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Abstract. We consider the t-hook functions on partitions fa,t : P → C defined by

fa,t(λ) := ta−1
∑

h∈Ht(λ)

1

ha
,

where Ht(λ) is the multiset of partition hook numbers that are multiples of t. The Bloch-
Okounkov q-brackets 〈fa,t〉q include Eichler integrals of the classical Eisenstein series. For
even a ≥ 2, we show that these q-brackets are natural pieces of weight 2− a sesquiharmonic
and harmonic Maass forms, while for odd a ≤ −1, we show that they are holomorphic
quantum modular forms. We use these results to obtain new formulas of Chowla-Selberg
type, and asymptotic expansions involving values of the Riemann zeta-function and Bernoulli
numbers. We make use of work of Berndt, Han and Ji, and Zagier.

1. Introduction and statement of results

A partition of a non-negative integer n is any nonincreasing sequence of positive integers,
say λ = (λ1, λ2, . . . , λm), that satisfies |λ| = λ1 + · · · + λm = n. Each partition has a
Ferrers-Young diagram

• • • · · · • ← λ1 many nodes
• • . . . • ← λ2 many nodes
...

...
...

• . . . • ← λm many nodes,

and each node has a hook number. The node in row ` and column j has hook number
h(`, j) := λ` − `+ λ′j − j + 1, where λ′j is the number of nodes in column j. These numbers
play significant roles in combinatorics, number theory, and representation theory. The recent
Bloch-Okounkov theory of q-brackets [4] is a significant addition to these fields, and some of
the most striking examples involve hook numbers.

For functions f : P 7→ C on the integer partitions, these q-brackets are the power series

〈f〉q :=

∑
λ∈P f(λ)q|λ|∑

λ∈P q
|λ| ∈ C[[q]],
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which represent a “weighted average” of f. Schneider [16] has developed a “multiplicative
theory of partitions” based on q-brackets, which includes partition analogues of classical
number theoretic facts such as Möbius inversion, special values of zeta-functions, etc. In this
note we add to the expanding role of q-brackets and hook numbers that bridges combinatorics
and the theory of modular forms.

Bloch and Okounkov defined q-brackets with the goal of generating spaces of modular
forms. Interpreted as Fourier expansions in q := e2πiz, where z ∈ H, the upper-half of the
complex plane, they proved that the ring of quasimodular forms is generated by the q-brackets
of special functions f associated to shifted symmetric polynomials [4]. This work has been
expanded and refined by Zagier [20], and Griffin, Jameson, and Trebat-Leder subsequently
analyzed the p-adic aspects of these constructions [8].

Nekrasov and Okounkov later obtained striking identities for the modular forms that are
powers of Dedekind’s eta-function η(z) := q

1
24

∏∞
n=1(1 − qn) [13]. For α ∈ C, define the

function

Dα(λ) :=
∏

h∈H(λ)

(
1− α

h2

)
,

where H(λ) denotes the multiset of hook numbers of the partition λ. A simple reformulation
of (6.12) of [13], using Euler’s partition generating function

∞∑
n=0

p(n)qn =
∑
λ∈P

q|λ| =
∞∏
n=1

1

1− qn
,

asserts that q
α
24 · 〈Dα〉q = η(z)α. For integers α, these are weight α

2
modular forms (see

Chapter 1 of [14]).
It is natural to ask whether further modular objects arise from q-brackets. In this note we

obtain a comprehensive framework of nearly modular q-brackets, which includes an earlier
example by the second author [15], that correspond to Eisenstein series. Namely, we make use
of work of Han and Ji [9, 10] to define a natural infinite family of weighted t-hook functions
whose q-brackets naturally give rise to harmonic Maass forms, sesquiharmonic Maass forms,
and holomorphic quantum modular forms.

