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Abstract. Classical hypergeometric functions are well-known to play an important role in
arithmetic algebraic geometry. These functions offer solutions to ordinary differential equations,

and special cases of such solutions are periods of Picard-Fuchs varieties of Calabi-Yau type.
Gauss’ 2F1 includes the celebrated case of elliptic curves through the theory of elliptic functions.

In the 1980s, Greene defined finite field hypergeometric functions, and these functions can be

used to enumerate the number of finite field points on such varieties. We extend some of these
results to count finite field “matrix points.” For example, we consider the matrix elliptic curves

B2 = A(A− In)(A− aIn),

where (A,B) are commuting n × n matrices over a finite field Fq and a 6= 0, 1 is fixed. These

formulas are assembled from Greene’s hypergeometric functions and q-multinomial coefficients.

1. Introduction and Statement of Results

Classical hypergeometric functions are well known to give periods of elliptic curves. To be
precise, if n is a nonnegative integer, then define (γ)n by

(γ)n :=

{
1 if n = 0,

γ(γ + 1)(γ + 2) · · · (γ + n− 1) if n ≥ 1.

The classical hypergeometric function in parameters α1, . . . , αh, β1, . . . , βj ∈ C is defined by

hF
cl
j

(
α1 α2 . . . αh

β1 . . . βj
x

)
:=

∞∑
n=0

(α1)n(α2)n(α3)n · · · (αh)n
(β1)n(β2)n · · · (βj)n

· x
n

n!
.

Perhaps the most famous example illustrating the role of these functions in geometry involves the
Legendre elliptic curves

(1.1) EL(a) : y2 = x(x− 1)(x− a), a ∈ C \ {0, 1}.

The theory of elliptic integrals shows, for 0 < a < 1, that the function 2F
cl
1 (x) := 2F

cl
1

(
1
2

1
2
1

x

)
(for example, see page 184 of [10]) gives the real period ΩL(a) of EL(a) by the formula

(1.2) ΩL(a) = π · 2F
cl
1 (a).

There is another kind of hypergeometric function, the finite field hypergeometric function,
that gives further information about these elliptic curves and higher dimensional varieties. These
functions count points over finite fields. To make this precise, we first recall their definition which
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is due to Greene [7]. If q is a prime power and A and B are two Dirichlet characters on Fq

(extended so that A(0) = B(0) = 0), then let

(
A
B

)
be the normalized Jacobi sum(

A
B

)
:=

B(−1)

q
J(A,B) =

B(−1)

q

∑
x∈Fq

A(x)B(1− x).

Here B is the complex conjugate of B. If A0, . . . , An, and B1, . . . , Bn are characters on Fq, then
the finite field hypergeometric function in these parameters is defined by

n+1F
ff
n

(
A0 A1 . . . An

B1 . . . Bn
x

)
q

:=
q

q − 1

∑
χ

(
A0χ
χ

)(
A1χ
B1χ

)
· · ·
(
Anχ
Bnχ

)
χ(x).

Here
∑
χ denotes the sum over all characters χ of Fq.

It has been observed by many authors (see [7], [8], [11], [12], [15], and [17], to name a few)
that the Gaussian analog of a classical hypergeometric series with rational parameters is obtained
by replacing each 1

n with a character χn of order n (and a
n with χan). Let εq be the trivial character

on Fq and let φq be the character of order 2. Then the finite field analog of 2F
cl
1 (x) is

2F
ff
1 (x)q :=

(
φq φq

εq
x

)
q

.

More generally, we let

(1.3) n+1F
ff
n (x)q := n+1F

ff
n

(
φq φq . . . φq

εq . . . εq
x

)
q

.

M. Koike proved [12] that if p ≥ 5 is a prime for which EL(a) has good reduction, and q is a power
of p, then

(1.4) 2F
ff
1 (a)q = −φq(−1)

q
· aL(a; q),

where q+ 1− aL(a; q) counts the number of Fq-points on EL(a). This expression is the finite field
analogue of Gauss’ period formula (1.2).

Motivated by (1.2) and (1.4), it is natural to ask whether other finite field hypergeometric
function evaluations give point counts for other varieties. This is indeed the case, and perhaps the
most beautiful example involves the analog of the celebrated classical Clausen identity [4]

(1.5) 3F
cl
2

(
b+ c 2b 2c

b+ c+ 1
2 2b+ 2c

x

)
= 2F

cl
1

(
b c

b+ c+ 1
2

x

)2

.

