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Abstract. Here we investigate the q-series

Ua(q) =

∞∑
n=0

MO(a;n)qn :=
∑

0<k1<k2<···<ka

qk1+k2+···+ka

(1− qk1)2(1− qk2)2 · · · (1− qka)2
,

U⋆
a (q) =

∞∑
n=0

M(a;n)qn :=
∑

1≤k1≤k2≤···≤ka

qk1+k2+···+ka

(1− qk1)2(1− qk2)2 · · · (1− qka)2
.

MacMahon introduced the Ua(q) in his seminal work on partitions and divisor functions. Recent
works show that these series are sums of quasimodular forms with weights ≤ 2a. We make this
explicit by describing them in terms of Eisenstein series. We use these formulas to obtain explicit
and general congruences for the coefficients MO(a;n) and M(a;n). Notably, we prove the conjecture
of Amdeberhan-Andrews-Tauraso as the m = 0 special case of the infinite family of congruences

MO(11m+ 10; 11n+ 7) ≡ 0 (mod 11),

and we prove that
MO(17m+ 16; 17n+ 15) ≡ 0 (mod 17).

We obtain further formulae using the limiting behavior of these series. For n ≤ a+
(
a+1
2

)
, we obtain

a “hook length” formulae for MO(a;n), and for n ≤ 2a, we find that M(a;n) =
(
a+n−1
n−a

)
+
(
a+n−2
n−a−1

)
.

1. Introduction and Statement of Results

At first glance, one might underestimate the value of the trivial observation that the number
of partitions of an integer n into identical parts is also the number of divisors of n. This fact is a
glimpse of a rich theory that relates integer partitions and divisor functions. Indeed, MacMahon’s
important paper [7] is based on the idea of connecting partitions to divisor sums: partition of n
using k1 repeated s1 times, and k2 repeated s2 times, and so on through ka repeated sa times. Using
this convention, he considered the sum of products of the multiplicities MO(a;n) :=

∑
s1s2 · · · sa of

size n partitions, which has the generating function

Ua(q) :=
∑
n≥0

MO(a;n) qn =
∑

0<k1<k2<···<ka

qk1+k2+···+ka

(1− qk1)2(1− qk2)2 · · · (1− qka)2
.(1.1)

His work [7] is populated with beautiful divisor function identities, where σν(n) :=
∑

d|n d
ν , such as:

(1.2) U1(q) =
∑
n≥1

σ1(n)q
n and U2(q) =

∑
n≥1

(
σ1(n)

8
− nσ1(n)

4
+
σ3(n)

8

)
qn.
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To entice the reader, we offer the first few terms of U1(q), . . . ,U4(q):

U1(q) = q + 3q2 + 4q3 + 7q4 + 6q5 + 12q6 + 8q7 + . . . ,

U2(q) = q3 + 3q4 + 9q5 + 15q6 + 30q7 + 45q8 + 67q9 + . . . ,

U3(q) = q6 + 3q7 + 9q8 + 22q9 + 42q10 + 81q11 + 140q12 + . . . ,

U4(q) = q10 + 3q11 + 9q12 + 22q13 + 51q14 + 97q15 + 188q16 + . . . .

The inequalities in definition (1.1) imply that q−
a(a+1)

2 · Ua(q) = 1+3q+ . . . , while for a ≥ 2, we have

q−
a(a+1)

2 · Ua(q) = 1 + 3q + 9q2 + . . . .

Answering the natural question, we show that this sequence converges to a simple infinite product,
which, by the theory of Nekrasov-Okounkov [8], gives hook length formulae for many of theMO(a;n).

To make this precise, recall that a partition λ = (λ1, . . . , λℓ) of n, denoted λ ⊢ n, is a non-increasing
sequence of positive integers that sum to n. Its Young diagram is the left-justified array of boxes
where the row lengths are the parts. The hook H(i, j) of the box in position (i, j) consists of this box,
together with those below it and those to its right. Its hook length h(i, j) := (λi− i) + (λ′j − j) + 1 is
the number of such boxes, where λ′j is the number of boxes in column j. Denote the multiset of hook
lengths of λ by H(λ). Finally, we recall the “exponential form” of a partition λ = (1m1 , 2m2 , . . . , tmt),
where mi is the multiplicity of part i.

Example. The exponential form of λ = (4, 4, 2) is λ = (10, 21, 30, 42, 50, 60, 70, 80, 90, 100) ⊢ 10. Its
Young diagram is given below, and shows that H(λ) = {6, 5, 5, 4, 3, 2, 2, 2, 1, 1}.

6 5 3 2

5 4 2 1

2 1

We derive the following result using the work of Andrews-Rose [2] and Nekrasov-Okounkov [8].

Theorem 1.1. The following are true:
(i) If a is a positive integer, then we have that

q−
a(a+1)

2 · Ua(q) =
∏
n≥1

1

(1− qn)3
+O(qa+1).

(ii) If n ≤ a+
(
a+1
2

)
, then we have that

MO(a;n) =
∑
λ⊢n−a

∏
h∈H(λ)

(
2

h2
+ 1

)
=
∑
λ⊢n−a

n−a∏
s=1

(
2 +ms

2

)
.

Inspired by the Ua(q), Amdeberhan-Andrews-Tauraso [1] initiated the study of the q-series

U⋆
a (q) :=

∑
n≥0

M(a;n) qn =
∑

1≤k1≤k2≤···≤ka

qk1+k2+···+ka

(1− qk1)2(1− qk2)2 · · · (1− qka)2
,(1.3)

where the strict inequalities in (1.1) are replaced by weak inequalities. One easily sees that

U∗
a (q) =

∑
n≥0

M(a;n)qn = qa + (2a+ 1)qa+1 + . . . .
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To entice the reader, we offer the first few terms of U∗
1 (q), . . . ,U∗

4 (q):

U⋆
1 (q) = q + 3q2 + 4q3 + 7q4 + 6q5 + 12q6 + · · · ,

U⋆
2 (q) = q2 + 5q3 + 14q4 + 29q5 + 55q6 + 86q7 + · · · ,

U⋆
3 (q) = q3 + 7q4 + 27q5 + 77q6 + 181q7 + 378q8 + · · · ,

U⋆
4 (q) = q4 + 9q5 + 44q6 + 156q7 + 450q8 + 1121q9 + · · · .

