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Abstract. One of the most celebrated applications of Gauss’ 2F1 hypergeo-
metric functions is in connection with the rapid convergence of sequences and

special values that arise in the theory of arithmetic and geometric means. This

theory was the inspiration for a recent paper [8] in which a finite field analogue
of AGMR was defined and then studied using finite field hypergeometric func-

tions. Instead of convergent sequences, one gets directed graphs that combine
to form disjoint unions of graphs that individually resemble jellyfish. Echoing

the connection of hypergeometric functions to periods of elliptic curves, these

graphs organize elliptic curves over finite fields. Here we use such “jellyfish
swarms” to prove new identities for Gauss’ class numbers of positive definite

binary quadratic forms. Moreover, we prove that the sizes of jellyfish are in

part dictated by the order of the prime above 2 in certain class groups.

1. Introduction and statement of results

Recall that the classical arithmetic-geometric mean iteration is defined for pos-
itive real numbers a and b by the sequence of pairs

AGMR(a, b) := {(a1, b1), (a2, b2), . . . },
where a1 := a, b1 := b, and successive terms are given by

an :=
an−1 + bn−1

2
and bn :=

√
an−1bn−1.

It is well known that both (an) and (bn) rapidly converge to the same limit (p. 2,
[1]). One of the most famous results on the AGMR is due to Gauss, who showed
using the theory of elliptic integrals that one can generate extraordinary approxi-
mations for π with relatively few iterations by considering the related sequence

pn :=
a2n

1−
∑n

i=1 2
i−2(a2i − b2i )

.

In [8], Griffin, Saikia, Tsai, and the second author defined a finite-field analogue
of the AGMR sequence over Fq when q = pr ≡ 3 mod 4. In this setting, −1 is not
a square mod q, mirroring the fact that −1 is not a square in R. This allows us to
choose square roots such that the iterated geometric means are well-defined. That
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is, there is always a unique choice of bn =
√
an−1bn−1 such that anbn is a square

mod q when one starts with a, b ∈ F×
q , a ̸= ±b, and ab a square mod q.

For example, consider q = 7 and (a, b) = (4, 2). Then

AGMF7
(4, 2) = {(4, 2), (3, 6), (1, 2), (5, 3), (4, 1), (6, 5), (2, 4), . . . }

where the overlined pairs form a repeating orbit. The pairs (6, 3), (2, 1), (3, 5),
(1, 4), and (5, 6) also enter this orbit after one AGM iteration. In [8], the authors
first explored the properties of the connected components of the directed graph
representing the sequences of AGMFq

(a, b) over all admissible pairs (a, b). They
showed that all components always consist of one cycle and one “tentacle” of length
one connected to each cycle vertex, for which they coin the name jellyfish. For
example, the following figure shows the unique connected component of the AGMF7

graph JF7
.

(1,2)

(6,3)

(5,3)

(2,1)

(4,1)

(3,5)(6,5)

(1,4)

(2,4)

(5,6)

(3,6)

(4,2)

Figure 1: Example of the jellyfish comprising JF7 .

In general, the graph JFq
consists of many such jellyfish, which together com-

prise a swarm. In general, jellyfish swarms contain jellyfish of varying sizes and
multiplicities, as exemplified by the following figure showing the swarm JF19 .

Figure 2: Example of the jellyfish swarm JF19
.
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The theory underlying the classical AGMR involves special integrals and their
relationship with Gauss’ hypergeometric functions. In particular, for a > b > 0 we
let

(1.1) IR(a, b) :=
1

2a

∫ ∞

1

dx√
x(x− 1)(x− (1− b2/a2))

.

A straightforward check shows that IR(a, b) = IR(
a+b
2 ,

√
ab), and so the sequence

AGMR(a, b) = {(a1, b1), (a2, b2), . . . } satisfies

IR(a1, b1) = IR(a2, b2) = · · · = IR(an, bn) = . . .

Gauss discovered the following beautiful formula for IR(a, b) in terms of his classical

2F1 hypergeometric function:

(1.2) IR(a, b) =
π

2a
· 2F1

class

(
1
2

1
2
1

∣∣∣∣ 1− b2

a2

)
.