Using this identity, D. McCarthy [13] proved that if a > 0, then

3F
cl
2

(
1
2

1
2

1
2

1 1

a

a+ 1

)
=

√
1 + a

π2
· ΩCL(a)2,

where ΩCL(a) is the real period of the Clausen elliptic curve

ECL(a) : y2 = (x− 1)(x2 + a).

In the finite field case, the second author proved that if Fq is a finite field of characteristic
char(Fq) ≥ 5 and a ∈ Fq \ {0, 1}, then

(1.6) q + q2φq(a+ 1) · 3Fff
2

(
a

a+ 1

)
q

= aCL(a; q)2 = −φq(1 +
√
−a) · q · 2Fff

1

(
1−
√
−a

1 +
√
−a

)
q

,

where q+1−aCL(a; q) is the number of Fq points on ECL(a), and where the second equality holds
whenever −a is a square in Fq. This equality is an analogue of a special case of Clausen’s identity.
Furthermore, this identity can be interpreted in terms of K3 surfaces whose function fields are
given by

Xa : s2 = xy(x+ 1)(y + 1)(x+ ay),
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where a ∈ Fq \ {0,−1}. In this notation, it is known (see Theorem 11.18 of [14] and Proposition
4.1 of [1]) that

(1.7) |Xa(Fq)| = 1 + q2 + 19q + q2 · 3Fff
2 (−a)q.

In this note we show that the hypergeometric identities (1.4) and (1.7), combined with the
combinatorial input from partitions and q-multinomial coefficients, count suitable “matrix points”
on these curves and surfaces. To make this precise, we first introduce some notation. If n,m
are positive integers and K is a field, then let Cn,m(K) denote the set of pairwise-commuting m-
tuples of n×n-matrices over K. Due to the noncommutativity of matrix multiplication, geometric
problems related to studying matrix rational points on curves and higher varieties only make sense
when the matrices are commuting, that is, when the matrix points are in Cn,m(K). We will be
interested in counting tuples in Cn,m(K) which satisfy the equations defining some affine varieties.
More precisely, we will consider the sets

{(A,B) ∈ Cn,2(Fq) : B2 = A(A− In)(A− aIn)}

and

{(A,B,C) ∈ Cn,3(Fq) : C2 = AB(A+ In)(B + In)(A+ aB)}

as matrix analogues of the Legendre elliptic curves EL and the K3 surfaces Xa considered above.
To express our results, we introduce some notation. If λ is a partition of a nonnegative integer

k, we write n(λ; i) to denote the number of times i is repeated in λ. Furthermore, we write |λ| = k,
and write l(λ) =

∑
n(λ; i) to denote the number of parts of λ. Additionally, we introduce certain

polynomials in q. More precisely, if z and q are any complex numbers, and n is any positive integer,
then we define the q-Pochhammer symbol

(1.8) (z; q)n := (1− z)(1− zq) . . . (1− zqn−1)

with (z; q)0 = 1. Finally, for an integer n ≥ 0 and m1 + . . . + mn = n a partition of n, we define
the q-multinomial factor(

n

m1,m2, . . . ,mn

)
q

:=
(q; q)n

(q; q)m1
(q; q)m2

. . . (q; q)mn
.

It is known that
(

n
m1,...,mn

)
q

is a monic polynomial in q and that
(

n
m1,...,mn

)
q

approaches the usual

multinomial coefficient as q → 1.
We start by expressing the number of commuting matrices on a Legendre elliptic curve. More

precisely, if n is a positive integer, q is a prime power and a ∈ Fq, we let

(1.9) Nn,2(a; q) := |{(A,B) ∈ Cn,2(Fq) : B2 = A(A− In)(A− aIn)}|.

In this notation, we have the following theorem that determines these counts, and also explains
the connection with the classical 2F

cl
1 -hypergeometric function.

Theorem 1.1. If q = pr is a prime power with p ≥ 5 and a ∈ Fq \ {0, 1}, then

Nn,2(a; q) =

n∑
k=0

φqk(−1) · P (n, k)q · 2Fff
1 (a)qk ,

where

P (n, k)q = (−1)kqn(n−k)+
k(k+1)

2

bn−k2 c∑
s=0

q2s(s−n+k)

(
n

s, n− k − 2s, k + s

)
q

.

