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Abstract. We investigate ξ(s) = 1
2s(s − 1)π−

s
2 Γ( s

2 )ζ(s), where ζ(s) is the Riemann zeta

function. The Riemann hypothesis (RH) asserts that if ξ(s) = 0, then Re(s) = 1
2 . Pólya proved

that RH is equivalent to the hyperbolicity of the Jensen polynomials Jd,n(X) constructed from
certain Taylor coefficients of ξ(s). For each d ≥ 1, recent work proves that Jd,n(X) is hyperbolic
for sufficiently large n. In this paper, we make this result effective. Moreover, we show how the
low-lying zeros of the derivatives ξ(n)(s) influence the hyperbolicity of Jd,n(X).

1. Introduction and Statement of Results

Let ζ(s) be the Riemann zeta function. Define ξ(s) := 1
2
s(s− 1)π−

s
2 Γ( s

2
)ζ(s) and1

(1.1) ψ(z) :=
∞∑
j=0

γ(j)

j!
z2j = ξ

(1

2
+ z
)
.

It is known that γ(n) > 0 for all n ≥ 0 [4, Section 4.4]. For d, n ≥ 0, the degree d Jensen
polynomial Jd,n(X) for the n-th derivative ξ(n)(s) is

(1.2) Jd,n(X) :=
d∑
j=0

(
d

j

)
γ(n+ j)Xj.

A polynomial with real coefficients is hyperbolic if all of its zeros are real. Expanding on notes
of Jensen, Pólya [16] proved that the Riemann hypothesis (RH) is equivalent to the hyperbolicity
of Jd,n(X) for all d, n ≥ 0. Since RH remains unproved, some research has focused on proving
hyperbolicity for all n ≥ 0 when d is small. Csordas, Norfolk, and Varga [7] and Dimitrov
and Lucas [9] proved hyperbolicity for n ≥ 0 and d ≤ 3. Building on the work of Borcea and
Brändén [3] and Obreschkoff [14], Chasse [5] proved hyperbolicity for d ≤ 2× 1017 and n ≥ 0.

Recent work [12] provides a complementary treatment. For all d ≥ 1, there is a threshold
N(d) such that Jd,n(X) is hyperbolic for n ≥ N(d). Specifically, under the transformation (2.2)
below, the polynomials Jd,n(X) are closely modeled by the Hermite polynomials Hd(

X
2

), where

(1.3)
∞∑
d=0

Hd(X)
td

d!
:= e2Xt−t

2

= 1 + 2Xt+ (4X2 − 2)
t2

2!
+ (8X3 − 12X)

t3

3!
+ · · ·

Thus for large n, Jd,n(X) inherits hyperbolicity from Hd(
X
2

). See Bombieri [2] for commentary.
Our main result, which builds on work in [12], provides an effective upper bound for N(d).

Theorem 1.1. There is a constant c > 0 such that Jd,n(X) is hyperbolic for d ≥ 1 and n ≥ ced/2.

Key words and phrases. Riemann zeta function, Riemann hypothesis, Jensen polynomial.
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1This presentation, which is convenient for us, differs from the traditional

∑∞
j=0 γ(j)z2j/(2j)!.
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For an integer m ≥ 0, let RHm to be the statement that if ξ(m)(s) = 0, then Re(s) = 1
2
.

It is well known that RH = RH0 implies RHm for all m ≥ 1 [16]. The ideas of Pólya lead to
the conclusion that ξ(m)(s) satisfies RHm if and only if Jd,n(X) is hyperbolic for d ≥ 1 and
n ≥ m. For T ≥ 0, we define RHm(T ) to be the statement that all zeros ρ(m) of ξ(m)(s) with
|Im(ρ(m))| ≤ T satisfy Re(ρ(m)) = 1

2
. Our second result is a relationship between RHm(T ) and

the hyperbolicity of Jd,n(X) for n ≥ m. In what follows, bxc denotes the usual floor function.

Theorem 1.2. If RHm(T ) is true and d ≤ bT c2, then Jd,n(X) is hyperbolic for all n ≥ m.

This is a modest generalization of work of Chasse [5, Theorem 1.8], which Theorem 1.2
recovers when m = 0. We include it for the sake of completeness. Since Platt [17] has verified
RH0(3.06× 1010), Theorem 1.2 implies the following corollary.

Corollary 1.3. If d ≤ 9.36× 1020 and n ≥ 0, then Jd,n(X) is hyperbolic.

Remarks.

(1) One can generalize the notion of a Jensen polynomial by replacing the Taylor coefficients
γ(n) with other suitable arithmetic functions in (1.2). Questions of hyperbolicity for such
polynomials can be of great arithmetic interest [12]. While some of the ideas presented
here might apply in other settings, we restrict our consideration and only present the
strongest conclusions for ξ(s) that our methods appear to permit.