To motivate our results, we first recall the beautiful realization of the Eisenstein series as
q-brackets. For a partition λ = (λ1, . . . λm) and k ∈ N, let S2k(λ) :=

∑m
j=1 λ

2k−1
j . Note that

S2(λ) = |λ| is the “size” function. In [20] it was shown that

〈S2k〉q =

∑
λ∈P S2k(λ)q|λ|∑

λ∈P q
|λ| =

∞∑
n=1

σ2k−1(n)qn =
B2k(1− E2k(z))

4k
,

where σ`(n) :=
∑

1≤d|n d
`, Bn is the n-th Bernoulli number, and

E2k(z) := 1− 4k

B2k

∞∑
n=1

σ2k−1(n)qn

is the weight 2k Eisenstein series. Recall that E2k(z) is a modular form when 2k ≥ 4.
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We realize the Eichler integrals of these (and other) forms in terms of q-brackets of func-
tions involving partition hook lengths. For a ∈ C, we define

E2−a(z) :=
∞∑
n=1

qn

na−1(1− qn)
=
∞∑
n=1

σ1−a(n)qn.

If 2k ≥ 4 is even, then E2−2k(z) is the usual Eichler integral of E2k(z). Although E2(z) is not
a modular form, it is well-known that

E∗2(z) := E2(z)− 3

π · Im(z)

is a non-holomorphic weight two modular form (for example, see Chapter 6 of [5]). Therefore,
it is natural to consider its Eichler integral

E0(z) :=
∞∑
n=1

σ−1(n)qn.

These Eichler integrals enjoy certain modularity properties that were determined by Berndt
in the 1970s [1]. Moreover, Bettin and Conrey [3] considered the modularity in the general
case where k ∈ C.

We now turn to the goals of this note. The first goals are to realize these Eichler integrals
as q-brackets, which we then use to obtain various types of modular forms. This work extends
an example by the second author corresponding to the case of E0(z). To make this precise,
we make use of t-hooks, the hook numbers which are multiples of t. To this end, for each
a ∈ C and t ∈ N, we define fa,t : P 7→ C by

fa,t(λ) := ta−1
∑

h∈Ht(λ)

1

ha
,

where Ht(λ) is the multiset of hook numbers which are multiples of t.

Example. We consider the partition λ = 4 + 3 + 1, which has Ferrers-Young diagram

•6 •4 •3 •1

•4 •2 •1

•1

(the subscripts denote the the hook numbers). We find that H(λ) = {1, 1, 1, 2, 3, 4, 4, 6},
H2(λ) = {2, 4, 4, 6}, and H3(λ) = {3, 6}. Therefore, we find that

f3,1(λ) = 1 + 1 + 1 +
1

8
+

1

27
+

1

64
+

1

64
+

1

216
=

307

96
,

f3,2(λ) = 22

(
1

8
+

1

64
+

1

64
+

1

216

)
=

139

216
,

f3,3(λ) = 32

(
1

27
+

1

216

)
=

3

8
.

For convenience, we define the generating function

Ha,t(z) :=
∑
λ∈P

fa,t(λ)q|λ|.
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Work of Han and Ji [9, 10] shows that the Eichler integrals E2−a(z) are the q-brackets of fa,t.

Theorem 1.1. If t ∈ N and a ∈ C, then we have

〈fa,t〉q =
∞∏
n=1

(1− qn) ·Ha,t(z) = E2−a(tz).

Using the properties of Eichler integrals, we find that many of the 〈fa,t〉q are natural
parts of various types of modular forms, which we now recall. A weight k harmonic Maass
form (for example, see [5]) is a real-analytic modular form that is annihilated by the weight

k hyperbolic Laplacian ∆k := −ξ2−k ◦ ξk, where ξk := 2iyk ∂
∂z

and that grows at most
linear exponentially towards the cusps. A weight k sesquiharmonic Maass form is a real–
analytic modular form that is annihilated instead by ∆k,2 := −ξk ◦ ξ2−k ◦ ξk. We require the
incomplete Gamma function Γ(s, z) :=

∫∞
z
e−tts−1dt, which we normalize to define Γ∗(s, z) :=

Γ(s, z)/Γ(s).

Theorem 1.2. If k ∈ N, then the following are true.

(1) If k = 1, then E0(tz) is a weight zero sesquiharmonic Maass form on Γ0(t), where

E0(tz) := ty +
6

π

(
γ − log(2)− log(ty)

2
− 6ζ ′(2)

π2
+ 〈f2,t〉q +

∞∑
n=1

σ−1(n)qtn

)
.