Moreover, P (n, k)q is a polynomial in q with leading term (−1)k · qn2− k(k−1)
2 and

lim
q→1

P (n, k)q = (−1)k
(
n

k

)
· 2F cl

1

(
k−n

2
k+1−n

2
k + 1

4

)
.
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As a corollary, we consider the matrix analog of the Sato–Tate distribution for point counts
for elliptic curves over finite fields. In direct analogy, we find that the limiting distribution of the
“random part” of matrix point counts on Legendre elliptic curves is semicircular. More precisely,
if n is a positive integer and q is a prime power, then we let

(1.10) aL,n(a; q) := Nn,2(a; q)− P (n, 0)q.

In this notation, we have the following result.

Corollary 1.2. If −2 ≤ b < c ≤ 2 and n and r are fixed positive integers, then we have

lim
p→∞

|{a ∈ Fpr : p
r
2−rn

2

aL,n(a; pr) ∈ [b, c]}|
pr

=
1

2π

∫ c

b

√
4− t2dt.

Example 1.3. For the prime p = 93283, we compare the histogram of the distribution of
p−7/2aL,2(a; p) for a ∈ Fp with the limiting distribution.

p−7/2aL,2(a; p) histogram for p = 93283

We also consider the matrix version of the K3 surfaces described above. If n is a positive
integer, q is a prime power, and a ∈ Fq, then we let

(1.11) Nn,3(a; q) := |{(A,B,C) ∈ Cn,3(Fq) : C2 = AB(A+ In)(B + In)(A+ aB)}|.
In this notation, we have the following theorem that gives matrix point counts in terms of the

3F
ff
2 -hypergeometric function, 4-tuples of integer partitions, and q-multinomial coefficients.

Theorem 1.4. If q = pr is a prime power with p ≥ 5 and a ∈ Fq \ {0,−1}, then we have

Nn,3(a; q) = R(n, φq(a+ 1))q +

n∑
k=0

Q (n, k, φq(a+ 1))q · 3F
ff
2

(
a

a+ 1

)
qk
,

where

Q(n, k, γ)q := q
n(n−1)

2 +k
∑

λ1,...,λ4

|λ1|+...+|λ4|=n
l(λ3)−l(λ4)=k

ql(λ1)γl(λ2)(−1)n−m(λ1,...,λ4)

(q, q)n−m(λ1,...,λ4) · q
∑ n(λi,j)(n(λi,j)+1)

2 ·
(

n

n(λi, j), n−m(λ1, . . . , λ4)

)
q

and

R(n, γ)q :=− q
n(n−1)

2 ·
∑

λ1,...,λ4

|λ1|+...+|λ4|=n
l(λ3)6=l(λ4)

ql(λ1)γl(λ2)+l(λ3)−l(λ4)(−1)n−m(λ1,...,λ4)

(q, q)n−m(λ1,...,λ4) · q
∑ n(λi,j)(n(λi,j)+1)

2 ·
(

n

n(λi, j), n−m(λ1, . . . , λ4)

)
q
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with λ1, . . . , λ4 being partitions and m(λ1, . . . , λ4) =
4∑
i=1

l(λi). Moreover, Q(n, k, γ)q is a polyno-

mial in q with leading term qn
2+n and

lim
q→1

Q(n, k, γ)q =

(
n

k

)
· (1 + γ)n−k2F

cl
1

(
k−n

2
k+1−n

2
k + 1

4

(1 + γ)2

)
,

when γ 6= −1 and lim
q→1

Q(n, k,−1)q = 0.

This theorem allows us to determine the Sato–Tate type limiting distribution of the “random
part” of matrix point counts on the K3 surfaces Xa. More precisely, if n is a positive integer and
q is a prime power, then we let

(1.12) An(a; q) = Nn,3(a; q)−Q(n, 0, φq(a+ 1))q −R(n, φq(a+ 1))q.

In this notation, we have the following result.

Corollary 1.5. If −3 ≤ b < c ≤ 3 and n and r are fixed positive integers, then we have

lim
p→∞

{a ∈ Fpr : pr−rn
2−rnAn(a; pr) ∈ [b, c]}
pr

=
1

4π

∫ c

b

f(t)dt,

where

f(t) =



√
3−|t|
1+|t| if 1 < |t| < 3,

√
3−t
1+t +

√
3+t
1−t if |t| < 1,

0 otherwise.

Example 1.6. For the prime p = 93283, we compare the histogram of the distribution of
p−5A2(a; p) for a ∈ Fp with the limiting distribution.

p−5A2(a; p) histogram for p = 93283

This paper is organized as follows. In Section 2 we recall properties of zeta functions for curves
and surfaces in the commuting matrix situation. These results [9] are due to the first author. In
Section 3 we recall results of the second two authors, which we then combine with these zeta
functions to obtain our results.

