g at a cusp a/c is given by

ordq (g|k ( a b
c d )) ,

where ( a b
c d ) ∈ SL2(Z) and

g|kγ := (cτ + d)−k det(γ)k/2g

(
aτ + b

cτ + d

)
.

1As we let ℓ denote the primes in (1.1), we state Theorem 2.1 with p in place of ℓ to avoid confusion.



4 MICHAEL GRIFFIN AND KEN ONO

Theorem 2.2. Suppose that f(τ) is a non-zero weakly holomorphic modular form of weight
k ∈ 1

2
Z on a congruence subgroup Γ with multiplier ν. If f(τ) has integral coefficients at i∞ and

(2.1) ordp(f) >
k

12
[SL2(Z) : Γ]−

∑
[γ]∈Γ\SL2(Z)

[γ]̸=[I]

ordq (f |kγ) ,

then f ≡ 0 (mod p).

Remark. Sturm’s theorem for holomorphic modular forms follows as ordq (f |kγ) ≥ 0.

Proof. The proof follows almost exactly as the proof of Sturm’s theorem. For each γ in SL2(Z),
we have that the coefficients of f |kγ lie in the cyclotomic field K = Q(e

2πi
lcm(N,M) ), where N is the

level of Γ and M is the order of the multiplier (for example, see Thm. 6.6 of [10]). Let π be
any prime ideal of K which divides p. We clear denominators and factor out extra divisibility
if necessary. To be precise, the Chinese Remainder Theorem guarantees that there is some
A[γ] ∈ K for which A[γ]f |kγ has K-integral coefficients, but also has the property that the
coefficients do not all lie in π.
We choose a positive integer m for which νm is trivial and 12 | mk. This has the result of

multiplying each term in (2.1) by m. Using this m, we consider the modular norm

F (τ) =
∏

[γ]∈Γ\SL2(Z)

Am
[γ]f

m|kγ,

where we take A[I] = 1. Obviously, F is a weight k · [SL2(Z) : Γ] weakly holomorphic modular
form on SL2(Z). Moreover, we find that

ordπ(F ) =
∑

[γ]∈Γ\SL2(Z)

ordπ

(
Am

[γ]f
m|kγ

)
≥ m · ordπ(f) +m ·

∑
[γ]∈Γ\SL2(Z)

[γ]̸=[I]

ordq (f |kγ) .

Using ∆(τ) = q − 24q2 + . . . , the unique normalized weight 12 cusp form on SL2(Z), which is

nonvanishing on the upper-half of the complex plane, we find that F/∆
mk
12

·[SL2(Z):Γ] is a weight 0
weakly holomorphic modular function on SL2(Z). Therefore, it is an integral polynomial in the
j-function

j(τ) :=
E4(τ)

3

∆(τ)
= q−1 + 744 + 196684q + · · · ∈ Z((q)).

However, if (2.1) holds, then the coefficients of this polynomial must be divisible by π, which

means that F ≡ 0 (mod π). By construction, each ordπ

(
Am

[γ]f
m|kγ

)
is finite for [γ] ̸= [I].

Therefore, the only possibility is that ordπ (f
m) = m · ordp(f) is infinite. □

3. Proof of Theorem 1.1

To prove Theorem 1.1, we employ Theorems 2.1 and 2.2. We apply these results to modular
functions obtained by applying the Hecke operators to a distinguished modular function that
encodes the parity of p(n). Namely, in terms of Dedekind’s eta-function η(τ) := q1/24

∏∞
n=1(1−qn),

we consider

(3.1) G(τ) =
∑
n∈Z

a(n)q
n
3 :=

η(τ)8

η(2τ)8
= q−

1
3 − 8q

2
3 + 28q

5
3 − 64q

8
3 + . . . .
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For primes ℓ ≥ 5, we consider the functions

(3.2) Gℓ(τ) := (G|Uℓ) (τ) =
1

ℓ

∑
j mod ℓ

G

(
τ + 3j

ℓ

)
=

∑
n∈Z

a(ℓn)q
n
3 .

We use 3j in the summation, as opposed to j, to maintain integrality of the Fourier coefficients.

Lemma 3.1. The following are true for the eta-quotient G(τ) := η(τ)8/η(2τ)8.

(1) We have that G(τ) is a modular function on Γ0(2), with a non-trivial multiplier ν that takes
values in the third roots of unity.
(2) The multiplier ν is trivial on Γ0(2) ∩X(3), where

X(3) =

{
γ ∈ SL2(Z) : γ ≡ ±I or γ ≡ ±

(
0 −1
1 0

)
(mod 3)

}
.

(3) If ℓ ≥ 5 is prime, then Gℓ(τ) := G|Uℓ is a modular function on Γ0(2ℓ) with multiplier νℓ.

Proof. These claims follow from standard facts about eta-quotients (for example, see [2]). □

To prove Theorem 1.1, we require the behavior of Gℓ(τ) at the four inequivalent cusps of
Γ0(2ℓ), which can be taken to be {0, 1/6, 1/3ℓ, i∞}. Thus, in order to compute the order of Gℓ

at each cusp, it suffices to consider Gℓ|0γ for

(3.3) γ ∈
{(

0 −1
1 0

)
,

(
1 0
6 1

)
,

(
1 0
3ℓ 1

)
, I

}
.