In analogy with Theorem 1.1, we consider the limiting behavior of these series. These series
converge to specializations of the generating function for the polynomials p0(x) := 1, p1(x) :=
2x+ 1, p2(x) := 2x2 + 3x, p3(x) :=

4
3
x3 + 4x2 + 5

3
x, . . . . For n ≥ 1, these polynomials are defined by

(1.4) pn(x) :=

(
2x+ n− 1

n

)
+

(
2x+ n− 2

n− 1

)
.

As a companion to Theorem 1.1, we obtain the following theorem.

Theorem 1.2. The following are true:
(i) If a is a positive integer, then we have that

q−a · U∗
a (q) =

a∑
n=0

pn(a)q
n +O(qa+1).

(ii) If n ≤ 2a, then we have that M(a;n) = pn−a(a).

Remark. The Ua(q) and U⋆
a (q) are multiple q-zeta values. To make this precise, we recall the

q-notation [k]q :=
1−qk
1−q and the multiple q-zeta values (for example, see [3])

ζq(m1, . . . ,ma) : =
∑

0<k1<···<ka

q(m1−1)k1+···+(ma−1)ka

[k1]
m1
q · · · [ka]ma

q

,

ζ⋆q (m1, . . . ,ma) : =
∑

1≤k1≤···≤ka

q(m1−1)k1+···+(ma−1)ka

[k1]
m1
q · · · [ka]ma

q

.

We have that (1− q)2a · Ua(q) = ζq(2, . . . , 2) and (1− q)2a · U⋆
a (q) = ζ⋆q (2, . . . , 2).

As divisor functions arise as the coefficients of Eisenstein series, identities such as (1.2) suggest
a strong relationship between the Ua(q) and quasimodular forms. This speculation was confirmed
by Andrews-Rose. Indeed, they proved (see [2, Cor. 4]) and [12, Th. 1.12]) that each Ua(q) is a
linear combination of quasimodular forms on SL2(Z) with weights ≤ 2a. Similarly, Amdeberhan-
Andrews-Tauraso [1, Th. 6.1] proved that each U⋆

a (q) is a linear combination of quasimodular forms
on SL2(Z) with weights ≤ 2a.
Here we make this quasimodularity explicit. In the case of Ua(q), we employ the standard

generators of the graded ring of quasimodular forms: the quasimodular weight 2 Eisenstein series

(1.5) E2(q) := 1− 24
∞∑
n=1

σ1(n)q
n,

and the weight 4 and 6 modular Eisenstein series

(1.6) E4(q) := 1 + 240
∞∑
n=1

σ3(n)q
n and E6(q) := 1− 504

∞∑
n=1

σ5(n)q
n.
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It is well known [6] that the ring of quasimodular forms is C[E2, E4, E6], and so our goal is to obtain

formulas in terms of the monomials Eα
2 (q)E

β
4 (q)E

γ
6 (q), where α, β and γ are non-negative integers.

Our formulas for Ua(q) use of the triple index sequence of rational numbers defined by the recursion

c(α, β, γ) := −1

3
(2α + 8β + 12γ + 1) · c(α− 1, β, γ) +

2

3
(α + 1) · c(α + 1, β − 1, γ)

+
8

3
(β + 1) · c(α, β + 1, γ − 1) + 4(γ + 1) · c(α, β − 2, γ + 1),(1.7)

where α, β, γ ≥ 0. To seed the recursion, we let c(0, 0, 0) := 1, and we let c(α, β, γ) := 0 if any of the
arguments are negative. Here we list the “first few” values:

c(1, 0, 0) = −1, c(0, 1, 0) = −2

3
, c(0, 0, 1) = −16

9
, c(1, 1, 0) =

14

3
, c(1, 0, 1) =

64

3
, . . . .

We also require constants for the quasimodular summands sorted by weight. For 0 ≤ t ≤ a, define

wt(a) :=

(
2a
a

)
16a(2a+ 1)

∑
0≤ℓ1<···<ℓt<a

t∏
j=1

1

(2ℓj + 1)2
.(1.8)

In terms of wt(a) and the numbers c(α, β, γ), we have the following explicit formulae for Ua(q).

Theorem 1.3. If a is a non-negative integer, then we have that

Ua(q) =
a∑
t=0

wt(a)
∑

α,β,γ≥0
α+2β+3γ=t

c(α, β, γ)E2(q)
αE4(q)

βE6(q)
γ.

Example. For a = 3, Theorem 1.3 gives

U3(q) =
5

7168
− 37E2(q)

46080
+

5E2(q)
2

27648
− E4(q)

13824
− E2(q)

3

82944
+
E2(q)E4(q)

69120
− E6(q)

181440
.

We turn to the U∗
a (q). Instead of using E2(q), E4(q), and E6(q), we use all of the Eisenstein series

(1.9) E2k(q) := 1− 4k

B2k

∞∑
n=1

σ2k−1(n)q
n,

where Bk is the usual kth Bernoulli number. Namely, we let E0(q) := 1, and for positive t we define

E⋆2t(q) :=
∑

(1m1 ,...,tmt )⊢t

t∏
j=1

1

mj!

(
−B2j E2j(q)

(2j) · (2j!)