2. Some zeta functions

Let q be a prime power. Recall that GLn(Fq) is the group of n × n invertible matrices over
the finite field Fq with q elements. It will be repetitively used in this paper that

(2.1) |GLn(Fq)| = (−1)nq
n(n−1)

2 (q; q)n.
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Now, let X = SpecR be an affine variety over Fq. Say

(2.2) R =
Fq[T1, . . . , Tm]

(f1, . . . , fr)
.

Following the work [9] of the first author, we define the set of n × n matrix points on X as
the set of commuting tuples of matrices satisfying the defining equations for X:

(2.3) Cn(X) :=

{
A = (A1, . . . , Am) ∈ Matn(Fq)m : [Ai, Aj ] = 0, fi(A) = 0

}
.

Note that C1(X) ∼= X(Fq). Though not needed in this paper, it is worth pointing out that
the cardinality of Cn(X) is independent of the choice of defining equations for X; in fact, by
comparing [9, Eq. 4.2] and [9, Eq. 4.15], there is an equation-free equivalent characterization for
the cardinality of Cn(X):

(2.4)
|Cn(X)|
|GLn(Fq)|

=
∑

dimFq H
0(X;M)=n

1

|AutM |
,

where the sum ranges over all isomorphism classes of zero-dimensional coherent sheaves on X of
degree n. This characterization also makes |Cn(X)| well-defined for any variety X over Fq.

The number of matrix points on a smooth curve or a smooth surface is given by infinite
product formulas for a zeta function associated to it. For any (affine) variety X over Fq, consider
its Cohen–Lenstra series (terminology of [9]):

(2.5) ẐX(t) :=

∞∑
n=0

|Cn(X)|
|GLn(Fq)|

tn,

and recall the local zeta function

(2.6) ZX(t) := exp

( ∞∑
n=1

|X(Fqn)|
n

tn

)
.

Proposition 2.1 ([9, Proposition 4.6(a)]). If X is a smooth curve over Fq, then

(2.7) ẐX(t) =
∏
j≥1

ZX(tq−j).

Proposition 2.2 ([9, Proposition 4.6(b)]). If X is a smooth surface over Fq, then

(2.8) ẐX(t) =
∏
i,j≥1

ZX(tiq−j).

Proposition 2.1 is essentially due to Cohen and Lenstra [5], and Proposition 2.2 is essentially
due to the Feit–Fine formula [6] for counting commuting matrices and ideas of Bryan and Morrison
[3]. We remark that both formulas heavily exploit the local geometry of X, namely, smoothness
of dimension 1 or 2. In fact, in light of the main theorem of [9], Proposition 2.1 ceases to hold if
X is a multiplicative reduction of an elliptic curve over a number field (but holds if it is a good
reduction).

3. Proofs of Theorems 1.1 and 1.4

Here we use the results of the previous section to prove Theorems 1.1 and 1.4 and their
corollaries.

3.1. Proof of Theorem 1.1. Fix a prime power q = pr with p ≥ 5 and r ≥ 1, and fix
a ∈ Fq \ {0, 1}. Then, denoting by X the affine part of EL(a), Theorem V.2.4 of [18] states that

ZX(t) =
(1− αt)(1− αt)

1− qt
,

where α and α are the traces of Frobenius. Note that there is a missing factor of 1
1−t in this

expression since we are only considering the affine part of X.
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By Proposition 2.1, we then have that

ẐX(t) =
∏
j≥1

(1− αtq−j)(1− αtq−j)
1− tq1−j .

It is well-known due to Euler [2, Corollary 2.2] that

(3.1)
∏
j≥1

(1− ctq−j) =
∑
m≥0

(ct)m

(q; q)m

and

(3.2)
∏
j≥1

(1− ctq−j)−1 =
∑
m≥0

(−1)mqm(m−1)/2 · (ct)m

(q; q)m
.

This implies that

ẐX(t) =

∑
r≥0

(αt)r

(q; q)r

 ·
∑
s≥0

(αt)s

(q; q)s

 ·
∑
u≥0

(−1)uqu(u+1)/2 · tu

(q; q)u

 .

By the definition of ẐX(t) and by (2.1), we then have

Nn,2(a; q) = (−1)nqn(n−1)/2(q; q)n ·
∑

r+s+u=n

αrαs(−1)uq
u(u+1)

2

(q; q)r(q; q)s(q; q)u
.