(2) Our proof quantifies the rate at which a certain transformation of Jd,n(X) tends to Hd(
X
2

)
as n tends to infinity. See Farmer [11] for an interesting interpretation of this as an
instance of a uniform variant of Berry’s “cosine is a universal attractor” principle [1].

(3) It would be most desirable to prove a sort of converse to Theorem 1.2 wherein the partial
results on hyperbolicity from Theorem 1.1 would directly influence the distribution of
zeros of the derivatives of ξ(s), or perhaps even ξ(s) itself. While Theorem 1.2 indicates
that a partial understanding of the zeros of ξ(m)(s) influence the hyperbolicity of Jd,n(X)
for n ≥ m, a quick inspection of the proofs in [16] indicates that it is highly unlikely that
converse influence exists unless one has hyperbolicity for all n ≥ m and all d ≥ 1. While
Jensen polynomials can be used to uniformly approximate ξ(n)(1

2
+ it), they are ultimately

quite inefficient at detecting zeros that violate RHn (should any such zeros exist). One
can see this by directly plotting the aforementioned uniform approximation.

(4) After this paper was written, O’Sullivan [15] wrote an interesting paper on the Pólya-
Jensen criterion for the Riemann Hypothesis. Instead of working directly with the Jensen
polynomials Jd,n(X), he considers a variant of the original criterion which makes use of∑d

j=0

(
d
j

)
γ(n + j)Hd−j(X). His paper complements the explicit results obtained here for

this modified criterion.

In Section 2, we prove Theorem 1.1 using a small modification of a result of Turán. Our proof
assumes two technical results (Theorems 2.1 and 2.3) that we prove in Sections 3 and 4. In
Section 5, we prove Theorem 1.2.

Acknowledgements. We thank the referee for a thorough reading and helpful comments. The
second author thanks the support of the Thomas Jefferson Fund and the NSF. The fourth author
began this work while partially supported by a NSF Postdoctoral Fellowship.
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2. Proof of Theorem 1.1

The effective refinement of the work in [12] provided by Theorem 1.1 uses different methods.
Our proofs are facilitated by renormalizations of several objects in [12].

2.1. New conventions and preliminaries. Recall the setup in [12, Section 5]. It was shown
that for each d ≥ 1, there exist positive numbers A(n), δ(n), g3(n), g4(n), . . . , gd(n) such that

(2.1) log
(γ(n+ j)

γ(n)

)
= A(n)j − δ(n)2j2 +

d∑
i=3

gi(n)ji + o(δ(n)d),

with gi(n) = O(n1−i) = o(δ(n)i) and δ(n) ∼ 1√
2n

. From these, we define

(2.2) Ĵd,n(X) :=
δ(n)−d

γ(n)
Jd,n

(δ(n)X − 1

exp(A(n))

)
.

Estimates in [12] are written in terms of the behavior of δ(n), and there is considerable latitude
in the choice of δ(n). In this sense, δ(n) serves as a uniformizer for the calculations in [12].

We introduce a more refined uniformizer

(2.3) ∆(M) :=

√
1

2

(
1− γ(M − 2)γ(M)

γ(M − 1)2

)
and the a normalization J̃d,n(X) of the polynomials Jd,n(X). It will become apparent that
∆(M) is a more convenient and more accurate uniformizer than δ(n), which is important for

our eventual goal of an effective lower bound for n in terms of d. Before defining J̃d,n(X), we
establish some basic properties of ∆(M). As a consequence of the hyperbolicity of J2,n(X) [6],
we know that γ(n− 2)γ(n) ≤ γ(n− 1)2 for all n ≥ 3. This establishes the log concavity of γ(n).
It follows that ∆(M) ∈ R for all M ≥ 3. The next theorem contains some key results for ∆(M).

Theorem 2.1. Let ∆(M) be as in (2.3).

(1) We have ∆(M) ∼ 1/
√

2M . In particular, if C > 1, then there exists MC > C/(C − 1)

(depending only on C) such that if M > MC, then 1/
√

2C(M − 1) ≤ ∆(M) ≤ 1/
√
M .

(2) For each integer m ≥ 1, there exists a function Gm(z), holomorphic for Re(z) > 1, such
that for all integers 1 ≤ j < M we have

(2.4) log
(γ(M − j)

γ(M)

)
= −

∞∑
m=1

Gm(M)∆(M)2m−2jm.

With C > 1 as in part (1), the bound |Gm(M)| �C (2C)m holds for all integers m,M ≥
1. We also have the limit limM→∞Gm(M) = 2m−1

m(m−1) .

(3) We have

(2.5) G2(M) = 1 + (1− 3G3(M))∆(M)2 +O(∆(M)4).

We will prove Theorem 2.1 in Section 3.

Remark. The uniform bound on |Gm(M)| is critical for our proofs. While Gm(M) is a bounded
function of M for fixed m, we need to bound |Gm(M)| when m and M vary jointly.
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Now that we have listed some key properties of ∆(M), we define

(2.6) J̃d,n(X) :=
γ(n+ d)d−1

γ(n+ d− 1)d ·∆(n+ d)d
Jd,n

(γ(n+ d− 1)

γ(n+ d)
· (∆(n+ d)X − 1)

)
.