)mj

.(1.10)

We require constants for the summands sorted by weight. We let w⋆0(0) := 1, and for a > 0, we let

(1.11) w⋆0(a) :=
a∑
i=1

(−1)i−1
(
2i
i

)
16i(2i+ 1)

w⋆0(a− i).

For 1 ≤ t ≤ a, we define

(1.12) w⋆t (a) := (−1)a+t−14t(2t+ 1)!wt−1(a− 1).

With this notation, we obtain the following explicit expressions for U∗
a (q).
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Theorem 1.4. If a is a non-negative integer, then we have that

U⋆
a (q) =

a∑
t=0

w⋆t (a) · E⋆2t(q).

Example. For a = 5, Theorem 1.4 gives

U∗
5 (q) =

1295803

12262440960
+

35

294912
E⋆2(q)−

3229

967680
E⋆4(q) +

47

1152
E⋆6(q)−

7

24
E⋆8(q) + E⋆10(q).

The coefficients of Ua(q) and U⋆
a (q) satisfy surprising congruences. Amdeberhan-Andrews-Tauraso

[1] discovered some congruences that are reminiscent of Ramanujan’s partition congruences, such as

MO(2; 5n+ 2) ≡ 0 (mod 5) and MO(3; 7n+ 3) ≡MO(3; 7n+ 5) ≡ 0 (mod 7).

Moreover, they conjectured (see Conjecture 9.1 of [1]) that

(1.13) MO(10; 11n+ 7) ≡ 0 (mod 11).

Theorem 1.5. For every non-negative integer n, we have that

MO(10; 11n+ 7) ≡ 0 (mod 11).

We offer two proofs of this result. The first proof uses the explicit description of U10(q) provided
by Theorem 1.3, which allows us to employ the “theory of modular forms mod p”. This proof
illustrates an algorithm that reduces the proof of all conjectured congruences of the form

MO(a; pn+ r) ≡ 0 (mod p) and M(a; pn+ r) ≡ 0 (mod p)

to finitely many steps. Theorem 1.5 requires computing at most 20 terms of five auxiliary q-series.
The second proof is a special case of one of three new infinite families of congruences.

Theorem 1.6. The following are true:
(i) For every pair of non-negative integers n and m, we have that

MO(3m+ 2; 3n+ 1) ≡MO(3m+ 2; 3n+ 2) ≡ 0 (mod 3).

(ii) For every pair of non-negative integers n and m, we have

MO(11m+ 10; 11n+ 7) ≡ 0 (mod 11).

(iii) For every pair of non-negative integers n and m, we have

MO(17m+ 16; 17n+ 15) ≡ 0 (mod 17).

Computer searches for congruences suggest that such congruences are rare, thereby underscoring the
significance of Theorem 1.5. However, it turns out that congruences are both rare and ubiquitous.

Theorem 1.7. For positive integers a and m, the following are true:
(i) There are infinitely many non-nested arithmetic progressions tn+ r (resp. t∗n+ r∗) for which

M(a; tn+ r) ≡ 0 (mod m),

MO(a; t∗n+ r∗) ≡ 0 (mod m).

(ii) There are infinitely many non-nested arithmetic progressions tn+ r for which

M(a; tn+ r) ≡MO(a; tn+ r) ≡ 0 (mod m).
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(iii) There exists a positive real number α(a,m) > 0 for which

#{n ≤ X : M(a;n) ̸≡ 0 (mod m)} = O
(
X/ logα(a,m)X

)
#{n ≤ X : MO(a;n) ̸≡ 0 (mod m)} = O

(
X/ logα(a,m)X

)
.

In other words, the values M(a;n) and MO(a;n) are almost always multiples of any integer m.

To conclude, we offer infinite families of congruences when a ∈ {2, 3, 4, 5}. For convenience, we let

Na :=


23 if a = 2,

273 · 5 if a = 3,

21033 · 5 · 7 if a = 4,

2153352 · 7 if a = 5.

Corollary 1.8. If a ∈ {2, 3, 4, 5}, then the following are true:
(i) If ℓ ∈ {2, 3, 5, 7} and p ≡ −1 (mod ℓordℓ(Na)+1) is prime, then for every n coprime to p we have

MO(a; pn) ≡ 0 (mod ℓ).

(ii) If ℓ ≥ 11 is prime and p ≡ −1 (mod ℓ), then for every integer n coprime to p we have

MO(a; pn) ≡ 0 (mod ℓ).

Example. The following congruence is an example of Corollary 1.8 (i) :

MO(2, 192n+ 19) ≡MO(2, 192n+ 38) ≡MO(2, 192n+ 57) ≡MO(2, 192n+ 76) ≡ 0 (mod 5),

As an example of Corollary 1.8 (ii), for 1 ≤ t ≤ 18, we have

MO(a, 372n+ 37t) ≡ 0 (mod 19).

Remark. Most of the congruences in Theorem 1.7 do not belong to infinite families such as those in
Corollary 1.8. For instance, if p ∈ {67, 101, 271, 373}, then for every non-negative integer n we have

M(6; pn) ≡MO(6; pn) ≡ 0 (mod 17).

The coefficients of the expansion of U6(q) provided by Theorem 1.3 are units modulo 17, and so these
congruences follow from the fact that all of the monomials E2(q)

αE4(q)
βE6(q)

γ, with α, β, γ ≥ 0 and
α + 2β + 3γ ≤ 6, are annihilated modulo 17 by the Hecke operators Tp for p ∈ {67, 101, 271, 373}.