Furthermore, again by Theorem V.2.4 of [18], we have that αα = q and therefore, we can rewrite
this sum as

Nn,2(a; q) = (−1)nqn(n−1)/2(q; q)n
∑

r+s+u=n

(−1)uαr−sqs+
u(u+1)

2

(q; q)r(q; q)s(q; q)u
.

Since aL(a; qk) = αk + αk, (1.4) implies that

Nn,2(a; q) =

n∑
k=0

φqk(−1) · P (n, k)q · 2Fff
1 (a)qk ,

where

P (n, k)q = (−1)nq
n(n−1)

2 (q; q)n ·
∑
r−s=k

r+s+u=n

(−1)u(−1)kqkqs+
u(u+1)

2

(q; q)r(q; q)s(q; q)u
.

Rewriting this sum with r = k + s and u = n − k − 2s, we obtain the expression stated in the
theorem.

The leading coefficient of P (n, k)q is clear from the expression. Since the q-multinomial
approaches the usual multinomial as q → 1, we have

lim
q→1

P (n, k)q = (−1)k
bn−k2 c∑
s=0

(
n

s, n− k − 2s, k + s

)
=

(−1)k(
n
k

) bn−k2 c∑
s=0

k!(n− k)!

s!(k + s)!(n− k − 2s)!
.

It is easy to see by induction that if m and s are integers with m < 0 and 2s+m ≤ 0, then(m
2

)
s

(
m

2
+

1

2

)
s

=
(−m)!

(−m− 2s)!4s
.

Furthermore, it is evident by definition that for k ≥ 0, we have (k + 1)s = (k+s)!
k! . Applying this

above with m = k − n, we have

lim
q→1

P (n, k)q =
(−1)k(
n
k

) bn−k2 c∑
s=0

(
k−n

2

)
s

(
k−n+1

2

)
s

(k + 1)s
· 4s

s!
,

which is our statement since the summand vanishes for s ≥ bn−k2 c.
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3.2. Proof of Corollary 1.2. We prove this corollary by implementing the method of mo-
ments, as employed in previous work by the second two authors in [16]. By Theorem 1.1 and the
fact that p

r
2 2F

ff
1 (a)pr ∈ [−2, 2], we have

p
r
2−rn

2

aL,n(a; pr) = −φpr (−1) · p r2 2F
ff
1 (a)pr +Or,n(p−

r
2 ).

Therefore, if m is a nonnegative integer, we have that

1

pr

∑
a∈Fpr\{0,1}

(
p
r
2−rn

2

aL,n(a; pr)
)m

=
1

pr

∑
a∈Fpr\{0,1}

(−φpr (−1)p
r
2 2F

ff
1 (a)pr )

m

+
1

pr

m∑
k=1

1

p
rk
2

·
(
m

k

)
1

pr

∑
a∈Fpr\{0,1}

(−φpr (−1)p
r
2 2F

ff
1 (a)pr )

m−k

=
1

pr

∑
a∈Fpr\{0,1}

(−φpr (−1)p
r
2 2F

ff
1 (a)pr )

m + om,r,n(1) as p→∞.

By Theorem 1.1 of [16], this implies that as p→∞ we have

1

pr

∑
a∈Fpr\{0,1}

(
p
r
2−rn

2

aL,n(a; pr)
)m

=

{
om,r,n(1) if m is odd

(2l)!
l!(l+1)! + om,r,n(1) if m = 2l is even .

The proof of Corollary 1.2 of [16] then implies the limiting distribution.

3.3. Proof of Theorem 1.4. Fix a prime power q = pr with p ≥ 5 and r ≥ 1, and fix
a ∈ Fq \ {0, 1}. Denoting by Aa the affine surface given by

s2 = xy(x+ 1)(y + 1)(x+ ay),

then X := Aa and Xa differ by a connected union of rational curves (see [1, §1]). In particular,
we have

[Xa] = [X] + 19L + 1

in the Grothendieck ring of Fq-varieties, where L is the class of the affine line (cf. the terms
(24q− 6)− (5q− 7) at the end of the proof of [1, Proposition 4.1]). Therefore, by Theorem 1.1 of
[1], the local zeta function of X is given by

ZX(t) =
1

(1− q2t)(1− γqt)(1− γα2t)(1− γα2t)
,

where γ = φq(a + 1) and α, α are the Frobenius eigenvalues for the Clausen elliptic curve

ECL

(
−1
a+1

)
.