It turns out that these elliptic integrals and hypergeometric functions encode data
about elliptic curves; for λ ̸= 0, 1 we may define the Legendre elliptic curve

Eλ : y2 = x(x− 1)(x− λ).

It turns out that the real period of Eλ is computed by the integral

Ω(Eλ) =

∫ ∞

1

dx√
x(x− 1)(x− λ)

.

Gauss’ 2F1 hypergeometric functions offer us a closed formula for the real period
of Eλ when 0 < λ < 1:

(1.3) Ω(Eλ) = π · 2F1
class

(
1
2

1
2
1

∣∣∣∣ λ) .

Just as the classical AGMR interacts with hypergeometric functions and elliptic
curves, so too does the finite field analogue described above. In analogy with the
elliptic integrals in (1.1), one can define

(1.4) IFq
(a, b) :=

1

2a

∑
x∈Fq

ϕq(x)ϕq(x− 1)ϕq(x− (1− b2/a2)),

where ϕq(−) denotes the quadratic character over Fq. Greene’s 1984 PhD thesis [7]
offers us the appropriate analogue of Gauss’ hypergeometric functions with which
to draw our connection; for multiplicative characters {αi}, {βj} over F×

q , he defined

nFn−1

(
α1 α2 ... αn

β1 ... βn−1

∣∣∣∣ x)
q

:=
q

q − 1

∑
χ

(
α1χ

χ

)(
α2χ

β1χ

)
· · ·

(
αnχ

βn−1χ

)
χ(x),

where
(
α
β

)
is the normalized Jacobi sum J(α, β), defined by(

α

β

)
:=

β(−1)

q
J(α, β̄) :=

β(−1)

q

∑
x∈Fq

α(x)β̄(1− x).

By comparing their definitions, one finds that for q = pr ≡ 3 mod 4

(1.5) IFq
(a, b) =

q

2a
· 2F1

(
ϕq ϕq

εq

∣∣∣∣ 1− b2

a2

)
q

.
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This expression is the finite field analogue of (1.2). Moreover, a recent result of
Evans and Greene (Theorem 2 of [5]) offers a quadratic transformation law for the fi-
nite field 2F1 which implies that the sequence AGMFq (a, b) = {(a1, b1), (a2, b2), . . . }
satisfies

IFq
(a1, b1) = IFq

(a2, b2) = · · · = IFq
(an, bn) = . . .

We may again consider the relationship of these hypergeometric functions to
Legendre elliptic curves, this time analyzing the Fq-points Eλ(Fq). In this case,
instead of an elliptic integral telling us the period of Eλ, when char(Fq) ≥ 5 we
have for λ ∈ Fq\{0, 1} that

aλ(q) = −
∑
x∈Fq

ϕq((x)(x− 1)(x− λ)),

where aλ(q) is the trace of Frobenius of Eλ (see Theorem 11.10 of [11]). Number
theoretically, the trace of Frobenius is essentially a formula for the number of points
on an elliptic curve over Fq since

aλ(q) = q + 1−#Eλ(Fq).

Cast in terms of Greene’s hypergeometric functions, we have in analogy with (1.3)

(1.6) aλ(q) = −q · 2F1

(
ϕq, ϕq

εq

∣∣∣ λ)
q

.

The connection between the AGMFq
and elliptic curves over Fq does not stop

here, however. The preceding discussion has linked points on the graph of AGMFq

to Legendre elliptic curves over Fq and has shown that two curves represented in the
same connected component have the same trace of Frobenius, and hence the same
number of Fq-points. The authors of [8] are able to prove something stronger. They
show that given a sequence AGMFq

(a, b) = {(a1, b1), (a2, b2), . . . }, if λn := b2n/a
2
n,

then

Eλ1
(Fq) ∼= Eλ2

(Fq) ∼= · · · ∼= Eλn
(Fq) ∼= · · ·

as abelian groups.
Not only can the vertices of the AGMFq graphs be associated to elliptic curves,

but it turns out that each iteration of the arithmetic-geometric mean, and hence
each edge of the graph, corresponds to an isogeny of degree 2 between these curves
(see Theorem 3 (2) of [8]). Following this observation, we can employ tools from
the study of elliptic curves in order to understand the structure of AGMFq

. Our
approach will rely on the theory of complex multiplication. In particular, we will
study the action of the class group of an imaginary quadratic order O on the set of
isomorphism classes of elliptic curves over Fq with complex multiplication by O.