For future convenience, we define the coefficients Ad,k(n) by the expansion

(2.7) J̃d,n(X) =
d∑

k=0

Ad,k(n)Xd−k.

The following lemma explains our reason for working with these new normalizations.

Lemma 2.2. If d ≥ 1 and n ≥ 0, then Ad,0(n) = 1, Ad,1(n) = 0, and Ad,2(n) = −d(d− 1). In

particular, J̃1,n(X) = H1(
X
2

), J̃2,n(X) = H2(
X
2

), and deg
(
J̃d,n(X)−Hd(

X
2

)
)
≤ d− 3 for d ≥ 3.

Proof. This is straightforward to verify from (1.2), (1.3), and (2.6). �

We use Theorem 2.1 to prove asymptotics for the coefficients Ad,k(n) for k ≥ 3.

Theorem 2.3. Let d ≥ 4, n ≥ 0, and 3 ≤ k ≤ d be integers, and let 1 < C < 2. Recall the
definition of MC from Theorem 2.1(1). If n+ d > max{10k3,MC}, then

(−1)b
k
2
c(d− k)!bk2c!
d!

Ad,k(n) =

{
1 + Zn+d(bk2c)∆(n+ d)2 +OC(k6(4C)k∆(n+ d)4) if k is even,

bk2c(G3(n+ d)− 2)∆(n+ d) +OC(k4(4C)k∆(n+ d)3) if k is odd,

where Zn+d(t) := t(t− 1)(−2
3
(3t+ 2) + 2tG3(n+ d)− t−2

2
G3(n+ d)2 −G4(n+ d)).

We prove Theorem 2.3 in Section 4.

2.2. Proof of Theorem 1.1. We use the following result to prove Theorem 1.1.

Lemma 2.4. For 0 ≤ j ≤ d, define

(2.8) cd,n,j :=

b j
2
c∑

i=0

(d− j + 2i)!

i!(d− j)!
Ad,j−2i(n),

where Ad,k(n) is defined by (2.7). If

(2.9)
d∑
j=3

2−j
(d− j)!
(d− 1)!

c2d,n,j < 1,

then Jd,n(X) is hyperbolic.

Proof. There exist A,B,C ∈ R (depending on n and d) such that J̃d,n(X) = AJd,n(BX + C),

hence Jd,n(X) is hyperbolic if and only J̃d,n(X) is hyperbolic. We apply the inversion formula

[10, Equation 18.18.20] to (2.7) and obtain J̃d,n(X) =
∑d

j=0 cd,n,jHd−j(
X
2

). Turán [18, Theorem

III] proved that if cj ∈ R for 0 ≤ j ≤ N and

(2.10)
N−2∑
j=0

2jj!c2j < 2N(N − 1)!c2N ,

then all roots of
∑N

j=0 cjHj(z) (hence
∑N

j=0 cjHj(
z
2
)) are real and simple. Since cd,n,0 = 1 and

cd,n,1 = cd,n,2 = 0 by Lemma 2.2, the inequality (2.10) applied to our setting reduces to (2.9). �
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Proof of Theorem 1.1. We will show that there exists a suitably large absolute constant c > 0
such that if n ≥ ced/2, then (2.9) holds, in which case Lemma 2.4 applies. We now appeal to
Theorem 2.3. When j = 2`, we use the even case of Theorem 2.3, (2.8), and the fact that
Ad,0 = 1 and Ad,2 = −d(d− 1) to find that cd,n,2` equals

∑̀
i=0

(d− 2i)!

(`− i)!(d− 2`)!
Ad,2i(n)

=
d!

`!(d− 2`)!

[∑̀
i=0

(
`

i

)
(−1)i+∆(n+d)2

∑̀
i=2

(
`

i

)
(−1)iZn+d(i)+OC

(
∆(n+d)4

∑̀
i=2

(
`

i

)
i6(4C)2i

)]
=

d!

`!(d− 2`)!

[
∆(n+ d)2

∑̀
i=2

(
`

i

)
(−1)iZn+d(i) +OC

(
∆(n+ d)4

∑̀
i=2

(
`

i

)
i6(4C)2i

)]
.

For a function f defined on the nonnegative integers, we define the k-th difference operator

(2.11) σk,x(f(x)) :=
k∑
j=0

(−1)k−j
(
k

j

)
f(j)

Note that f(x) is given by polynomial of degree at most d if and only if σk,x(f(x)) = 0 for all
k > d. Since Zn+d(t) is a polynomial in t of degree 3 with Zn+d(0) = Zn+d(1) = 0, it follows

if ` ≥ 4, then
∑`

i=2

(
`
i

)
(−1)iZn+d(i) = 0. Thus if ` ≥ 4, then we apply the bound i6 ≤ `6 to

conclude that

(2.12) cd,n,2` �C
d!