This paper is organized as follows. In Section 2, we recall the Nekrasov-Okounkov hook formulae
and relevant results of Andrews-Rose and Amdeberhan-Andrews-Tauraso, which we then employ
to prove Theorems 1.1 and 1.2 on the limiting behavior of Ua(q) and U

⋆
a (q). In Section 3 we recall

pertinent facts about symmetric functions, as well as results on the quasimodularity of Ua(q), which
we then use to prove Theorems 1.3 and 1.4. Finally, in Section 4 we prove Theorems 1.5 and 1.6,
and in Section 5 we prove Theorem 1.7 using modularity.
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2. Proofs of Theorems 1.1 and 1.2

Here we prove Theorems 1.1 and 1.2 using earlier work of Nekrasov-Okounkov and Andrews-Rose.

2.1. Proof of Theorem 1.1. We require a beautiful identity of Andrews-Rose for Ua(q).

Lemma 2.1. [2, Cor. 2] If a is a positive integer, then as formal power series we have that

Ua(q) ·
∏
n≥1

(1− qn)3 =
(−1)a

(2a+ 1)!

∑
n≥0

(−1)n(2n+ 1)
(n+ a)!

(n− a)!
q

n(n+1)
2 .

We also require the celebrated Nekrasov-Okounkov hook length identity (see (6.12) on page 569 of
[8]; see also Th. 1.3 of [5]).

Theorem 2.2. As a formal power series, we have∏
j≥1

1

(1− qj)z+1
=
∑
m≥0

qm
∑
λ⊢m

∏
h∈H(λ)

( z
h2

+ 1
)
.

Proof of Theorem 1.1. Thanks to Lemma 2.1 for Ua(q), we find that

q−(
a+1
2 ) · Ua(q) ·

∏
n≥1

(1− qn)3 =
∑
j≥0

(−1)j · 2j + 2a+ 1

2a+ 1
·
(
j + 2a

j

)
qaj+(

j+1
2 )

= 1− (2a+ 3)qa+1 + (a+ 1)(2a+ 5)q2a+3 + · · · .

Claim (i) follows immediately.
The first formula in (ii) follows by letting z = 2 in Theorem 2.2, giving∏

n≥1

1

(1− qn)3
=
∑
m≥0

qm
∑
λ⊢m

∏
h∈H(λ)

(
2

h2
+ 1

)
,

while the other claim arises from the interpretation of the q-product in terms of 3-colored partitions.
□

2.2. Proof of Theorem 1.2. Amdeberhan-Andrews-Tauraso express U⋆
a (q) as a single sum.

Lemma 2.3. [1, Prop. 4.1] We have the identity

U∗
a (q) =

∑
k≥1

(−1)k−1 (1 + qk) q(
k
2)+ak

(1− qk)2a
.

Proof of Theorem 1.2. The expansion (1− qk)−2a =
∑

m≥0

(
2a+m−1

m

)
qkm and Lemma 2.3 imply that

q−a · U⋆
a (q) =

∑
k≥1

(−1)k−1 q
(k2)+a(k−1)

(1− qk)2a
+
∑
k≥1

(−1)k−1 q
(k+1

2 )+a(k−1)

(1− qk)2a

=
∑
k≥1

∑
m≥0

(−1)k−1

(
2a+m− 1

m

)
qkm+(k2)+a(k−1) +

∑
k≥1

∑
m≥0

(
2a+m− 1

m

)
qkm+(k+1

2 )+a(k−1).
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We compare coefficients of qn for n ≤ a. Namely, in the double sums we require km+
(
k
2

)
+a(k−1) ≤ a

and km +
(
k+1
2

)
+ a(k − 1) ≤ a. The former results in k = 1,m = n and the latter forces

k = 1,m = n− 1. Consequently, if we let q−a · U⋆
a (q) =:

∑
n≥0 pn(a) q

n, then we find that

pn(a) =

(
2a+ n− 1

n

)
+

(
2a+ n− 2

n− 1

)
.

□

3. Proof of Theorems 1.3 and 1.4

Here we prove the explicit descriptions of Ua(q) and U∗
a (q) in terms of Eisenstein series.

3.1. Nuts and Bolts. We make use of the differential operator Θ := q d
dq
, which acts by

(3.1) Θ
(∑

a(n)qn
)
:=
∑

na(n)qn.

Ramanujan famously obtained the following formulas [11, p. 181] for the action of Θ:

Θ(E2(q)) =
E2

2(q)− E4(q)

12
, Θ(E4(q)) =

E2(q)E4(q)− E6(q)

3
,(3.2)

Θ(E6(q)) =
E2(q)E6(q)− E2

4(q)

2
.

The q-series Ua(q) and U⋆
a (q) satisfy the following convenient convolution (see [1, p. 13]).

Lemma 3.1. If a is a positive integer, then we have that

a∑
i=0

(−1)i · Ui(q) · U⋆
a−i(q) = 0.

Recall the Dedekind eta-function η(q) = q
1
24

∏∞
m=1(1− qm). The following result of Rose [12, Th.

1.12] describes the structural framework of Ua(q) in terms of iterated derivatives of η(q)3.

Theorem 3.2. Each Ua(q) is a finite sum of quasimodular forms with weight ≤ 2a on SL2(Z).
Moreover, the weight 2t summand is a (possibly zero) scalar multiple of

2t · Θ
t (η(q)3)

η(q)3
.

Our next result expresses these q-series as a linear combination of monomials E2(q)
αE4(q)

βE6(q)
γ .

Lemma 3.3. If t is a positive integer, then we have that

(−8)t · Θ
t (η(q)3)

η(q)3
=

∑
α,β,γ≥0

α+2β+3γ=t

c(α, β, γ) · E2(q)
αE4(q)

βE6(q)
γ

where the coefficients c(α.β, γ) are defined by (1.7).
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Proof. For convenience, we let ψ(q) := η(q)3. We calculate Θt(ψ(q))
ψ(q)

by inducting on t. First, it is easy

to check Θ(ψ(q)) = 1
8
ψ(q)E2(q). Theorem 3.2 implies the existence of numbers c̃(α, β, γ) for which

Θt(ψ(q))

ψ(q)
=

∑
α,β,γ≥0

α+2β+3γ=t

c̃(α, β, γ) · Eα
2 (q)E

β
4 (q)E

γ
6 (q).