Our setup in some ways mirrors the robust theory of “isogeny volcanoes,”
graphs which organize isomorphism classes of elliptic curves over finite fields and
their isogenies. The seminal work on such graphs is due to Kohel1, who studied en-
domorphism rings of elliptic curves over finite fields by understanding the structure
of ℓ-isogeny graphs Gℓ(Fq), which are visually quite similar to our jellyfish [9].

1Kohel did not use this language to describe the graphs he studied. The terminology came
later, in a paper by Fouquet and Morain, which applied the work of Kohel to the Schoof-Atkin-

Elkies point-counting algorithm [6].
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However, there are two main differences between our isogeny graphs and the
graphs G2(Fq) studied by Kohel and others. First, only particular 2-isogenies be-
tween the represented elliptic curves will appear in our setting. Second, different
vertices can correspond to elliptic curves in the same Fq-isomorphism class. What’s
more, some jellyfish may in fact be identical after passing to elliptic curves. These
multiplicities will require attention for all of our results.

In this note, we first show that AGMFq
provides new information in the context

of Gauss’ theory of class numbers of imaginary quadratic fields and class numbers
of positive definite binary quadratic forms. To make this connection, we count the
Fq-isomorphism classes of elliptic curves that are represented in these graphs. To
this end, the authors of [8] made use of a correspondence between isomorphism
classes of elliptic curves with prescribed torsion and certain class numbers to count
the number of distinct j-invariants which appear.

Recall that the Hurwitz class number H(D), introduced by Adolf Hurwitz, is a
modification of the class number of binary quadratic forms of discriminant D ≤ 0.
If f is a quadratic form, then a matrix[

α β
γ δ

]
∈ SL2(Z)

is an automorphism of f if f(αx + βy, γx + δy) = f(x, y). Then H(D) weights
forms of discriminant D by 2/g, where g is the order of their automorphism group.
We additionally declare H(0) = −1/12.

Following the approach of [8], we obtain new class number formulas that are
relatives of classical results like the Hurwitz-Kronecker class number formula∑

|t|≤2
√
N

H(4N − t2) =
∑
d|N

max{d,N/d},

which expresses sums of Hurwitz class numbers in terms of divisor sums. The above
specializes to ∑

|t|≤2
√
p

H(4p− t2) = 2p

when p is prime. Generalizations of the above were proven by Eichler and Zagier,
the latter achieved through the construction of a weight 3/2 non-holomorphic Eisen-
stein series whose coefficients are Hurwitz class numbers [4], [19]. More recently,
Mertens [10] analyzed the holomorphic projection of the Rankin-Cohen bracket of
the Harmonic Maass form H(τ) with certain theta functions in order to obtain
weighted class number formulas and their asymptotics as q → ∞. In [12] Saad,
Saikia, and the second author extended Mertens’ approach in their work on the
Sato-Tate distribution for a certain family of K3 surfaces.

Additionally, many more such identities were recently proven using the trace
formula and the combinatorics of j-invariants of elliptic curves over finite fields [2].

Our addition to this area is the following:

Theorem 1.1. Let q = pr ≡ 3 mod 4 where p > 3. The following sums are
taken over t such that |t| ≤ 2

√
q.

(1) If q ≡ 3 mod 8, then we have

q = 3 + 4
∑

(t,q)=1
t≡q+1(8)

H

(
4q − t2

4

)
.
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(2) If q ≡ 7 mod 8, then we have

q = 3 + 4 ·

[
h(−q) +

∑
(t,q)=1

t≡q+1(8)

H

(
4q − t2

4

)]
.

