
REMARKS ON MACMAHON’S q-SERIES

KEN ONO AND AJIT SINGH

Abstract. In his important 1920 paper on partitions, MacMahon defined the partition gener-
ating functions

Ak(q) =

∞∑
n=1

m(k;n)qn :=
∑

0<s1<s2<···<sk

qs1+s2+···+sk

(1− qs1)2(1− qs2)2 · · · (1− qsk)2
,

Ck(q) =

∞∑
n=1

modd(k;n)qn :=
∑

0<s1<s2<···<sk

q2s1+2s2+···+2sk−k

(1− q2s1−1)2(1− q2s2−1)2 · · · (1− q2sk−1)2
.

These series give infinitely many formulas for two prominent generating functions. For each
non-negative k, we prove that Ak(q), Ak+1(q), Ak+2(q), . . . (resp. Ck(q), Ck+1(q), Ck+2(q), . . . )
give the generating function for the 3-colored partition function p3(n) (resp. the overpartition
function p(n)). To be precise, we have

∞∑
n=0

p3(n)qn = q−
k2+k

2

∞∑
m=k

(
2m + 1

m + k + 1

)
Am(q),

∞∑
n=0

p(n)qn = q−k
2
∞∑

m=k

(
2m

m + k

)
Cm(q).

These formulas systematically give infinitely many formulas for the 3-colored partition function
and the overpartition function in terms of MacMahon’s m(•;n) and modd(•;n) partition functions.

1. Introduction and Statement of Results

In an important paper on integer partitions, MacMahon [12] introduced the family of q-series

Ak(q) :=
∑

0<s1<s2<···<sk

qs1+s2+···+sk

(1− qs1)2(1− qs2)2 · · · (1− qsk)2
.(1.1)

For positive integers k, we have that

(1.2) Ak(q) =
∞∑
n=1

m(k;n)qn =
∑

0<s1<s2<···<sk
(m1,...,mk)∈Nk

m1m2 . . .mkq
m1s1+m2s2+...mksk ,

and so Ak(q) is a natural partition generating function. Indeed, we have that m(k;n) is the sum
of the products of the part multiplicities for partitions of n with k distinct part sizes.

These series connect partitions to disparate areas of mathematics. In elementary number
theory, MacMahon realized some of the Ak(q) as generating functions for divisor sums. For
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example, he found that

A1(q) =
∞∑
n=1

σ1(n)qn = 1 + 3q2 + 4q3 + 7q4 + 6q5 + . . . ,

A2(q) =
1

8

∞∑
n=1

((−2n+ 1)σ1(n) + σ3(n)) = q3 + 3q4 + 9q5 + . . . ,

where σν(n) :=
∑

d|n d
ν . Extending beyond number theory, these series arise in the study of Hilbert

schemes, q-multiple zeta-values, representation theory, and topological string theory. Recent
research has focused on the quasimodularity of the Ak(q) (for example, see [1, 2, 5, 6, 7, 13]).
Andrews and Rose [5, 13] proved that Ak(q) is a linear combination of quasimodular forms on
SL2(Z) with weights ≤ 2k.

In this note, we instead focus on the combinatorial properties of MacMahon’s series. We show
that they satisfy infinitely many systematic identities, that, in turn, illustrate the ubiquity of the
m(k;n) partition functions. To set the stage, we offer some terms of A0(q), A1(q), . . . , A5(q) :

A0(q) := q0,

A1(q) = q + 3q2 + 4q3 + 7q4 + 6q5 + . . . ,

A2(q) = q3 + 3q4 + 9q5 + 15q6 + 30q7 + . . . ,

A3(q) = q6 + 3q7 + 9q8 + 22q9 + 42q10 + . . . ,

A4(q) = q10 + 3q11 + 9q12 + 22q13 + 51q14 + . . . ,

A5(q) = q15 + 3q16 + 9q17 + 22q18 + 51q19 + . . .