We have chosen the second and third representatives to have the lower-left entry divisible by
3 to simplify the contribution of the multiplier ν. The next lemma gives the order of Gℓ(τ) at
these cusps.

Lemma 3.2. If ℓ ≥ 5 is prime, then the following are true.
(1) If we have γ ∈ {( 0 −1

1 0 ) , ( 1 0
6 1 ) , (

1 0
3ℓ 1 ) , I} , then

ordq(Gℓ|0γ)


= 1

6ℓ
if γ = ( 0 −1

1 0 ) ,

= − ℓ
3

if γ = ( 1 0
6 1 ) ,

≥ 1
6

if γ = ( 1 0
3ℓ 1 ) ,

≥ 1
3

if γ = I.

(2) If γ = ( a b
c d ) ∈ SL2(Z), then we have that

ordq(Gℓ|0γ)


= 1

6ℓ
if gcd(c, 2ℓ) = 1,

= − ℓ
3

if gcd(c, 2ℓ) = 2,

≥ 1
6

if gcd(c, 2ℓ) = ℓ,

≥ 1
3

if gcd(c, 2ℓ) = 2ℓ.

Proof. The proof of (1) follows case-by-case.

Case γ = ( 1 0
0 1 ): In this case we are simply bounding the order ordq(Gℓ). The exponents of

G are all positive and in Z − 1/3. Therefore, G|Uℓ has exponents which are positive and in
Z− 1

3

(
ℓ
3

)
, where

(
ℓ
3

)
is the Legendre symbol. Therefore, we have

ordq (Gℓ) ≥ 1/3.
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Case γ = ( 1 0
6 1 ): By direct calculation, we find that

Gℓ|0
(
1 0
6 1

)
=

1

ℓ
G|0

∑
j mod ℓ

(
1 3j
0 ℓ

)(
1 0
6 1

)
=

1

ℓ
G|0

∑
j mod ℓ

(
1 + 18j 3j

6ℓ ℓ

)
.

Here we are summing the ℓ images of 1
ℓ
G under |0. For each j with 18j ̸≡ −1 (mod ℓ), we find

integers Aj and Bj so that −6ℓAj + (1 + 18j)Bj = 1. Additionally, we may choose Aj and Bj

so that 3 | A and B ≡ 1 (mod 18). One then finds that
(
1+18j 3j
6ℓ ℓ

)
=

(
1+18j Aj

6ℓ Bj

) (
1 (1−Bj)/6)
0 ℓ

)
,

where the matrix
(

1+18j Aj

6ℓ Bj

)
is in Γ0(2) ∩X(3) and so acts trivially on G.

On the other hand, if 18j ≡ −1 (mod ℓ), we have that
(
1+18j 3j
6ℓ ℓ

)
=

(
1+6j

ℓ
3j

2 ℓ

)
( ℓ 0
0 1 ) , where(

1+18j
ℓ

3j

6 ℓ

)
∈ Γ0(2) ∩X(3), and so acts trivially on G. Therefore, we find that

Gℓ|0
(
1 0
6 1

)
=

1

ℓ
G|0

∑
j mod ℓ

(
1 + 18j 3j

6ℓ ℓ

)

=
1

ℓ
G|0

 ∑
j mod ℓ
18j ̸=−1

(
1 (1−Bj)/6)
0 ℓ

)
+

(
ℓ 0
0 1

)
= G|Uℓ −

1

ℓ
G|0

(
1 3j′

0 ℓ

)
+

1

ℓ
G|Vℓ,

where in the last equation j′ satisfies 18j′ ≡ 1 (mod ℓ). In particular, we find that

ordq

(
Gℓ|0

(
1 0
6 1

))
= G|Vℓ = −ℓ/3.

Case γ = ( 1 0
3ℓ 1 ): We follow a similar calculation to the one above. For each j modulo ℓ there

are integers Aj and Bj so that −3ℓ2Aj +Bj(1 + 9jℓ) = 1. Moreover, we can choose Aj and Bj

so that 3 | Aj, 2 | Bj, and Bj ≡ 1 (mod 18ℓ). Then we have the following:

Gℓ|0
(
1 0
3ℓ 1

)
=

1

ℓ
G|0

∑
j mod ℓ

(
1 3j
0 ℓ

)(
1 0
3ℓ 1

)
=

1

ℓ
G|0

∑
j mod ℓ

(
1 + 9jℓ 3j
3ℓ2 ℓ

)

=
1

ℓ
G|0

∑
j mod ℓ

(
1 + 9jℓ Aj

3ℓ2 Bj

)(
1

1−Bj

3ℓ
0 ℓ

)

=
1

ℓ
G|0

∑
j mod ℓ

(
−Aj 1 + 9jℓ
−Bj 3ℓ2

)(
0 −1
1 0

)(
1

1−Bj

3ℓ
0 ℓ

)
= G|0

(
0 −1
1 0

)
|Uℓ
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For the last step, we note that the
(

−Aj 1+9jℓ

−Bj 3ℓ2

)
are in Γ0(2) ∩X(3), and so act trivially on G.