Remark 1.2. The expressions in the two cases of Theorem 1.1 have the same
form for prime q.

There are many questions one can immediately ask about AGMFq
once the

“jellyfish swarm” structure is known. For example, how many jellyfish Ji appear
in a swarm? How large do we expect jellyfish to be?

Interestingly, these questions are not easily answered. To start, the number of
jellyfish varies greatly across prime powers q. For example, we give the following
table showing some values of d(q), the number of jellyfish in JFq :

q 7 11 19 23 31 43 47 · · · 191 199 211 223 227 239 251
d(q) 1 3 8 5 10 7 4 · · · 14 101 120 18 12 40 31

Figure 3: Selected values of d(q) for prime q.

These questions are complicated by the fact that the sizes of jellyfish within
a single swarm can vary widely. For example, in the swarm JF115

, one has tiny
jellyfish of size 10 alongside those of massive size 7500.

Despite this complicated behavior, the authors of [8] use the fact that the trace
of Frobenius is constant on a jellyfish to give a lower bound for d(q) as a function
of q, namely if ε > 0 then for sufficiently large q we have

d(q) ≥
(
1

2
− ε

)
√
q

by counting the number of traces that must be obtained by curves in JFq
.

In addition to size considerations for d(q), one can also ask about the sizes
of individual jellyfish. Here we show that these sizes are related to the algebraic
properties of the endomorphism rings End(E) of elliptic curves and their class
groups (see Section 2 for background and definitions). Using Theorem 1.1 and the
theory of complex multiplication, we are able to show the following:

Theorem 1.3. Let q = pr ≡ 3 mod 4 where p > 3. Suppose (a, b) satisfies the
conditions to appear in the AGMFq

graph on the jellyfish J , and let λ := b2/a2.
Let #J denote the number of vertices in J . If O := End(Eλ) and h2(O) denotes
the order of [p2] in cl(O), where p2 is a prime above (2) in O, then we have

2 · h2(O)
∣∣∣ #J .

Additionally, if m(J ) denotes the multiplicity with which a jellyfish appears, then

m(J ) ·#J = 2(q − 1) · h2(O).

Example 1.4. We illustrate the theorem with q = 271.
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J t h(O) h2(O) #J m(J )
J1 −32 2 2 540 2
J2 −24 5 5 900 3
J3 −16 6 6 1620 2
J4 −16 3 3 810 2
J5 −8 12 6 1620 2
J6 −8 12 6 1620 2
J7 0 11 11 2970 2
J8 8 12 6 1620 2
J9 8 12 6 1620 2
J10 16 6 6 1620 2
J11 16 3 3 810 2
J12 24 5 5 2700 1
J13 32 2 2 108 10

Remark 1.5. While 2 · h2(O) | #J , these two numbers are in general unequal,
as illustrated in the previous example. The quantity #J /2 · h2(O) is a divisor of
q− 1 whose appearance we will explain in Section 3. For now, it suffices to remark
that it is not determined by the traces or endomorphism rings of the elliptic curves
comprising J .

This paper is organized as follows. Section 2 will recall necessary background
from the theory of complex multiplication that will allow us to study vertices and
edges in JFq using class groups. In Section 3, we give background from [8] on
the taxonomy of jellyfish. In particular, we characterize the number of vertices in
a swarm, as well as the multiplicity of each isomorphism class of elliptic curves
appearing on a jellyfish. In Section 4, we prove Theorems 1.1 and 1.3.

2. Complex Multiplication

We first recall the classical theory of complex multiplication of elliptic curves
over C (for example, see Chapter 2 of [15]): Let O be an order in an imaginary
quadratic field. If a is an invertible O-ideal, then the torus C/a corresponds to an
elliptic curve E(C) with complex multiplication by O. Equivalent ideals correspond
to isomorphic elliptic curves, and we have a bijection between the ideal class group
cl(O) and the set

EllO(C) := {j(E/C) | End(E) ∼= O}
of j-invariants of elliptic curves over C with complex multiplication by O.