(2) If k ≥ 2, then E2−2k(tz) is a weight 2− 2k harmonic Maass form on Γ0(t), where

E2−2k(tz)

:= (ty)2k−1 +
2 · (2k)!

B2k(4π)2k−1

(
ζ(2k − 1) + 〈f2k,t〉q +

∞∑
n=1

σ1−2k(n)Γ∗(2k − 1, 4πtny)q−tn

)
.

Remark. Theorem 1.2 (1) is a reformulation of an earlier result by the second author in [15].

For completeness, we describe the modularity properties of these q-brackets. For k ∈ N,
we define

P−2k(z) :=
1

2
(2πi)2k+1

k+1∑
m=0

B2m

(2m)!

B2k+2−2m

(2k + 2− 2m)!
· z2m−1,

which we use to define

M−2k,t(z) := 〈f2k+2,t〉q −
1

2
P−2k(tz) +

1

2
ζ(2k + 1). (1.1)

These functions enjoy negative weight −2k modularity properties under z 7→ z + 1 and
z 7→ − 1

t2z
.

Theorem 1.3. If k, t ∈ N, then the following are true for z ∈ H.

(1) We have that

M−2k,t(z + 1)−M−2k,t(z)

=
1

4
(2πi)2k+1

k+1∑
m=0

2m−1∑
r=1

B2m

(2m)!

B2k+2−2m

(2k + 2− 2m)!
t2m−1

(
2m− 1

r

)
z2m−1−r.
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(2) We have that

M−2k,t(z) = (tz)2kM−2k,t

(
− 1

t2z

)
.

Remark. The case where k = 0 in (1.1) was obtained previously in [15].

Theorem 1.3 implies certain simple modularity properties for the Fourier series

H∗a,1(z) := q−
1
24Ha,1(z),

(i.e., when we choose t = 1). To further ease notation, we define

Ψ−2k(z) := P−2k

(
−1

z

)
− 1

2

(
1− z−2k

)
ζ(2k + 1).

Corollary 1.4. If z ∈ H and k ∈ N, then the following are true.

(1) We have that

H∗2k+2,1(z + 1) = e−
πi
12H∗2k+2,1(z).

(2) We have that

H∗2k+2,1

(
−1

z

)
− 1

z2k
√
−iz

H∗2k+2,1(z) =
Ψ−2k(z)

η
(
−1
z

) .
Thanks to such transformation laws, we are able to employ the Chowla-Selberg formula

(see [6, 17]) to obtain a simple extension of the classical fact that weight k algebraic modular
forms evaluated at discriminant D < 0 points τ are algebraic multiples of the kth power
of the canonical period ΩD. To make this precise, let Q denote the algebraic closure of Q.
Suppose D < 0 is a fundamental discriminant of the imaginary quadratic field Q(

√
D) with

class number h(D). Furthermore, define

h′(D) :=


1
3

if D = −3,
1
2

if D = −4,

h(D) if D < −4.

With χD(·) := (D· ), we can then define the canonical period by

ΩD :=
1√

2π|D|

 |D|∏
j=1

Γ

(
j

|D|

)χD(j)
 1

2h′(D)

.

We can now state our generalization.

Corollary 1.5. If k ∈ N and τ ∈ Q(
√
D)∩H, where D < 0 is a fundamental discriminant,

then

H∗2k+2,1

(
−1

τ

)
− 1

τ 2k
√
−iτ

H∗2k+2,1(τ) ∈ Q · Ψ−2k(τ)√
ΩD

.

Remark. The second author obtained the k = 0 extension of Corollary 1.5 in [15]. As noted
in [15], these results can be extended to t > 1.
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Theorems 1.2 and 1.3, and Corollaries 1.4 and 1.5 above pertain to the t-hook functions
fa,t, where a ≥ 2 is even. There is a theory for negative odd a. These cases give rise to
quantum modular forms. Introduced by Zagier in [18], a weight k quantum modular form is
vaguely defined as a function f : Q \ S → C, for some finite set S, where

hf,γ(x) := f(x)− (cx+ d)−kf

(
ax+ b

cx+ d

)
,

with γ = ( a bc d ) ∈ SL2(Z), is “better behaved” analytically than f . Recently, Zagier [19]
defined the notion of a weight k holomorphic quantum modular form. These are holomor-
phic functions f : H → C, where the “better behaved” condition means that hf,γ(z) is
holomorphic on a larger domain than H.