Therefore, by Proposition 2.2, we have that

ẐX(t) =
∏
i,j≥1

1

(1− q2−jti)(1− γq1−jti)(1− γα2q−jti)(1− γαq−jti)

=
∏
i≥1

∏
b∈{q,γ, γα2

q , γα
2

q }

∏
j≥0

1

1− btiq−j
.

By (3.2) and αα = q, we then have

ẐX(t) =
∏
i≥1

∏
b∈{q,γ, γα2

q , γα
2

q }

∑
m≥0

(−1)mq
m(m+1)

2 bmtim

(q; q)m

=
∏
i≥1

∑
m≥0

tim ·
∑

m1+...+m4=m

(−1)mq
m1(m1+1)

2 +...+
m4(m4+1)

2 γm2+m3+m4 · qm1−m3+m4 · α2(m3−m4)

(q; q)m1 · . . . · (q; q)m4

=
∑
n≥0

tn ·
∑

(−1)
∑
mu,v

q
∑ mu,v(mu,v+1)

2 q
∑
mu,1−mu,3+mu,4γ

∑
mu,2+mu,3+mu,4 · π2(

∑
mu,3−mu,4)∏

(q; q)m(u,v)
,
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where the latter sum is over all possible combinations of nonnegative integersmu,v with v = 1, . . . , 4
and such that

∑
iumu,v = n for positive integers iu ≥ 1. To simplify this expression, for each

v = 1, . . . , 4, we denote by λv the partition given by adding iu with multiplicity mu,v.

Then, in the notation of theorem, the coefficient of tn in ẐX(t) is given by∑
λ1,...,λ4

|λ1|+...+|λ4|=n

(−1)l(λ1)+...+l(λ4)q
∑
n(λi,j)(n(λi,j)+1)

2 ql(λ1)−l(λ3)+l(λ4)γl(λ2)+l(λ3)+l(λ4)π2(l(λ3)−l(λ4)).

Dividing those partitions into l(λ3) − l(λ4) = k for 0 ≤ k ≤ n, using the definition of ẐX(t) and
using (1.6), we have that

Nn,3(a; q) =

n∑
k=0

S(n, k, φq(a+ 1))q

(
q2k · φq(a+ 1)k · 3Fff

2

(
a

a+ 1

)
qk
− qk

)
,

where

S(n, k, γ)q := (−1)nq
n(n−1)

2 (q; q)n·
∑

|λ1|+...+|λ4|=n
l(λ3)−l(λ4)=k

(−1)m(λ1,...,λ4)γl(λ2)+k+2l(λ4) q
l(λ1)−kq

∑
n(λi;j)(n(λi;j)+1)

2∏
(q; q)m(u,v)

.

The expression for Nn,3(a; q) then follows immediately.
The leading coefficient for Q(n, k, γ)q is clear from the definition. It remains to show the

behavior of this polynomial as q → 1. To this end, note that (q; q)n−m(λ1,...,λ4) → 0 as q → 1 if
m(λ1, . . . , λ4) < n. Therefore, the only contributing partitions are those with l(λ1)+. . .+l(λ4) = n,
that is, λi = (1, 1, . . . , 1). Therefore, we have

lim
q→1

Q(n, k, γ)q =
∑

x+y+z+w=n
z−w=k

n!

x!y!z!w!
· γy

=

n−k
2∑

w=0

n!

w!(w + k)!(n− k − 2w)!

n−k−2w∑
y=0

γy ·
(
n− k − 2w

y

)

=

n−k
2∑

w=0

(
n

w,w + k, n− k − 2w

)
(1 + y)n−k−2w.

The rest of the proof proceeds exactly as that of Theorem 1.1.

3.4. Proof of Corollary 1.5. We prove this corollary by implementing the method of mo-
ments, as employed in previous work by the second two authors in [16]. By Theorem 1.4 and the
fact that pr3F

ff
2 (a)pr ∈ [−3, 3], we have

pr−rn
2−rnAn(a; pr) = pr3F

ff
2 (a)pr +Or,n(p−r).

Therefore, as in the proof of Corollary 1.5, and using Theorem 1.3 of [16], for positive integers m,
we have that

1

pr

∑
a∈Fpr\{0,1}

(
pr−rn

2−rnAn(a; pr)
)m

=

om,r,n(1) if m is odd
m∑
i=0

(−1)i
(
m
i

) (2i)!
i!(i+1)! + om,r,n(1) if m is even.

The proof of Corollary 1.4 of [16] then implies the limiting distribution.
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