This comprises of all weight 2t quasimodular summands in Ua(q). One more derivative Θ = q d
dq

turns the last equation into (for brevity, we write c̃ in place of c̃(α, β, γ))

Θt+1(ψ(q)) = Θ(ψ(q)) ·

(∑
α,β,γ

c̃ · Eα
2 (q)E

β
4 (q)E

γ
6 (q)

)
+ ψ(q) ·

∑
α,β,γ

c̃ ·Θ(Eα
2 (q)E

β
4 (q)E

γ
6 (q)).

On the other hand, Ramanujan’s identities (3.2) imply that

Θ(Eα
2E

β
4E

γ
6 ) =

(
α

12
+
β

3
+
γ

2

)
Eα+1

2 Eβ
4E

γ
6 − α

12
Eα−1

2 Eβ+1
4 Eγ

6 − β

3
Eα

2E
β−1
4 Eγ+1

6 − γ

2
Eα

2E
β+2
4 Eγ−1

6 .

We find that the homogeneous weight 2t+ 2 form satisfies

Θt+1(ψ(q))

ψ(q)
=

∑
α,β,γ≥0

α+2β+3γ=t

(
α

12
+
β

3
+
γ

2
+

1

8

)
c̃ · Eα+1

2 Eβ
4E

γ
6 −

∑
α,β,γ

α

12
c̃ · Eα−1

2 Eβ+1
4 Eγ

6

−
∑
α,β,γ

β

3
c̃ · Eα

2E
β−1
4 Eγ+1

6 −
∑
α,β,γ

γ

2
c̃ · Eα

2E
β+2
4 Eγ−1

6 .

By comparing the coefficients of Eα
2E

β
4E

γ
6 on both sides of the equation above, we obtain the

recursion (with c̃(α, β, γ) = δ(0,0,0)(α, β, γ), a Dirac delta boundary conditions)

c̃(α, β, γ) =

(
α

12
+
β

3
+
γ

2
+

1

24

)
c̃(α− 1, β, γ)− α + 1

12
· c̃(α + 1, β − 1, γ)

− β + 1

3
· c̃(α, β + 1, γ − 1)− γ + 1

2
· c̃(α, β − 2, γ + 1).

To determine the exact weight 2t term (independent of a), we take into account the factor of
(−8)α+2β+3γ to determine c(α, β, γ) := (−8)α+2β+3γ · c̃(α, β, γ). As a result, we obtain the desired

c(α, β, γ) = −1

3
(2α + 8β + 12γ + 1) · c(α− 1, β, γ) +

2

3
(α + 1) · c(α + 1, β − 1, γ)

+
8

3
(β + 1) · c(α, β + 1, γ − 1) + 4(γ + 1) · c(α, β − 2, γ + 1).

□

3.2. Proof of Theorem 1.3. We let Et(q) := (−8)t · Θt(ψ)
ψ

, and we define

E2t(q) :=
∑

(1m1 ,...,tmt )⊢t

t∏
j=1

1

mj!

(
B2j E2j(q)

(2j) · (2j)!

)mj

.
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By inspection, we see that E2t(q) has weight 2t. We claim that

E2t(q) =
(−1)t

4t(2t+ 1)!
· Et(q).(3.3)

Let Sr(q) :=
∑

m≥1
mrqm

1−qm =
∑

n≥1 σr(n)q
n. By expanding

∑
j,k≥1

qkj cos(2kx)
k

in two different ways, we

find that it equals both of these∏
j≥1

[
1 +

4(sin2 x)qj

(1− qj)2

]
= exp

(
−2
∑
r≥1

S2r−1(q)

(2r)!
(−4x2)r

)
.(3.4)

Using the identity [1, p. 13], we obtain

(3.5)
∏
k≥1

(
1 +

4qk sin2 x

(1− qk)2

)
=
∑
a≥0

4aUa(q)(sinx)2a,

and the Jacobi Triple Product then implies that

sinx
∏
k≥1

(
1 +

4qk sin2 x

(1− qk)2

)
=
eix − e−ix

2i

∏
j≥1

(1− qje2ix)(1− qje−2ix)

(1− qj)2

=
1

2i · ψ(q)
∑
j∈Z

(−1)jq(
j+1
2 )e(2n+1)ix

=
1

ψ(q)

∑
t≥0

(−1)t
x2t+1

(2t+ 1)!

∑
n≥0

(−1)n(2n+ 1)2t+1q(
n+1
2 )

=
∑
t≥0

Et(q)
x2t+1

(2t+ 1)!
.(3.6)

Using (1.9) and the generating function for Pólya’s cycle index formula [10, (1,5)], we obtain

sinx · exp

(
−2
∑
r≥1

S2r−1(q)

(2r)!
(−4x2)2r

)
= sinx · x

sinx
·
∑
t≥0

(∑
λ⊢t

t∏
j=1

1

mj!

(
B2j · E2s(q)

(2j) · (2j!

)mj

)
(−4x2)t.

(3.7)

Combining (3.4), (3.6), (3.7) and then comparing the coefficients of x2t+1, we confirm (3.3).
To the complete the proof, it suffices to determine the constants bt(a) for which

Ua(q) =
a∑
t=0

bt(a) · E2t(q).(3.8)

It is convenient to recall the Andrews-Rose recursion [2, Cor. 3]

Ua(q) =
1

2a(2a+ 1)
[(6U1(q) + a(a− 1))Ua−1(q)− 2Θ(Ua−1(q))] .(3.9)

The structure of equation (3.8) is preserved by (3.9) because of the identity

Θ(E2t−2) = t(2t+ 1)E2t − 3E2E2t−2.
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It is straightforward to see that

bt(a) =
1

8a(2a+ 1)

[
(2a− 1)2 · bt(a− 1)− 8t(2t+ 1) · bt−1(a− 1)

]
,

with initial boundary conditions b0(0) = 1 and bt(a) = 0 when t < 0 or t > a. Finally, one checks
that (−4)t(2t+ 1)!wt(a) satisfies this recurrence, thereby completing the proof of the theorem.