By applying mutatis mutandis a method introduced by Zagier in [19], who considered
E3(z), we have the following infinite family of holomorphic quantum modular forms.

Theorem 1.6. If a ≤ −1 is odd, then the following are true.

(1) We have that 〈fa,t〉q is a holomorphic weight 2−a quantum modular form. In particular,
we have the modular transformations

E2−a(z)− E2−a(z + 1) = 0,

E2−a(z)− za−2E2−a

(
−1

z

)
=

1

2π

∫
Re(s)=1−a

2

Γ(s)ζ(s)ζ(s+ a− 1)

(2π)s sin
(
πs
2

) z−sds

= 2
∑′

m,n≥0

1

(mz + n)2−a ,

where the ′ denotes that the terms where m or n (but not both) equal zero are weighted
by 1

2
.

(2) As t→ 0+, we have the asymptotic expansion

E2−a

(
it

2π

)
∼ Γ(2− a)ζ(2− a)

t2−a
+
ζ(a)

t
+
∞∑
n=0

Bn+1

n+ 1

Bn+2−a

n+ 2− a
(−t)n

n!
.

Remark. Part (2) is already known by work of Zagier. To be more precise he showed (2) in
[21], using the Euler–Maclaurin summation formula. However, for the readers convenience,
we include a different (and instructive) proof here, which is also an adaptation of an argument
of Zagier.

Remark. For a = 1, similar results hold. Namely, we have

E1

(
it

2π

)
∼ 2γ

t
+
∞∑
n=0

B2
n+1

(n+ 1)2

(−t)n

n!
,

where γ is the Euler-Mascheroni constant. One can also use similar methods to find an
asymptotic expansion for E2−a(α + it

2π
) with α ∈ Q.

Remark. This new kind of quantum modularity was also noted by Bettin and Conrey in
[3] where they computed Ek(z) − z−kEk(−1

z
) for any k ∈ C. Folsom has recently extended

their work in [7], where it was shown that a new family of “twisted Eisenstein series” are
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holomorphic quantum modular forms, which were then used to show that certain cotangent-
zeta sums are quantum modular forms in the original sense. Zagier’s presentation in [19]
shows that for any γ = ( a bc d ) ∈ SL2(Z) that hEk,γ(z) extends to a holomorphic function on
the cut plane

Cγ :=

{
C \

(
−∞,−d

c

)
c > 0,

C \
(
−d
c
,∞
)

c < 0.

In Section 2 we recall essential q-identity preliminaries, and in Section 3 we prove the
theorems. In the last section we offer numerical examples of these results.

Acknowledgements

The authors thank Amanda Folsom and Wei-Lun Tsai for their comments on preliminary
versions of this paper. Moreover we thank the referees for helpful comments.

2. Nuts and Bolts

We recall work of Han and Ji that is integral to the proof of Theorem 1.1.

Theorem 2.1 (Theorem 7.5 of [10]). For an k ∈ C and positive integer t we have

tk−1
∑
λ∈P

q|λ|x|Ht(λ)|
∑

h∈Ht(λ)

1

hk
=
∞∏
n=1

(1− qtn)t

(1− xnqtn)t(1− qn)

∞∑
n=1

xnqtn

nk−1(1− xnqtn)
.

We now recall a theorem of Berndt which is used to prove Theorem 1.3.

Theorem 2.2 (Theorem 2.2 of [1]). For z ∈ H and k ∈ N we have

E−2k(z)− z2kE−2k

(
−1

z

)
= −1

2

(
1− z2k

)
ζ(2k + 1) + P−2k(z).

3. Proofs of the Theorems

Proof of Theorem 1.1. We set x = 1 in Theorem 2.1 to obtain

tk−1
∑
λ∈P

q|λ|
∑

h∈Ht(λ)

1

hk
=
∞∏
n=1

1

1− qn
∞∑
n=1

qtn

nk−1(1− qtn)
.