(d− 2`)!`!
∆(n+ d)4`6

∑̀
i=2

(
`
i

)
(4C)2i �C

d!

(d− 2`)!`!
`6(16C2 + 1)`∆(n+ d)4.

The bound (2.12) also holds when ` = 2 and ` = 3 by bounding the main terms directly. A
symmetric calculation using the odd case of Theorem 2.3 reveals that

(2.13) cd,n,2`+1 �C
d!

(d− 2`− 1)!`!
`4(16C2 + 1)`∆(n+ d)3.

The bound (2.12) leads to a bound for the even-indexed terms in (2.9), namely∑
3≤j≤d
j even

2−j
(d− j)!
(d− 1)!

c2d,n,j �C d∆(n+ d)8
∑

1≤`≤d/2

(
d

2`

)(
2`

`

)
`12
(16C2 + 1

4

)`
.

Note that
(
2`
`

)
∼ 4`√

π`
by Stirling’s formula. Trivially bounding `12 ≤ d12, we find that

(2.14)
∑

3≤j≤d
j even

2−j
(d− j)!
(d− 1)!

c2d,n,j �C d
13(1 +

√
1 + 16C2)d∆(n+ d)8.

A similar bound over the odd terms holds as well:

(2.15)
∑

3≤j≤d
j odd

2−j
(d− j)!
(d− 1)!

c2d,n,j �C d
9(1 +

√
1 + 16C2)d∆(n+ d)6.
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We combine (2.14) and (2.15) with the bound for ∆(n + d) in Theorem 2.1 to conclude that
there is a constant αC > 0 such that (2.9) holds if n ≥ αCd

13/3(1+
√

1 + 16C2)d/3. Per Corollary
1.3, we may assume that d ≥ 9.36 · 1020. We choose C = 1 + 10−5, in which case there exists a
constant c > 0 such that αCd

13/3(1 +
√

1 + 16C2)d/3 ≤ ced/2, as desired. �

3. Proof of Theorem 2.1

Define

F (z) :=

∫ ∞
1

(log t)z t−3/4
( ∞∑
k=1

e−πk
2t
)
dt,

which is holomorphic for Re(z) > 0. It follows from [12, Equation 13] that

(3.1) γ(M) =
M !

(2M)!
·

32
(
2M
2

)
F (2M − 2)− F (2M)

22M−1 .

If we replace the binomial coefficient and factorials in (3.1) with Γ-functions, we see that (3.1)
extends to a function of a complex variable M which is holomorphic for Re(M) > 1.

For M > 0, let LM be the unique positive solution of the equation M = LM(πeLM + 3
4
).

It is straightforward to show that LM ∼ log( M
logM

). Define KM = (L−1M + L−2M )M − 3
4
. The

function LM (and therefore KM) extends to a function which is holomorphic and non-vanishing
for Re(M) > 1. By [12, Equation 16], we have

(3.2) γ(M) =
eM−2MM+ 1

2L2M−2
2M−2

22M−5(2M − 2)(2M−2)+
1
2

√
2π

K2M−2
exp

(L2M−2
4

− 2M − 2

L2M−2
+

3

4

)(
1 +Oε

( 1

M1−ε

))
.

Ultimately, the analytic continuation of LM and Stirling’s formula imply that even when M is
complex, we may keep the existing error term in (3.2) once we replace M with |M |.

For fixed Re(M) > 1, there is a function RM(j) of a complex variable j, holomorphic and
non-vanishing for |j| < Re(M)− 1, with the property that if j,M ∈ Z satisfy |j| < M , then

(3.3) RM(j) = γ(M − j)/γ(M).

Since RM(j) is holomorphic and nonvanishing when |j| < Re(M)− 1, we have the expansion

(3.4) logRM(j) =
∞∑
m=1

am(M)jm, |j| < Re(M)− 1.

By varying M , we find the Taylor coefficents am(M) are in fact holomorphic functions in M .
Since logRM(j) is holomorphic for M and j in the specified domains, the right hand side

of (3.4) converges absolutely and uniformly for j and M in compact subsets of their respective
domains. We wish to give bounds on the coefficients am(M) which are uniform for all real M
and j in their respective domains. To do so, we must regularize logRM(j) to obtain a function
R∗M(λ) which extends to a function of M on the extended interval [3,∞]. For convenience, we
replace j with λ(M − 2); it suffices to consider λ in the closed disk |λ| ≤ 1 (rather than j in a
domain that varies with M). We now define our regularized function

(3.5) R∗M(λ) :=
1

M − 2
log
(( eL2

2M−2M

4(2M − 2)2

)λ(M−2)
RM(λ(M − 2))

)
+ (1− λ) log(1− λ).
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Our expansion for R∗M(λ) for |λ| ≤ 1 naturally incorporates the coefficients am(M):

(3.6) R∗M(λ) =
(
a1(M)+log

( eL2
2M−2M

4(2M − 2)2

)
−1
)
λ+

∞∑
m=2

(
am(M)(M−2)m−1 +

1

m(m− 1)

)
λm.