3.3. Proof of Theorem 1.4. By reciprocating (3.5), we have∑
n≥0

(−4)a U⋆
a (q)(sinx)

2a =
∏
k≥1

1

1 + 4qk sin2 x
(1−qk)2

.

In analogy with the previous formula for E2t(q) involving the Ua(q), we use (3.3) to obtain an identity
for U⋆

a (q) with E∗
2t(q) (see (1.10)). Arguing as in the proof of Theorem 1.3 with Lemma 3.1, we get

U⋆
a (q) =

a∑
t=0

w⋆t (a) · E⋆2t(q).

4. Proof of Theorems 1.5 and 1.6

Here we prove Theorem 1.5 using Serre’s theory of modular forms modulo primes p (see [9, Section
2.8], or [17]) and a well-known criterion of Sturm that determines congruences between modular
forms. In the sequel, we tacitly assume that q := e2πiz, the uniformizer for the point at infinity.
We also prove Theorem 1.6 by combining work of Andrews-Rose with a classical result of Gordon,
together with other allied observations.

4.1. Modular forms modulo p. We recall some facts from the theory of modular forms mod p.
The key tool in the proof of Theorem 1.5 is the following theorem of Sturm (see [16] or p. 40 of [9]).

Theorem 4.1. Let p be a prime. If f(z) =
∑

n≥0 a(n)q
n and g(z) =

∑
n≥0 b(n)q

n are modular forms
of weight k on SL2(Z) with integer coefficients, then f(z) ≡ g(z) (mod p) if and only if a(n) ≡ b(n)
(mod p) for all n ≤ k/12.

We shall make use of derivatives of modular forms. Although differentiation does not preserve
modularity, it does preserve modular forms modulo p (for example, see [13]).

Lemma 4.2. If f(z) =
∑

n≥0 a(n)q
n ∈ Mk ∩ Z[[q]], then there is a modular form g(z) =∑

n≥0 b(n)q
n ∈Mk+p+1 ∩ Z[[q]] for which

g ≡ Θ(f) :=
∑
n≥0

na(n)qn (mod p).

4.2. Proof of Theorem 1.5. We let U10(q) = F0(q) + F2(q) + F4(q) + F6(q) + F8(q), where each

F2i(q) is a sum of Eα
2E

β
4E

γ
6 (suppressing the q), where 2α+ 4β + 6γ ≡ 2i (mod 10). Theorem 1.3



12 TEWODROS AMDEBERHAN, KEN ONO AND AJIT SINGH

then gives

F0(q) =
46189

5772436045824
− 2008213E4E6

4271802792542208000
+ · · ·+ E10

2

230078188847156428800
,

F2(q) =− 25587296781661E2

2645567198945303592960
− 604841E2

6

48057781416099840000
+ · · ·+ 7862933E6

2

63910608013099008000
,

F4(q) =− 79923511502753E4

67133754108574433280000
+

79923511502753E2
2

26853501643429773312000
+ · · · − 16333E7

2

4473742560916930560
,

F6(q) =− 70726885883E6

333200617818292224000
+

70726885883E2E4

126933568692682752000
− · · ·+ 1819E8

2

25564243205239603200
,

F8(q) =− 316100258731E2
4

20732482886471516160000
+

316100258731E2E6

3887340541213409280000
− · · · − 19E9

2

23007818884715642880
.

Each of these q-series is 11-integral, and so they may be reduced modulo 11 to obtain

F̂0(q) := F0(q) (mod 11) ≡ 2q3 + 6q4 + 7q5 + 8q6 + 5q7 + 2q8 + 2q9 + . . . (mod 11),

F̂2(q) := F2(q) (mod 11) ≡ 6q3 + 7q4 + 10q5 + 7q6 + 8q7 + 7q8 + 6q9 + . . . (mod 11),

F̂4(q) := F4(q) (mod 11) ≡ 7q3 + 10q4 + 8q5 + 2q6 + 4q8 + 7q9 + . . . (mod 11),

F̂6(q) := F6(q) (mod 11) ≡ 10q3 + 8q4 + 9q5 + 10q6 + q7 + 4q8 + 10q9 + . . . (mod 11),

F̂8(q) := F8(q) (mod 11) ≡ 8q3 + 2q4 + 6q5 + 6q6 + 8q7 + 5q8 + 8q9 + . . . (mod 11).

Using the congruences E2(q) ≡ E12(q) (mod 11) and E10(q) ≡ 1 (mod 11), we observe that

F̂0(q), F̂2(q), F̂4(q), F̂6(q), and F̂8(q) are modular forms modulo 11 of weight 120, 72, 84, 96, and
108, respectively, on SL2(Z).

We proceed to isolate the arithmetic progression of coefficients that is relevant for the theorem.
We apply the differential operators to U10(q) to eliminate terms with exponents n ≡ 0, 1, 3, 4, 5, 9
(mod 11). The non-zero classes are the quadratic residues modulo 11. Using Fermat’s Little Theorem
and Euler’s Criterion, this is achieved by

G1(q) : ≡
∑

n≡2,6,7,8,10 (mod 11)

MO(10;n)qn ≡
4∑
i=0

−5[Θ10(F̂2i(q))−Θ5(F̂2i(q))] (mod 11).