Further, another invertible O-ideal b uniquely determines a separable isogeny
of degree N(b) with kernel

E[b] := {P ∈ E | α · P = O for all α ∈ b}

such that the target curve also has multiplication by O. One can check that prin-
cipal ideals act trivially, and that this defines a faithful cl(O)-action on EllO(C).

While this correspondence is pleasing, we are concerned with the case where C
is replaced by the finite field Fq. It turns out that the story in this setting is largely
the same.

Let E be an ordinary elliptic curve over Fq, and let πE denote the Frobenius
endomorphism of E. One may compute the trace of Frobenius to be t = q+1−#E.
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Using the characteristic equation for πE , one has derives the norm equation

t2 − 4q = v2DK ,

where v2DK is the discriminant of the imaginary quadratic order Z[πE ] and DK is
the discriminant of its field of fractions K. Then if O := End(E/Fq), we have

Z[πE ] ⊆ O ⊆ OK ,

and O has discriminant u2DK , where u = [OK : O] divides v = [OK : Z[πE ]].
Now, consider the set

Ellt(Fq) := {j(E/Fq) | tr(πE) = t}

of Fq-isomorphism classes of elliptic curves over Fq with trace of Frobenius t. Tate’s
Isogeny Theorem [17] implies that Ellt(Fq) determines an isogeny class. Further,
as K is determined by t and q, this set can be written as the disjoint union

Ellt(Fq) =
⊔

Z[πE ]⊆O⊆OK

EllO(Fq),

where EllO(Fq) is defined in the same way as EllO(C). As a consequence of the
Deuring Lifting Theorem, the norm equation implies that over Fq[x], the Hilbert
class polynomial Hu2DK

(x) of degree h(O) splits completely and the roots are
precisely the set EllO(Fq). Then so long as EllO(Fq) is nonempty, the set has
cardinality h(O).

Recall the definition of the Hurwitz class number for an imaginary quadratic
order O:

(2.1) H(O) :=
∑

O⊆O′⊆OK

h(O′)

If D is the discriminant of O, we may define H(D) := H(O). This agrees with
the definition given earlier. From the results above we immediately have that the
cardinality of Ellt(Fq) is equal to H(t2 − 4q).

As in the characteristic 0 case, we again have a faithful action of cl(O) on
EllO(Fq). What’s more, if φ : E → E′ is an isogeny of degree ℓ such that O :=
End(E) = End(E′), then φ resulted from the action of an invertible O-ideal l of
norm ℓ. This action is what will ultimately allow us to compare edges in JFq

with
elements of class groups.

3. Taxonomy of Jellyfish

Here we give several necessary results on the structure of jellyfish swarms. We
first recall results from [8] about the vertices in a jellyfish swarm.

Theorem 3.1 (Theorems 1 (2) and 2 (1) of [8]). The following are true.

(1) The jellyfish swarm JFq
has (q − 3)(q − 1)/2 vertices.

(2) Each Eλ for λ ∈ F×2
q \{0, 1} appears exactly q − 1 times.

The proof of (1) counts the number of admissible pairs (a, b), and the proof of
(2) relies on the fact that if (a, b) corresponds to an elliptic curve Eλ, then so does
every pair (ka, kb) for k ∈ F×

q .
The above imply that the number of distinct λ that occur in JFq is (q − 3)/2.

However, we have alternative ways of counting the λ that appear using the tools
developed in Section 3 of [8]. In particular, recall that the j-invariants parameterize
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Fq-isomorphism classes of elliptic curves over Fq, and that a trace and j-invariant
uniquely determine an isomorphism class over Fq. Further, if two elliptic curves
have the same j-invariant, then they are either isomorphic over Fq or they are
nontrivial quadratic twists of one another, in which case their traces differ by a
sign. If we are able to count the possible traces and the possible j-invariants
corresponding to each trace, as well as the number of distinct λ corresponding to
each j-invariant, we will be able to get an alternative formula for the number of λ
which occur.

We first characterize the admissible traces of the elliptic curves Eλ. By Lemma
2 of [8], one has that as an abelian group, Z/2Z×Z/4Z ⊆ E(Fq). Then 8 | #E(Fq),
and in particular t ≡ q+1 mod 8. We further know that every trace is represented
so long as the Hasse bound |t| ≤ 2

√
q is satisfied (see [3] or [13]).