Lemma 3.1. The function R∗M(λ) is holomorphic for all |λ| ≤ 1 and all M in the extended
interval [3,∞]. Moreover, for all |λ| ≤ 1, we have that limM→∞R

∗
M(λ) = 0

Proof. For all finite M and |λ| ≤ 1, the function R∗M(λ) is holomorphic since each such point
corresponds to a value of RM(j) with |j| ≤ M − 2. In order to understand the behavior of
R∗M(λ) as M →∞, we consider the regularized limit

(3.7) lim
M→∞

1

M − 2
log
(( eL2

2M−2M

4(2M − 2)2

)λ(M−2)
R(λ(M − 2);M)

)
.

Let j = λ(M − 2), as above. The asymptotic (3.2) implies that as M →∞, we have

1

M − 2
log
(( eL2

2M−2M

4(2M − 2)2

)j
RM(j)

)
= A+B + C +Oε

( logM

M

)
,

where

AM(λ) =
1

M − 2
log
( M j(M − j)M−j−2(2M − 2)2M−2+

1
2

(2M − 2)2j(2M − 2− 2j)2M−2−2j+
1
2MM−2

)
,

BM(λ) =
1

M − 2

(
(2M − 2− 2j) log

(L2M−2−2j

L2M−2

)
− 1

2
log
(K2M−2−2j

K2M−2

))
, and

CM(λ) =
1

M − 2

(L2M−2−2j

4
− 2M − 2− 2j

L2M−2−2j
− L2M−2

4
+

2M − 2

L2M−2

)
.

Since LM ∼ log( M
logM

), a calculus exercise shows that limM→∞BM(λ) = limM→∞CM(λ) = 0.

Simplifying AM(λ), we find that

AM(λ) =
M − j − 2

M − 2
log
(

1− j

M

)
−

2M − 2− 2j + 1
2

M − 2
log
(

1− 2j

2M − 2

)
.

Since j = λ(M − 2), it follows that

(3.8) lim
M→∞

AM(λ) = −(1− λ) log(1− λ) = λ−
∞∑
m=2

1

m(m− 1)
λm.

The rightmost sum converges absolutely for |λ| < 1, but is not holomorphic at 1, hence we
remove the term in (3.5) so that (3.6) converges on the boundary of the disk. �

Since R∗M(λ) is holomorphic for |λ| ≤ 1 and all M ∈ [3,∞], the Taylor series given in (3.6)
converges absolutely and uniformly for all such λ and M . Taking λ = 1 and M ≥ 3, we find
that for all ε > 0, there exists an integer Wε ≥ 1, depending only on ε, such that

(3.9) |am(M)(M − 2)m−1 + (m(m− 1))−1| < ε whenever m ≥ Wε.
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Proof of Theorem 2.1. To prove our claimed asymptotic for ∆(M), we write ∆(M) in terms of
am(M). We extend ∆(M), originally defined in (2.3), to a holomorphic function by the identity

(3.10) ∆(M) =

√
1

2

(
1− RM(2)

RM(1)2

)
.

We use (3.4) to expand (3.10) and then apply (3.9) to bound am(M) for m ≥ 4, thus obtaining

(3.11) ∆(M) =
√
−a2(M)− 3a3(M)− a2(M)2 +O(M−3).

The asymptotic ∆(M) ∼ 1√
2M

now follows from (3.9) as we let ε→ 0.

We define Gm(M) by the identity −am(M) = Gm(M)∆(M)2m−2. The expansion (2.4) now
has the desired properties, and the claimed bounds and asymptotics for Gm(M) follow from
(3.9) and the fact that ∆(M) ∼ 1√

2M
. To recover (2.5), we square both sides of (3.11), and

notice that G2(M) satisfies the quadratic equation

∆(M)2G2(M)2 −G2(M) + 1− 3G3(M)∆(M)2 = O(∆(M)4).

The desired result follows. �

Remark. These methods provide an effective alternative to the approach to asymptotics for
gm(n) and δ(n) in [12]. Greater care is required here than in [12] because of the uniformity
required in Theorem 1.1. Comparing (2.1) and (2.4), and noticing the sign change of j on the
left hand side both equations, we see that Gm(M)∆(M)2m−2 ∼ (−1)m+1gm(M). In particular,
we see that g2(M) ∼ −1/(2M), which implies that δ(M) ∼ ∆(M).

4. Proof of Theorem 2.3

Using the functions Gm(M) given by Theorem 2.1, we define S(j;M) and Qm(M) as follows:

S(j;M) =
RM(j)

RM(1)j
= exp

( ∞∑
m=2

Gm(M)∆(M)2m−2(j − jm)
)

=
∞∑
m=0

Qm(M)jm.(4.1)

This definition of S(j;M) is critical because, by (3.3), we have for integers j ∈ [0,M − 1] that

S(j;M) =
γ(M − j)γ(M)j−1

γ(M − 1)j
.