Next, we proceed to remove the terms with exponents that are quadratic non-residues apart from
those with n ≡ 7 (mod 11). For instance, to eliminate n ≡ 2 (mod 11) from G1(q) compute

G2(q) := Θ(G1(q))− 2G1(q) ≡
∑

n≡6,7,8,10 (mod 11)

MO(10;n)qn (mod 11).
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We repeat this process to remove terms with exponents n ≡ 6, 8, 10 (mod 11), and we get∑
n≡7 (mod 11)

MO(10;n)qn (mod 11)

≡ −5(Θ4(F̂2)−Θ9(F̂2)) + 9(Θ3(F̂4)−Θ8(F̂4))− 3(Θ2(F̂6)−Θ7(F̂6)) + Θ(F̂8)

−Θ6(F̂8)− 4(F̂0 −Θ5(F̂0))− 5(Θ4(F̂4)−Θ9(F̂4)) + 9(Θ3(F̂6)−Θ8(F̂6))

− 3(Θ2(F̂8)−Θ7(F̂8)) + Θ(F̂0)−Θ6(F̂0)− 4(F̂2 −Θ5(F̂2))− 5(Θ4(F̂6)−Θ9(F̂6))

+ 9(Θ3(F̂8)−Θ8(F̂8))− 3(Θ2(F̂0)−Θ7(F̂0)) + Θ(F̂2)−Θ6(F̂2)− 4(F̂4 −Θ5(F̂4))

− 5(Θ4(F̂8)−Θ9(F̂8)) + 9(Θ3(F̂0)−Θ8(F̂0))− 3(Θ2(F̂2)−Θ7(F̂2)) + Θ(F̂4)

−Θ6(F̂4)4(F̂6 −Θ5(F̂6))− 5(Θ4(F̂0)−Θ9(F̂0)) + 9(Θ3(F̂2)−Θ8(F̂2))

− 3(Θ2(F̂4)−Θ7(F̂4)) + Θ(F̂6)−Θ6(F̂6)− 4(F̂8 −Θ5(F̂8)).

Now we collect these terms so that∑
n≡7 (mod 11)

MO(10;n)qn (mod 11) = Y0(q) + Y2(q) + Y4(q) + Y6(q) + Y8(q),

where Y2i(q) consists of those Θ
t(F̂j(q)) with weight congruent to i modulo 10. By Lemma 4.2, we find

that Y0(q), Y2(q), Y4(q), Y6(q), and Y8(q) are modular forms modulo 11 with weights 228, 180, 192, 204,
and 216, respectively on SL2(Z). Finally, by Sturm’s Theorem 4.1 (i.e. checking at most 20 terms),
we find that each of these modular forms vanishes modulo 11, which implies the theorem.

4.3. Proof of Theorem 1.6. The generating function for the 3-colored partition function satisfies

P3(q) =
∑
n≥0

c3(n)q
n =

∏
n≥1

1

(1− qn)3
≡
∑
n≥0

p(n)q3n (mod 3).

Therefore, we have that 3 | c3(n) whenever 3 ∤ n. Furthermore, Gordon [4] proved that

c3(11n+ 7) ≡ 0 (mod 11).

We further claim that c3(17n+15) ≡ 0 (mod 17). To prove this congruence, we employ Ramanujan’s
weight 12 cusp form ∆(z) := η(z)24 through the following observation:

q2
∑
n≥0

c3(n)q
n ·
∏
n≥1

(1− q17n)3 ≡ q2
∏
n≥1

(1− qn)48 (mod 17) = ∆(z)2.

One easily checks that ∆2 | T17 ≡ 0 (mod 17), which means that every seventeenth coefficient of
∆(z)2 vanishes modulo 17. This congruence follows immediately from the fact that∏

n≥1

(1− q17n)3 ∈ (Z/17Z)[q17].

Now suppose that ℓ ∈ {3, 11, 17} and 1 ≤ a ≡ ℓ− 1 (mod ℓ). If ℓ ∤ n(n+ 1)/2, then we have

(2n+ 1)(n+ a)!

(2a+ 1)!(n− a)!
≡ 0 (mod ℓ).

Therefore, the identity in Lemma 2.1 collapses modulo ℓ and gives

Ua(q) =
∑
n≥0

MO(a;n)qn ≡ P3(q) ·
∑
n≥0

A(a, ℓ; ℓn)qℓn (mod ℓ).
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The power series on the right is in (Z/ℓZ)[qℓ], and so the MO(a;n) inherit the c3(n) congruences.

5. Proof of Theorem 1.7

Here we prove Theorem 1.7 and Corollary 1.8.

5.1. Nuts and Bolts. We first recall the definition of Hecke operators. Let m be a positive integer
and f(z) =

∑∞
n=0 a(n)q

n ∈Mk. Then the action of Hecke operator Tm on f(z) is defined by

f(z) |Tm :=
∞∑
n=0

 ∑
d|gcd(n,m)

dk−1a
(nm
d2

) qn.(5.1)

In particular, if m = p is a prime, we have

f(z) |Tp := f(z) |Up + pk−1f(z) |Vp,(5.2)

where f(z) |Up :=
∑∞

n=0 a(pn)q
n and f(z) |Vp :=

∑∞
n=0 a(n)q

pn.
Let’s recall a result of Serre [14] (also see [9, Lemma 2.63 and Theorem 2.65]) on the action of

Hecke operator on cusp forms. For a number field K, let OK denote its ring of integers.

Lemma 5.1. For 1 ≤ i ≤ t, let fi(z) =
∑∞

n=1 ai(n)q
n ∈Mk be a modular form with coefficients in

the ring of integers of a number field OK . Then the following are true.
(i) If m ⊂ OK is an ideal of norm M , then a positive proportion of the primes p ≡ −1 (mod M)
satisfy

f1(z) | Tp ≡ f2(z) | Tp ≡ · · · ft(z) | Tp ≡ 0 (mod m).