Now we fix a trace t. Since Ellt(Fq) defines an isogeny class, every elliptic curve
on a jellyfish must have the same trace. Then consider the set of jellyfish with trace
t and define MFq (t) to be the number of distinct j-invariants across the union of
these jellyfish. The authors of [8] prove the following:

Theorem 3.2 (Theorem 6 of [8]). Suppose q ≡ 3 mod 8 and p > 3. If |t| ≤ 2
√
q

such that (t, p) = 1 and t ≡ q + 1 mod 8, then we have

H

(
t2 − 4q

4

)
= MFq

(t).

The above is relies primarily on the correspondence between the number of
distinct j-invariants of elliptic curves with trace t and the Hurwitz class number
H(t2 − 4q) discussed in Section 2 with the extra observation that the removal of a
factor of 2 from the conductor u is equivalent to the requirement that E[2] ⊂ E(Fq)
[14], which must be satisfied as all of our elliptic curves admit a Legendre normal
form. Since q ≡ 3 mod 4, one can also show that every elliptic curve over Fq is of
the form Eλ for λ ∈ F×2

q \{0, 1} by 2-descent.
By the same arguments as that which prove Theorem 3.2, we get the following

for the ordinary traces when q ≡ 7 mod 8:

Theorem 3.3. Suppose q ≡ 7 mod 8 and p > 3. If |t| ≤ 2
√
q such that

(t, p) = 1 and t ≡ q + 1 mod 8, then we have

H

(
t2 − 4q

4

)
= MFq

(t)

We now turn to the case where E is supersingular (i.e. where t = 0, as we shall
see). While we need to amend the correspondence to avoid orders whose conductors
are not coprime to p, we end up with a similar result:

Lemma 3.4. Suppose q ≡ 7 mod 8 and p > 3. Then we have h(−q) = MFq
(0).

Proof. When t = 0, the endomorphism ring of E can be identified with an
imaginary quadratic order in Q(πE) with conductor prime to p (Theorem 4.1, [18])
containing O(−q) (Proposition 3.7, [14]). Since q is a power of p, there is only one
such order, O(−q) itself. □

Now, to justify our focus on these particular traces, we offer the following
classification of the traces of elliptic curves over Fq:
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Theorem 3.5 (Theorem 4.1 of [18]). Let q = pk be a power of a prime p. Let
t ∈ Z and let N = q + 1 − t. The integer N is the cardinality of E(Fq) for some
elliptic curve E/Fq if and only if one of the following conditions is satisfied:

(1) |t| ≤ 2
√
q and (t, p) = 1;

(2) k is odd and t = 0;
(3) k is odd, t = ±√

pq, and p = 2 or 3;
(4) k is even, t = 0, p ̸≡ 1 mod 4;
(5) k is even, t = ±√

q, p ̸≡ 1 mod 3;
(6) k is even, t = ±2

√
q.

Since q ≡ 3 mod 4 and p > 3, the only options are (1) and (2), meaning the
above completely classify the cases where MFq

(t) can be nonzero. Now that we
have determined the number of j-invariants appearing in JFq

using class numbers,
we return to the question of how many λ correspond to a particular j. We offer the
following answer:

Lemma 3.6. Let LFq
(t, j) denote the number of distinct λ such that Eλ has

trace t and j-invariant j. Then for all pairs (t, j) such that LFq
(t, j) ̸= 0, we have

LFq (t, j) = 2.

Proof. First fix t and j and recall that there are exactly six λ in Fq\{0, 1}
corresponding to each j-invariant not equal to 0 or 1728 (see [16] Section III.1).
What’s more, given one such λ we can find expressions for the other five by con-
sidering the orbit of λ under the group generated by the transformations λ 7→ 1/λ
and λ 7→ 1− λ on P1. We can write this set as

[λ] := {λ, 1/λ, 1− λ, 1/(1− λ), λ/(λ− 1), (λ− 1)/λ}.