As these examples suggest, the Ak(q) behave well as k → +∞. Indeed, in terms of the q-
Pochammer symbol

(a; q)∞ := (1− a)(1− aq)(1− aq2) . . . ,
and Jacobi’s famous identity for (q; q)3∞, it is known that (see Theorem 1.1 of [2])

(1.3)
1

(q; q)3∞
= q−

k2+k
2 Ak(q) +O(qk+1).

In a recent preprint, Bringmann, Craig, van Ittersum and Pandey [7] obtain further such results
relating infinite products with MacMahon-type q-series.

It is natural to ask whether (1.3) is a glimpse of explicit identities, one for each non-negative

integer k. We show that this is indeed the case, where q−
k2+k

2 Ak(q) is simply the first summand
of a closed formula involving Ak(q), Ak+1(q), Ak+2(q), . . . .

Theorem 1.1. If k is a non-negative integer, then we have

1

(q; q)3∞
= q−

k2+k
2

∞∑
m=k

(
2m+ 1

m+ k + 1

)
Am(q).

To further appreciate these identities, we note, for positive m, that (1.3) implies

(1.4) q−
k2+k

2 Ak+m(q) = q
m(m+1)

2
+mk + . . . .
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The first terms of these q-series have exponents that grow quadratically m. Therefore, we can
use Theorem 1.1 to compute initial segments of

1

(q; q)3∞
=
∑
n≥0

p3(n)qn,(1.5)

the generating function for the 3-colored partition function p3(n), using a “small number” of
summands. In this way, we obtain a doubly infinite family of formulas relating the 3-colored
partition function to MacMahon’s m(k;n) partition functions.

Corollary 1.2. If k and j are non-negative integers, then

1

(q; q)3∞
= q−

k2+k
2

j∑
m=0

(
2m+ 2k + 1

m+ 2k + 1

)
Am+k(q) +O

(
q

(j+1)(j+2k+2)
2

)
.

In particular, if n < (j + 1)(j + 2k + 2)/2, then we have

p3(n) =

j∑
m=0

(
2m+ 2k + 1

m+ 2k + 1

)
m

(
m+ k;n+

k2 + k

2

)
.

Remark. Letting j = 1 in Corollary 1.2 gives Theorem 1.1 (ii) of [1].

Example. If k = 100 and j = 2, then Corollary 1.2 gives

1

(q; q)3∞
= q−5050 · (A100(q) + 203A101(q) + 20910A102(q)) +O(q306).

Therefore, for n < 306, we have

p3(n) = m(100;n+ 5050) + 203m(101;n+ 5050) + 20910m(102;n+ 5050).

In addition to the Ak(q), MacMahon also introduced [12] the q-series

Ck(q) =
∞∑
n=1

modd(k;n)qn :=
∑

0<s1<s2<···<sk

q2s1+2s2+···+2sk−k

(1− q2s1−1)2(1− q2s2−1)2 · · · (1− q2sk−1)2
.(1.6)

The numbers modd(k;n) have the same partition theoretic description as the m(k;n), where here
the parts are required to be odd. Furthermore, in analogy with the work of Andrews and Rose
[5, 13], Bachmann [6] proved that each Ck(q) is a finite linear combination of quasimodular forms
on Γ0(2) with weight ≤ 2k.

Here we show that the Ck(q) also enjoy properties that are analogous to those of Ak(q)
described above. Namely, we prove the following theorem, where C0(q) := 1.

Theorem 1.3. The following are true.
(1) If k is a non-negative integer, then we have

q−k
2

Ck(q) =
1

(q2; q2)∞(q; q2)2∞
+O(q2k+1).