Using (2.6), we may rewrite the coefficients Ad,k(n) as

(4.2) Ad,k(n) =

(
d

k

)
∆(n+ d)−k

k∑
j=0

(−1)k−j
(
k

j

)
S(j;n+ d).

Recall (2.11), and define ym,k = σk,x(x
m). This leads to the identity

(4.3) Ad,k(n) =

(
d

k

)
∆(n+ d)−k

∞∑
m=0

ym,kQm(n+ d).

We have the following lemma about the size of the ym,k.
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Lemma 4.1. Let ym,k be defined as above. Then ym,k = 0 if m < k, and

yk,k = k!, yk+1,k = k!

(
k + 1

2

)
, yk+2,k = k!

(
k + 2

3

)
3k + 1

4
, yk+3,k = k!

(
k + 3

4

)
k2 + k

2
.

More generally, for all i ≥ 1, there exists a polynomial Pi(k) of degree i−1, satisfying Pi(1) = 1
and Pi(k) ≤ ki−1 for all positive integers k, such that yk+i,k = k!

(
k+i
1+i

)
Pi(k).

Proof. If m < k, the identity ym,k = 0 follows the discussion following (2.11). For m ≥ k, we

have the identity (eX − 1)k = (X + X2

2
+ X3

3!
+ . . . )k =

∑∞
m=0

ym,k

m!
Xm. For integers t > i, we now

consider σt,k(
yk+i,k

(k+i)!
) as a function of k. For fixed t, we have the generating function

∞∑
i=0

σt,k

( yk+i,k
(k + i)!

)
X i+t =

∞∑
i=0

t∑
j=0

(−1)t−j
(
t

j

)( yj+i,j
(j + i)!

)
X i+t

=
t∑

j=0

(−1)t−j
(
t

j

)
X t−j

∞∑
i=0

( yj+i,j
(j + i)!

)
Xj+i

=
t∑

j=0

(−1)t−j
(
t

j

)
X t−j(eX − 1)j = (eX −X − 1)t =

1

2t
X2t + · · · .

Hence σt,k(
yk+i,k

(k+i)!
) = 0 for t > i. This implies that

yk+i,k

(k+i)!
is a polynomial in k of degree at most

i. For i ≥ 1, note that yi,0 = 0, and yi,1 = 1. Thus, we can factor yk+i,k as

yk+i,k = kPi(k)
i−1∏
j=0

k + i− j
1 + i− j

= k!

(
k + i

i+ 1

)
Pi(k),

where Pi(1) = 1. A short calculation gives the claimed expressions for yk+1,k, yk+2,k, and yk+3,k.
We prove that Pi(k) ≤ ki−1 for all positive integers k by comparing the Taylor coefficients of

(4.4)
(eX − 1

X

)k
=
∞∑
i=0

k · Pi(k)

(i+ 1)!
X i and

ekX − 1

kX
=
∞∑
i=0

ki

(i+ 1)!
X i.

Given functions f = f(x) and g = g(x) which are analytic at 0, let f ≺ g denote the condition
that f (i)(0) ≤ g(i)(0) for all integers i ≥ 0. In other words, the i-th Taylor coefficient of g is at
least the i-th Taylor coefficient of f in the expansions at zero. This statement has transitivity—if
f ≺ g and g ≺ h, then f ≺ h. If h(i)(0) ≥ 0 for all i ≥ 0, then f ≺ g implies fh ≺ gh.

By comparing the expansions in (4.4), the bound Pi(k) ≤ ki−1 is equivalent to

(4.5)
(ex − 1

x

)k
≺ ekx − 1

kx
.

Define Fk = Fk(x) := (ekx/2 − e−kx/2)/(kx). We rewrite (4.5) as ekx/2F k
1 ≺ ekx/2Fk. Since

(ekx/2)(n)(0) > 0 for all n ≥ 0, ekx/2F k
1 ≺ ekx/2Fk follows from F k

1 ≺ Fk.
We will prove F k

1 ≺ Fk by induction on k. The result when k = 1 is trivial. Suppose now that
F k
1 ≺ Fk is true for some integer k ≥ 1. By transitivity, the truth of F k+1

1 ≺ Fk+1 follows from

that of F k+1
1 ≺ F1Fk and F1Fk ≺ Fk+1. Since F

(i)
k (0) ≥ 0 for all i ≥ 0, our inductive hypothesis

F k
1 ≺ Fk implies F k+1

1 ≺ F1Fk.
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It remains to prove F1Fk ≺ Fk+1 for all k ≥ 1. We have the expansions

F1(x)Fk(x) =

∞∑
i=1

2

k(2i)!

((k + 1

2

)2i
−
(k − 1

2

)2i)
x2i−2, Fk+1(x) =

∞∑
i=1

1

(2i− 1)!