Now suppose that λ ∈ F×2
q \{1} and that Eλ has trace t and j-invariant j. We

first note that all other elements of [λ] are also in F×
q \{1}. One also has that

E
(−1)
λ

∼= E1−λ and E
(−1)
1/λ

∼= E(λ−1)/λ. Since −1 is not a square, both of these

are nontrivial twists, and so do not have the same trace as Eλ. Then the only
contributions to LFq

(t, j) are Eλ and E1/λ.
Now we deal with the two exceptional cases. First, suppose Eλ has trace t and

satisfies j(Eλ) = 0. Then λ satisfies λ2 − λ+ 1 = 0 by the equation

j(Eλ) = 28
(λ2 − λ+ 1)3

λ2(λ− 1)2
.

Moreover, the other solution to x2 − x + 1 = 0 is 1/λ, so there are exactly two
Legendre elliptic curves with trace t and j-invariant 0.

Finally, when j(Eλ) = 1728, we have that λ ∈ {−1, 2, 1/2}. We know that −1
is not a sqaure in our setting, so either both 2 and 1/2 are squares or neither are.
Thus, LFq (t, j) = 0 or 2. □

4. Proofs of Theorems 1.1 and 1.3

Proof of Theorem 1.1. We will demonstrate the argument for the case
when q ≡ 3 mod 8. The case when q ≡ 7 mod 8 is the same except for the
care needed to deal with the supersingular elliptic curves, for which one applies
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Lemma 3.4. In this case, the theorem is equivalent to proving that

(q − 1)(q − 3)

2
=

∑
|t|≤2

√
q

t≡q+1(8)

2(q − 1) ·H
(
4q − t2

4

)

The left hand side is the number of vertices in JFq , so it suffices to show the right
hand side is also a count of the vertices in this graph. The sum runs over all the
admissible traces of elliptic curves in JFq

, so it suffices to show that each summand
is the count of the number of vertices of trace t. Fixing t, each j invariant defines

a curve up to Fq-isomorphism. The number of such j is counted by H
(

t2−4q
4

)
by

Theorem 3.2. Corresponding to each isomorphism class, there are exactly 2 such
λ by Lemma 3.6. Finally, by Theorem 3.1 (2), each λ appears in the graph with
multiplicity q − 1. □

Proof of Theorem 1.2. By Theorem 3 (2) of [8], every edge corresponds to
the unique isogeny with kernel generated by ⟨(0, 0)⟩. In particular, this isogeny has
degree 2.

By Corollary 4 (1) of [8], all curves on a jellyfish are isomorphic as groups,
and so their endomorphism rings are all the same; call it O. This implies that
this isogeny is the image of the class of an ideal p2 of norm 2 in O with E[p2] =
⟨(0, 0)⟩. Since Eλ and E1/λ are isomorphic over Fq, the edge emanating from
vertices corresponding to both of these curves must have the same target curve. In
particular, every tentacle vertex has a corresponding vertex in the cycle with the
same j-invariant. Thus, it suffices to consider the action of [p2] on the cycles of the
jellyfish with endomorphism ring O. Since this action is faithful and all j-invariants
in EllO(Fq) are represented on some cycle, every cycle must have length divisible by
the order of [p2] in cl(O). Reconsidering the tentacles merely doubles the number
of total nodes, hence the multiple of 2 in the statement of the theorem.

To see that m(J ) ·#J = 2(q−1) ·h2(O), note that the action of [p2] partitions
the set of vertices with j-invariants into [cl(O) : ⟨[p2]⟩] subsets of size 2(q−1)·h2(O)
by Theorem 1.1. Now if n is the order of [p2] in cl(O), then [pn2 ] ·Eλ = Eλ, and so
if λ = b2/a2, the nth pair in the sequence of AGMFq

(a, b) is (ka, kb) for some k in
F×
q . Then if ord(k) denotes the multiplicative order of k in Fq, each jellyfish must

have size 2 · h2(O) · ord(k) and multiplicity (q − 1)/ord(k) by partitioning by the
orbits of the action of ⟨k⟩.

□
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