Using that G = η(τ)8/η(2τ)8 and the transformation law for η, we find that

G|0
(
0 −1
1 0

)
= 24

η(τ)8

η(τ/2)8
=

24

G(τ/2)
.

The exponents of G|0 ( 0 −1
1 0 ) are all positive and in 1/2Z + 1/6. Therefore, G|0 ( 0 −1

1 0 ) |Uℓ has
exponents which are positive and in 1

3
Z+ 1

6

(
ℓ
3

)
, where

(
ℓ
3

)
is the Legendre symbol. Therefore,

we have

ordq

(
Gℓ|0

(
1 0
3ℓ 1

))
≥ 1/6.

Case γ = ( 0 −1
1 0 ): Arguing as above, we find that

Gℓ|0
(
0 −1
1 0

)
= G|0

(
0 −1
1 0

)
|
[
Uℓ −

1

ℓ

(
1 0
0 ℓ

)
+

1

ℓ
Vℓ

]
.

Therefore, we have that

ordq

(
Gℓ|0

(
0 −1
1 0

))
= ordq

(
G|0

(
0 −1
1 0

)(
1 0
0 ℓ

))
=

1

6ℓ
.

Finally, to prove (2), we note that the set of cosets Γ0(2ℓ)\SL2(Z) has 3(ℓ+1) elements, which
may be partitioned into four subsets corresponding to the inequivalent cusps considered in (1).
These subsets are determined by gcd(c, 2ℓ), where c is the lower-left entry of any representative
of a coset. We note that the number of cosets in the subset is equal to 2ℓ/ gcd(c, 2ℓ). Most
importantly, we have that if γ1 and γ2 correspond to the same cusp, then for any weight k
modular form on Γ0(2ℓ), we have that ordq (f |kγ1) = ordq (f |kγ2) , even if f |kγ1 ̸= f |kγ2. □

3.1. Proof of Theorem 1.1. We consider F (τ) := G(3τ) = η8(3τ)/η(6τ)8, which satisfies

F (τ) = q−1

∞∏
n=1

(1− q3n)8

(1− q6n)8
≡ q−1

∞∏
n=1

1

(1− q24n)
≡

∞∑
n=0

p(n)q24n−1 (mod 2).

Moreover, we have that F (τ) is a weakly holomorphic modular form of weight 0 (i.e. modular
function) on Γ0(18) with a trivial nebentypus character (See Theorem 1.64 of [5]).
For positive integers n coprime to 6, the weight 0 Hecke operators Tn preserve the spaces of

even weight weakly holomorphic modular forms on Γ0(18) (for example, see Proposition 2.3 of
[5]). If ℓ ≥ 5 is prime, then we have

F |0Tℓ := F |Uℓ +
1

ℓ
F |Vℓ ≡ F |Uℓ + F |Vℓ (mod 2).

If F |Uℓ vanishes modulo 2, then we would have

F |Tℓ ≡ F |Vℓ ≡ q−ℓ +
∞∑
n=1

p(n)qℓ(24n−1) (mod 2).

Theorem 2.1 implies that F |Tℓ is congruent to a constant modulo 2. This is obviously false as is
seen by the presence of the q−ℓ term. Hence, F |Uℓ cannot vanish modulo 2, which guarantees
the existence of infinitely many m for which p(ℓm+ δℓ) is odd by Theorem 2 of [3, 4].
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To complete the proof, we now bound the smallest such m, which is equivalent to bounding
the exponent of the first odd term of F |Uℓ. As G|Uℓ = Gℓ ̸≡ 0 (mod 2), Theorem 2.2 implies
that

ord2(Gℓ) ≤
∑

[γ]∈Γ\SL2(Z)
[γ] ̸=[I]

ordq (Gℓ|0γ) ≤ −ℓ ·
(
−ℓ

3

)
− 2 ·

(
1

6

)
− 2ℓ ·

(
1

6ℓ

)
=

ℓ2

3
− 2

3
.

The three terms in the middle expression correspond to the cusps inequivalent to infinity,
weighted by their SL2(Z) multiplicity. We are using the fact that the number of cosets in the
subset corresponding to a cusp for γ = ( a b

c d ) is 2ℓ/ gcd(c, 2ℓ).
Furthermore, ord2(Gℓ) = (24M − 1)/3ℓ where M is the smallest positive integer such that

ℓ | (24M − 1) and p(M) is odd. Changing variables with M = ℓm+ δℓ, the bound on ord2(Gℓ)
becomes

24ℓm+ 24δℓ − 1

3ℓ
≤ ℓ2 − 2

3
,

In terms of m, this implies that

m ≤ 1

24

(
ℓ2 − 2− 24δℓ − 1

ℓ

)
<

ℓ2 − 1

24
.

This completes the proof.
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