The statement is then immediate from the definition of the q-bracket. �

Proof of Theorem 1.2. (1) Note that E∗2(z) is a limit of an Eisenstein series

E∗2(z) = lim
s→0

∑
M∈Γ∞\SL2(Z)

ys
∣∣
2
M(z).

For Re(s) > 1, we recall the Eisenstein series

E(z, s) :=
1

2

∑
gcd(c,d)=1

ys

|cz + d|2s
=

∑
M∈Γ∞\SL2(Z)

ys
∣∣
0
M(z).
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Then E(z, s) has a meromorphic continuation to the whole s-plane again denoted by E(z, s)
with a simple pole with residue 3

π
at s = 1. We now define

E(z, s) := E(z, s)− 3

π(s− 1)
and Ẽ0(z) := lim

s→1
E(z, s).

Below we show that Ẽ0 = E0. A direct calculation shows that

D
(
Ẽ0

)
= − 1

4π
E∗2 .

Clearly, Ẽ0(z) has weight zero, since E(z, s) does. Moreover, recalling that

∆0(E(z, s)) = s(1− s)E(z, s),

we obtain that

∆0

(
Ẽ0

)
(z) = − 3

π
.

Therefore, the function is sesquiharmonic.
We now compute its Fourier expansion. We have

E(z, s) = ys +
ζ∗(2s− 1)

ζ∗(2s)
y1−s +

4
√
y

ζ∗(2s)

∞∑
m=1

ms− 1
2σ1−2s(m)Ks− 1

2
(2πmy) cos(2πmx),

where

ζ∗(s) := π−
s
2 Γ
(s

2

)
ζ(s).

We need to take s → 1 and subtract 3
π(s−1)

from the constant term. First note that in the

sum on m, we can just plug in s = 1 to evaluate

6

π

∞∑
m=1

σ−1(m) (qm + qm) ,

using K 1
2
(x) =

√
π
2x
e−x. Finally, we directly compute

lim
s→1

(
ζ∗(2s− 1)

ζ∗(2s)
y1−s − 3

π(s− 1)

)
=

6γ

π
− 6 log(2)

π
− 3 log(y)

π
− 36

π3
ζ ′(2).

Therefore, we obtain

Ẽ0(z) = y +
6γ

π
− 6 log(2)

π
− 3 log(y)

π
− 36

π3
ζ ′(2) +

6

π

∞∑
m=1

σ−1(m) (qm + qm) = E0(z).

The linear exponential growth in i∞ follows directly from the Fourier expansion; the other
cusps can be treated in a similar manner.
(2) The proof is well-known (for example, see Corollary 6.16 of [5]). �

Proof of Theorem 1.3. By Theorem 1.1, we have

M−2k,t(z) = E−2k(tz)− 1

2
P−2k(tz) +

1

2
ζ(2k + 1).
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Letting z 7→ tz in Theorem 2.2, we obtain

E−2k(tz)− (tz)2kE−2k

(
− 1

tz

)
=

1

2

(
(tz)2k − 1

)
ζ(2k + 1) + P−2k(tz).

By a direct calculation, we find that (tz)2kP−2k(− 1
tz

) = −P−2k(tz), and thus

M−2k,t(z)−(tz)2kM−2k,t

(
− 1

t2z

)
= E−2k(tz)− (tz)2kE−2k

(
− 1

tz

)
− 1

2

(
P−2k(tz)− (tz)2kP−2k

(
− 1

tz

))
+

1

2

(
1− (tz)2k

)
ζ(2k + 1)

=
1

2
((tz)2k − 1)ζ(2k + 1) + P−2k(tz)− P−2k(tz) +

1

2

(
1− (tz)2k

)
ζ(2k + 1) = 0.

This gives part (2).
Because E−2k(tz) is invariant under z 7→ z + 1 part (1) follows from computing P−2k(tz +

t)− P−2k(tz). �

Proof of Corollary 1.4. We have that H∗2k+2,1(z) = E−2k(z)

η(z)
, and so the corollary follows from

the fact that

E−2k

(
−1

z

)
− z−2kE−2k(z) = Ψ−2k(z),

and the transformation properties of the Dedekind eta-function. �

Proof of Corollary 1.5. By the classical Chowla-Selberg Theorem (see [6, 17]), we have that

η

(
−1

τ

)
∈ Q ·

√
ΩD.