(k + 1

2

)2i−2
x2i−2.

Thus F1Fk ≺ Fk+1, and hence (4.5), follows from the bound

(4.6) 0 ≤ 4ik

(k + 1)2
+
(k − 1

k + 1

)2i
− 1, i, k ≥ 1.

Denote the right side of (4.6) as ωk(i). Observe that ωk(i+ 1)− ωk(i) = 4k
(k+1)2

(1− (k−1
k+1

)2i) > 0

for all i, k ≥ 1. It follows that ωk(i) ≥ ωk(1) = 0 for all i, k ≥ 1, which proves (4.6). �

The desired asymptotic for Ad,k(n) will follow from a suitable bound for Qm(M), which we
prove using Theorem 2.1 and Lemma 4.1.

Lemma 4.2. If m, ` ≥ 1 are integers, C > 1, and M ≥ max(`3,MC), then |Qm(M)|`! �C

(4C)m``−
1
2
m∆(M)m.

Proof. Let λ be a partition of m, denoted λ ` m. Let λi be the number of parts equal to i so
that

∑m
i=1 iλi = m. Define L(λ) =

∑m
i=1 λi. From (4.1) and the multinomial theorem, we obtain

Qm(M)`!

∆(M)m
=

`!

∆(M)m

∑
λ`m

(G̃1(M)∆(M)2)λ1

λ1!

(−G2∆(M)2)λ2

λ2!
· · · (−Gm∆(M)2m−2)λm

λm!

=
∑
λ`m

(−1)L(λ)−λ1
`!

λ1!λ2! · · ·λm!
G̃1(M)λ1G2(M)λ2 · · ·Gm(M)λm∆(M)m−2L(λ)+2λ1 ,(4.7)

where G̃1(M) :=
∑∞

m=2Gm(M)∆(M)2m−4. Since |Gi(M)| �C (2C)i by Theorem 2.1, it follows

that G̃1(M) = 1 +OC(∆(M)2) and |G̃1(M)λ1G2(M)λ2 · · ·Gm(M)λm| �C (2C)
∑m

i=1 iλi = (2C)m.

Since ∆(M) ≤M− 1
2 ≤ `−

3
2 by Theorem 2.1 and our hypotheses, the definition of L(λ) yields

`!

λ1!λ2! · · ·λm!
∆(M)m−2L(λ)+2λ1 ≤ `!

λ2!
`−

3
2
(m−2L(λ)+2λ1) ≤ ``−λ2−

3
2
(m−2L(λ)+2λ1) ≤ ``−

1
2
m.

The desired result now follows since there are at most 2m partitions of m. �

Proof of Theorem 2.3. Recall (4.3), which expresses Ad,k(n) as a sum of ym,kQm(n + d) over
m ≥ 0. We use Lemma 4.1 to rewrite the contribution from ym,k in (4.3) and arrive at

Ad,k(n) =

(
d

k

)
k!
[Qk(n+ d)

∆(n+ d)k
+

(
k + 1

2

)
Qk+1(n+ d)

∆(n+ d)k
+

(
k + 2

3

)
3k + 1

4

Qk+2(n+ d)

∆(n+ d)k

+

(
k + 3

4

)
k2 + k

2

Qk+3(n+ d)

∆(n+ d)k
+
∞∑
i=4

(
k + i

1 + i

)
Pi(k)Qk+i(n+ d)

∆(n+ d)k

]
.
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Let j = bk/2c. Since
(
d
k

)
k! = d!

(d−k)! , it follows that Ad,k(n) equals

(−1)jd!

j!(d− k)!

[(−1)jj!Qk(n+ d)

∆(n+ d)k
+

(
k + 1

2

)
(−1)jj!Qk+1(n+ d)

∆(n+ d)k

+

(
k + 2

3

)
3k + 1

4

(−1)jj!Qk+2(n+ d)

∆(n+ d)k
+

(
k + 3

4

)
k2 + k

2

(−1)jj!Qk+3(n+ d)

∆(n+ d)k

+
∞∑
i=4

(
k + i

1 + i

)
Pi(k)

(−1)jj!Qk+i(n+ d)

∆(n+ d)k

]
.

Suppose that n+d > max{j3,MC , 64C2j}. The asymptotic bounds for ∆(n+d) from Theorem
2.1 and the bound for Qk+i(n+ d) in Lemma 4.2 imply that Ad,k(n) equals

(4.8)

(−1)jd!

j!(d− k)!

[(−1)jj!Qk(n+ d)

∆(n+ d)k
+

(
k + 1

2

)
(−1)jj!Qk+1(n+ d)

∆(n+ d)k

+

(
k + 2

3

)
3k + 1

4

(−1)jj!Qk+2(n+ d)

∆(n+ d)k
+

(
k + 3

4

)
k2 + k

2

(−1)jj!Qk+3(n+ d)

∆(n+ d)k

+O((4C)kk9/2∆(n+ d)4)
]
.