(ii) There is a constant a > 0 such that for every 1 ≤ i ≤ t we have

# {n ≤ X : ai(n) ̸≡ 0 (mod m)} = O (X/(logX)a) .

We next recall some facts about p-adic modular forms developed by Serre [15]. Let p be a prime.
Consider the field of p-adic numbers Qp, with its non-archimedean valuation νp. We say x ∈ Qp

is p-integral if νp(x) ≥ 0. Let f =
∑
a(n)qn ∈ Qp[[q]] be a formal power series, we define

νp(f) := infn νp(an). If νp(f) ≥ m, we write as well f ≡ 0 (mod pm). Assume {fi} to be a sequence
of elements in Qp[[q]]. We say that fi → f if the coefficients of fi tend uniformly to those of f , i.e.,
νp(f − fi) → ∞. A p-adic modular form f is a formal series with coefficients in Qp which is the limit
of classical modular forms fi of weights ki.

In order to prove Theorem 1.7, we need the following preliminary result.

Lemma 5.2. The following are true:
(i) If m is a positive integer, then we have that

E2(z) ≡
1

(2m − 1)

m∑
i=1

2i−1E2+3·2m+1(z) |V2i−1 (mod 2m).

Moreover, E2(z) (mod 2m) is the reduction of a weight 2 + 3 · 2m+1 modular form on SL2(Z).
(ii) If m is a positive integer, then we have that

E2(z) ≡
2

(3m − 1)

m∑
i=1

3i−1E2+4·3m(z) |V3i−1 (mod 3m).
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Moreover, E2(z) (mod 3m) is the reduction of a weight 2 + 4 · 3m modular form on SL2(Z).
(iii) If p ≥ 5 is prime and m is a positive integer, then we have that

E2(z) ≡
(p− 1)

(pm − 1)

m∑
i=1

pi−1E2+(p−1)pm−1(z) |Vpm−1 (mod pm).

In particular, E2(z) (mod pm) is the reduction of a weight 2 + pm−1(p− 1) modular form on SL2(Z).

Proof. Let g(z) =
∑∞

n=0 b(n)q
n be a weight k modular form on SL2(Z) with p-integral coefficients.

Then g(z) |Tp =
∑∞

n=0 b(pn)q
n + pk−1b(n)qpn ∈ Mk. Since Epm−1(p−1)(z) ≡ 1 (mod pm), we have

that {g(z)Epm−1(p−1)(z)} converges to g(z) p-adically. Hence, g(z) is a p-adic modular form. Also,
we have the convergence

g(z)Epm−1(p−1)(z) |Tp −→ g(z) |Up =
∞∑
n=0

b(pn)qn.

Hence, Up is an operator on Mk and so is Vp, defined as g(z) |Vp = p1−k(g(z) |Tp − g(z) |Up). Now,
our proof of the lemma follows from [15, Example on Page 210]. □

5.2. Proof of Theorem 1.7. By Theorem 1.3 and 1.4, we have

Ua(q) =
a∑
t=0

wt(a)
∑

α,β,γ≥0
α+2β+3γ=t

c(α, β, γ)E2(q)
αE4(q)

βE6(q)
γ = F0(q) + F2(q) + · · ·+ F2a(q),

U⋆
a (q) =

a∑
t=0

w⋆t (a) · E⋆2t(q) = F ⋆
0 (q) + F ⋆

2 (q) + · · ·+ F ⋆
2a(q),(5.3)

where F2i(q) and F ⋆
2i(q), for 0 ≤ i ≤ a, are quasimodular forms of weight 2i on SL2(Z). Using

Lemma 5.2 and the Chinese Remainder Theorem, we find that F2i(q) and F
⋆
2i(q), for 0 ≤ i ≤ a, are

modular forms modulo any integer m on SL2(Z). Employing Lemma 5.1 (i) on (5.3), we complete
the proof of first and second parts of Theorem 1.7 and finally applying Lemma 5.1 (ii) to (5.3),
claim (iii) follows.

5.3. Proof of Corollary 1.8. By Theorem 1.3, we find that

U2(q) =
1

23

∑
n≥0

[(−2n+ 1)σ1(n) + σ3(n)]q
n,

U3(q) =
1

27 · 3 · 5
∑
n≥0

[(40n2 − 100n+ 37)σ1(n) + (−30n+ 50)σ3(n) + 3σ5(n)]q
n,

U4(q) =
1

21033 · 5 · 7
∑
n≥0

[
(−840n3 + 5880n2 − 9870n+ 3229)σ1

+ (756n2 − 4410n+ 4935)σ3 + (−126n+ 441)σ5 + 5σ7
]
qn,

U5(q) =
1

2153352 · 7
∑
n≥0

[(3360n4 − 50400n3 + 223440n2 − 314200n+ 96111)σ1(n)

+ (−3360n3 + 45360n2 − 167580n+ 157100)σ3(n)

+ (720n2 − 7560n+ 16758)σ5(n) + (−50n+ 300)σ7(n) + σ9(n)]q
n.
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Let s and t be non-negative integers. If k is a positive odd, then for primes p ≡ −1 (mod s) we have

(pn)tσk(pn) = (pn)tσk(n)σk(p) = (pn)tσk(n)(1 + pk) ≡ 0 (mod s)(5.4)

for all n coprime to p. Corollary 1.8 follows by applying (5.4) appropriately in each case.
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[7] P. A. MacMahon, Divisors of Numbers and their Continuations in the Theory of Partitions, Proc. London Math.

Soc. (2) 19 (1920), no.1, 75-113 [also in Percy Alexander MacMahon Collected Papers, Vol.2, pp. 303–341 (ed.
G.E. Andrews), MIT Press, Cambridge, 1986].

[8] N. A. Nekrasov, A. Okounkov, Seiberg-Witten theory and random partitions, in The unity of mathematics,
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