(2) If k is a non-negative integer, then we have

1

(q2; q2)∞(q; q2)2∞
= q−k

2
∞∑
m=k

(
2m

m+ k

)
Cm(q).
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Theorems 1.1 and 1.3 establish infinitely many formulas, one for each integer k, between
MacMahon’s two families of q-series and the reciprocals of the theta functions

(q; q)3∞ =
∞∑
n=0

(−1)n(2n+ 1)q
n2+n

2 = 1− 3q + 5q3 − 7q6 + 9q10 − . . . ,

(q2; q2)∞(q; q2)2∞ =
∑
n∈Z

(−1)nqn
2

= 1− 2q + 2q4 − 2q9 + 2q16 − 2q25 + . . . .

Corollary 1.2, which relates the 3-colored partition function to MacMahon’s m(k;n) partition
functions, relies on the fact that 1/(q; q)3∞ is the generating function of p3(n). Rather nicely, it
turns out that

(1.7)
1

(q2; q2)∞(q; q2)2∞
=
∞∑
n=0

p(n)qn = 1 + 2q + 4q2 + 8q3 + 14q4 + 24q5 + . . . ,

where p(n) denotes the number of overpartitions of size n. Recall that an overpartition of n is an
ordered sequence of nonincreasing positive integers, where the first occurrence of each integer
may be overlined [9]. Overpartitions have been the focus of intense research in recent years
(for example, see [4, 8, 9, 10, 11, 14]). Therefore, in analogy with Corollary 1.2, we obtain the
following corollary.

Corollary 1.4. If k and j are non-negative integers, then

1

(q2; q2)∞(q; q2)2∞
= q−k

2

j∑
m=0

(
2m+ 2k

m+ 2k

)
Cm+k(q) +O

(
q(j+1)(j+2k+1)

)
.

In particular, if n < (j + 1)(j + 2k + 1), then we have

p(n) =

j∑
m=0

(
2m+ 2k

m+ 2k

)
modd

(
m+ k;n+ k2

)
.

Example. If k = 100 and j = 2, then Corollary 1.4 gives

1

(q2; q2)∞(q; q2)2∞
= q−10000 · (C100(q) + 202C101(q) + 20706C102(q)) +O(q609).

Therefore, for n < 609, we have

p(n) = modd(100;n+ 10000) + 202modd(101;n+ 10000) + 20706modd(102;n+ 10000).

The proofs of our results are rather straightforward, and follow from the Jacobi triple product
identity. Namely, we recognize the role of MacMahon’s q-series as coefficients of power series in
(z + z−1)2 obtained from this well-known bivariate infinite product.

Remark. The proofs of Theorems 1.1 and 1.3 follow along similar lines. They differ in their
choice of specialization (i.e. changes of variable) of the Jacobi triple product identity. It
would be interesting to see if other natural partition generating functions emerge from further
specializations, to supplement these results on p3(n) and p(n). Finally, we point out that it would
be interesting to carry out a similar analysis for the quintuple and septuple infinite product
identities.
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2. Proofs

2.1. MacMahon’s Ak(q). Here we prove Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1. We recall the Jacobi triple product identity (see Theorem 2.8 of [3])
∞∑

n=−∞

qn
2

zn =
∞∏
n=0

(1− q2n+2)(1 + z−1q2n+1)(1 + zq2n+1).

By factoring out (q2; q2)∞, and letting z → qz2, and then letting q → √q, a simple reindex gives

∞∑
n=−∞

q
n(n+1)

2 z2n =
(
1 + z−2

)
(q; q)∞

∞∏
n=1

(1 + z−2qn)(1 + z2qn).

After straightforward algebraic manipulation, we find
∞∑

n=−∞

q
n(n+1)

2 z2n =
(
1 + z−2

)
(q; q)∞

∞∏
n=1

(
(1− qn)2 + (z + z−1)2qn

)
.

After factoring out (q; q)2∞ from the infinite product, we obtain
∞∑

n=−∞

q
n(n+1)

2 z2n =
(
1 + z−2

)
(q; q)3∞

∞∏
n=1

(
1 +

qn

(1− qn)2
· (z + z−1)2

)
.