Let m ∈ {k, k + 1, k + 2, k + 3}. As in Lemma 4.2, we use (4.7) to expand Qm(n + d),
bounding the contribution from the partitions λ such that m−2L(λ)+2λ1 ≥ 3 using the bound
for |Gm(n+d)| in Theorem 2.1. Since m−2L(λ)+2λ1 = λ1 +

∑m
i=3(i−2)λi, we must separately

consider the cases where m is even (where the powers of ∆(n+d) are even) and m is odd (where
the powers of ∆(n + d) are odd). When M = n + d and m is even, it then follows from (4.7)
that Qm(M) equals (−1)m/2∆(M)m/(m

2
)! times

(4.9)

G2(M)
m
2 − m

4

(
G2(M)

m
2
−1G̃1(M)2 + (m− 2)G4(M)G2(M)

m
2
−2

+ (m− 2)G3(M)G2(M)
m
2
−2G̃1(M) +

(m− 2)(m− 4)

4
G3(M)2G2(M)

m
2
−3
)

∆(M)2

+OC(m6(4C)m∆(M)4).

Similarly, when m is odd, Qm(M) equals (−1)b
m
2
c∆(M)m/(bm

2
c)! times

(4.10) (G2(M)b
m
2
cG̃1(M) + bm

2
cG3(M)G2(M)b

m
2
c−1)∆(M) +OC(m4(4C)m∆(M)3).

The theorem follows by substituting (4.9) and (4.10) into (4.8). �

5. Proof of Theorem 1.2

We introduce some notation. For 0 < δ < π/2, define S(θ, δ) := {z ∈ C× : | arg(z)− θ| ≤ δ}.
Let C(θ, δ) to be the set of entire functions F such that there exist a sequence of complex numbers
(βk)k≥1, an integer q ≥ 0, and constants c, σ ∈ C such that

∑∞
k=1

1
|βk|

<∞, βk, σ ∈ S(θ, δ), and

F (z) = czqe−σz
∞∏
k=1

(
1− z

βk

)
.
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Lemma 5.1. Let 0 < δ < π/2. If F ∈ C(θ, δ), then F is locally uniformly approximated by
polynomials, each of whose zeros lie in S(θ, δ), and conversely. Moreover, if m ≥ 1 is an integer
and the m-th derivative F (m) is not identically zero, then F (m) ∈ C(θ, δ).

Proof. The first claim is proved in [13, Chapter VIII]. For the second claim, suppose that
F ∈ C(θ, δ) is non-constant. By the first claim, there exists a sequence of nonzero polynomials
(gn) which locally uniformly approximate F , and each zero of gn lies in S(θ, δ). By the Gauss-
Lucas theorem, the zeros of g′n belong to the convex hull of the set of zeros of gn; thus each zero
of g′n lies in S(θ, δ). Since the sequence (g′n) locally uniformly approximates F ′, it follows by the
first claim that F ′ ∈ C(θ, δ). For higher derivatives, we proceed by induction. �

Lemma 5.2. If dn

dzn
ψ(
√
z) ∈ C(π, δ), then Jd,n(X) is hyperbolic for d ≤ | sin(δ)|−2.

Proof. In (1.1), all powers of z are even, so ψ(
√
z) is entire. Since γ(j) > 0 for all j ≥ 0 and

dn

dzn
ψ(
√
z) =

∞∑
j=0

γ(j + n)

j!
zj,

the Taylor coefficients of dn

dzn
ψ(
√
z) are positive. Hence the lemma follows immediately from [5,

Theorem 3.6] with ϕ = dn

dzn
ψ(
√
z). �

Proof of Theorem 1.2. We follow [5]. Let m ≥ 0 be an integer. Suppose that RHm(T ) holds for
some T > 1

2
. Then the zeros of dm

dzm
ψ(z) in the rectangle {z ∈ C : |Re(z)| < 1/2, |Im(z)| ≤ T} are

imaginary. Therefore, the zeros of dm

dzm
ψ(
√
z) must lie in S(0, 2 arctan( 1

2T
))∪S(π, 2 arctan( 1

2T
)).

Since γ(j) > 0 for all j ≥ 0, the zeros of dm

dzm
ψ(
√
z) lie in the half-plane Re(z) < 0, and hence

must lie in S(π, 2 arctan( 1
2T

)). Hence dm

dzm
ψ(
√
z) ∈ C(π, 2 arctan( 1

2T
)). We see from Lemma 5.2

that Jd,m(X) is hyperbolic for d ≤ b| sin(2 arctan( 1
2T

))|−2c = bT 2 + 1
2

+ 1
16T 2 c. Thus if d ≤ bT c2,

then Jd,m(X) is hyperbolic. Since C(θ, δ) is closed under differentiation per Lemma 5.1, we have
dn

dzn
ψ(
√
z) ∈ C(π, 2 arctan( 1

2T
)) for all n ≥ m. This finishes the proof. �
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