Corollary 1.5 is now a consequence of Corollary 1.4. �

Proof of Theorem 1.6. For odd k ≥ 1, we define

Gk(z) := −Bk

2k
+
∞∑
n=1

σk−1(n)qn. (3.1)

This is a slight abuse of notation as Gk(z) = Ek(z) in these cases (except for k = 1) because
Bk = 0 for k ≥ 3 and odd. We let

G̃k(s) :=

∫ ∞
0

(
Gk(iy) +

Bk

2k

)
ys−1dy =

Γ(s)

(2π)s
ζ(s)ζ(s− k + 1).

Before we prove the quantum modularity, we address the claimed asymptotic expansions.
The idea, which is well-known (for example, see [11] or the proof of Theorem 21.4 in [5]),
is to relate the product of zeta functions on the right to the Mellin integral representation
involving Gk(z). The following argument follows almost mutatis mutandis as in pages 99-100
of [11]. To compute these expansions, we write Gk(

it
2π

) as a contour integral

1

2πi

∫
C

Γ(s)ζ(s)ζ(s− k + 1)t−sds,



10 KATHRIN BRINGMANN, KEN ONO, AND IAN WAGNER

where the contour encircles the negative imaginary axis. Moving the contour across the
simple poles of Γ(s)ζ(s)ζ(s − k + 1) gives the desired expansions due to the poles at s = 1
and k for the zeta function factor, and the poles at each nonpositive integer for the gamma
function. In this way we obtain the formula

Ek
(
it

2π

)
∼ Γ(k)ζ(k)

tk
+
ζ(2− k)

t
+
∞∑
n=0

Bn+1

n+ 1

Bn+k

n+ k

(−t)n

n!
.

Namely, the first two summands correspond to the residues at s = k and s = 1, while
the remaining sums involving Bernoulli numbers correspond the poles arising to the gamma
function and the special values of the zeta function at negative integers.

In order to prove Theorem 1.6 (1), we adapt the proof of Proposition 10 in [12] which
pertained to a similar function. We first note that we can extend Gk(z) to C \R by defining

Gk(z) :=

{
−Bk

2k
+
∑∞

n=1 σk−1(n)qn if Im(z) > 0,
Bk
2k
−
∑∞

n=1 σk−1(n)q−n if Im(z) < 0.

Then we define the period function

ψk(z) := Gk(z)− z−kGk

(
−1

z

)
.

The Mellin transforms of Gk and ψk restricted to the positive or negative imaginary axis are
given by

G̃k,±(s) :=

∫ ∞
0

(
Gk(±iy)± Bk

2k

)
ys−1dy = ± Γ(s)

(2π)s
ζ(s)ζ(s− k + 1),

ψ̃k,±(s) :=

∫ ∞
0

ψk(±iy)ys−1dy =

∫ ∞
0

(
Gk(±iy)± ik

yk
Gk

(
± i
y

))
ys−1dy

= G̃k,±(s)± ikG̃k,±(k − s) =

(
1∓ e

πis
2 + e−

πis
2

e
πis
2 − e−πis2

)
G̃k,±(s)

=
ie∓πi

s
2 Γ(s)ζ(s)ζ(s− k + 1)

(2π)s sin
(
πs
2

) .

The role of e∓πi
s
2 arises from the slightly different behavior on the upper and lower half-

planes and the corresponding Mellin transforms defined along both positive and negative
imaginary axes. Using the Mellin inversion formula, we obtain

ψk(±iy) =
1

2π

∫
Re(s)= k

2

Γ(s)ζ(s)ζ(s− k + 1)

(2π)s sin
(
πs
2

) (±iy)−sds

for y > 0. As in [12], by analytic continuation from iR \ {0} to C \ R, we have

ψk(z) =
1

2π

∫
Re(s)= k

2

Γ(s)ζ(s)ζ(s− k + 1)

(2π)s sin
(
πs
2

) z−sds

for z ∈ C \R. We note that the fraction is bounded by a power of s times e−πs, as |s| → ∞
on vertical strips. Therefore, by writing z−s = e−sLog(z), we see that the integral converges
for |Arg(z)| < π. Therefore, it is holomorphic on the cut plane C′ := C \ R− .
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Zagier noted in [19] that for odd k ≥ 3, that we can also write

Gk(z) =
∑

(m,n)∈Λ+

1

(mz + n)k
,

where
Λ+ :=

{
(m,n) ∈ Z2 : m > 0 or m = 0 and n > 0

}
.