Thanks to definition (1.1), we find that the infinite product on the right, as a power series in
(z + z−1)2, is the generating function for MacMahon’s series. Therefore, we find that

∞∑
n=−∞

q
n(n+1)

2

(q; q)3∞
· z2n =

(
1 + z−2

) ∞∑
n=0

An(q)(z + z−1)2n.

Thanks to the Binomial Theorem, followed by a simple shift in the index of summation, and
culminating with a change in the order of summation, we obtain

∞∑
n=−∞

q
n(n+1)

2

(q; q)3∞
· z2n =

(
1 + z−2

) ∞∑
n=0

An(q)
2n∑
j=0

(
2n

j

)
z2j−2n =

(
1 + z−2

) ∞∑
n=0

An(q)
n∑

j=−n

(
2n

j + n

)
z2j

=
(
1 + z−2

) ∞∑
j=−∞

∞∑
n=|j|

(
2n

j + n

)
An(q)z2j.

After multiplying through (1 + z−2), we obtain

∞∑
n=−∞

q
n(n+1)

2

(q; q)3∞
· z2n =

∞∑
j=−∞

 ∞∑
n=|j|

(
2n

j + n

)
An(q) +

∞∑
n=|j+1|

(
2n

j + n+ 1

)
An(q)

 z2j.

The theorem follows by comparing the coefficient of z2k on both sides after making use of the
binomial coefficient identity

(
m
r

)
+
(
m
r+1

)
=
(
m+1
r+1

)
. �
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Proof of Corollary 1.2. To prove the corollary, we truncate the infinite sums in Theorem 1.1
after j terms, and we then apply (1.4) and (1.5). �

2.2. MacMahon’s Ck(q). Here we prove Theorem 1.3 and Corollary 1.4.

Proof of Theorem 1.3. We recall the Jacobi triple product identity (see Theorem 2.8 of [3])

∞∑
n=−∞

qn
2

zn =
∞∏
n=0

(1− q2n+2)(1 + z−1q2n+1)(1 + zq2n+1).

After factoring out (q2; q2)∞, and then letting z → z2, a simple reindex gives

∞∑
n=−∞

qn
2

z2n = (q2; q2)∞

∞∏
n=1

(1− z−2q2n−1)(1 + z2q2n−1).

One easily checks that
∞∑

n=−∞

qn
2

z2n = (q2; q2)∞

∞∏
n=1

(
(1− q2n−1)2 + (z + z−1)2q2n−1

)
.

After factoring out (q; q2)2∞ from the infinite product, we obtain

∞∑
n=−∞

qn
2

z2n = (q2; q2)∞(q; q2)2∞

∞∏
n=1

(
1 +

q2n−1

(1− q2n−1)2
· (z + z−1)2

)
.

Thanks to definition (1.6), we find that the infinite product on the right, as a power series in
(z + z−1)2, is the generating function for MacMahon’s series. Namely, we have

∞∑
n=−∞

qn
2

(q2; q2)∞(q; q2)2∞
· z2n =

∞∑
n=0

Cn(q)(z + z−1)2n.

Thanks to the Binomial Theorem, followed by a simple shift in the index of summation, and
culminating with a change in the order of summation, we get

∞∑
n=−∞

qn
2

(q2; q2)∞(q; q2)2∞
· z2n =

∞∑
n=0

Cn(q)
2n∑
j=0

(
2n

j

)
z2j−2n =

∞∑
n=0

Cn(q)
n∑

j=−n

(
2n

j + n

)
z2j

=
∞∑

j=−∞

∞∑
n=|j|

(
2n

j + n

)
Cn(q)z2j

By comparing the coefficient of z2k on both sides, one easily deduces claim (2), which in turn
implies claim (1). �

Proof of Corollary 1.4. By direct computation, for every positive integer m we have

q−k
2

Ck+m(q) = qm(m+2k) + . . . .

By truncating the infinite sums in Theorem 1.3 (3) after j terms, the corollary now follows from
this fact and (1.7).

�
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