Determining Gk − Gk|γ then boils down to a determination of the action of γ on Λ+. The
case of γ = S = ( 0 −1

1 0 ) is straightforward as it is merely a 90 degree counterclockwise
rotation of Λ+. This corresponds to the second and third quadrants instead of the first and
second. The difference then cancels the terms in the second quadrant while summing over
the third quadrant is the same as the first quadrant just with a sign change. Combining
these observations then gives

Gk(z)− z−kGk

(
−1

z

)
= 2

∑′

m,n≥0

1

(mz + n)k
∈ Hol(C′).

The holomorphicity of this expression follows from the fact that poles cannot be introduced
by choosing z ∈ C′, but if z ∈ R− then mz + n can be arbitrarily small causing the sum to
diverge. �

4. Examples

Example. We now illustrate Corollary 1.5 using z = τ = i and z = τ = 2i. Ramanujan
proved (see p. 326 of [2]) that

η

(
i

2

)
= 2

1
8 ·
√

Ω−4 ≈ 0.8377.

By direct calculation we find

Ψ−2(2i) =
37π3

1440
− 5ζ(3)

8
≈ 0.04540, Ψ−4(2i) =

π5

576
− 15ζ(5)

32
≈ 0.04522.

We therefore have

Ψ−2(2i)

η
(
i
2

) ≈ 0.05420,
Ψ−4(2i)

η
(
i
2

) ≈ 0.05398.

By direct calculation, we find that

H∗4,1(2i) ≈ 5.887 · 10−6, H∗4,1

(
i

2

)
≈ 0.05420,

H∗6,1(2i) ≈ 5.887 · 10−6, H∗6,1

(
i

2

)
≈ 0.05398.

Combining these calculations gives us

H∗4,1

(
i

2

)
+

1

2
5
2

H∗4,1(2i) =
Ψ−2(2i)

η
(
i
2

) =
1

2
1
8

· Ψ−2(2i)√
Ω−4

,

H∗6,1

(
i

2

)
− 1

2
9
2

H∗6,1(2i) =
Ψ−4(2i)

η
(
i
2

) =
1

2
1
8

· Ψ−4(2i)√
Ω−4
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so the algebraic factor is 2−
1
8 in both cases.

Example. We now illustrate Theorems 1.1 and 1.6. We recall that Theorem 1.1 implies that

〈fa,1〉q =
∞∏
n=1

(1− qn) ·Ha,1(z) = E2−a(z).

Therefore, if k = 2−a, where a ≤ −1 is odd, then Theorem 1.6 (2) asserts that the functions

Ĝk(t) :=
∞∑
n=1

σk−1(n)e−nt = E2−a

(
it

2π

)
,

and

G̃k(t) :=
Γ(k)ζ(k)

tk
+
ζ(2− k)

t
+
∞∑
n=0

Bn+1

n+ 1

Bn+k

n+ k

(−t)n

n!
.

have the same asymptotic behavior as t→ 0+. The table below illustrates this when a = −1.

t Ĝ3(t) G̃3(t) Ĝ3(t)/G̃3(t)

2 ≈ 0.2602861623 ≈ 0.2602864321 ≈ 0.9999989634

1.5 ≈ 0.6578359053 ≈ 0.6578359052 ≈ 0.9999999998

1 ≈ 2.3214805734 ≈ 2.3214805734 ≈ 1.0000000000

0.5 ≈ 19.0665916994 ≈ 19.0665916994 ≈ 1.0000000000

0.1 ≈ 2403.2805424358 ≈ 2403.2805424358 ≈ 1.0000000000
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