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In 1927, Pólya proved that the Riemann hypothesis is equivalent to the hyperbolicity of Jensen polynomials for the Riemann zeta
function ζ(s) at its point of symmetry. This hyperbolicity has been proved for degrees d ≤ 3. We obtain an asymptotic formula for the
central derivatives ζ(2n)(1/2) that is accurate to all orders, which allows us to prove the hyperbolicity of all but finitely many of the
Jensen polynomials of each degree. Moreover, we establish hyperbolicity for all d ≤ 8. These results follow from a general theorem
which models such polynomials by Hermite polynomials. In the case of the Riemann zeta function, this proves the Gaussian unitary
ensemble random matrix model prediction in derivative aspect. The general theorem also allows us to prove a conjecture of Chen, Jia,
and Wang on the partition function.

Riemann hypothesis | Jensen polynomials | hyperbolic polynomials

1. Introduction and Statement of Results
Expanding on notes of Jensen, Pólya (1) proved that the Riemann hypothesis (RH) is equivalent to the hyperbolicity of the Jensen
polynomials for the Riemann zeta function ζ(s) at its point of symmetry. More precisely, he showed that the RH is equivalent to the
hyperbolicity of all Jensen polynomials associated with the sequence of Taylor coefficients {γ(n)} defined by

(
−1 + 4z 2)Λ

(
1

2
+ z

)
=

∞∑
n=0

γ(n)

n!
· z 2n , [1]

where Λ(s) =π−s/2Γ(s/2)ζ(s) = Λ(1− s), where we say that a polynomial with real coefficients is hyperbolic if all of its zeros are
real, and where the Jensen polynomial of degree d and shift n of an arbitrary sequence {α(0),α(1),α(2), . . . } of real numbers is the
polynomial

J d,n
α (X ) : =

d∑
j=0

(
d
j

)
α(n + j )X j . [2]

Thus, the RH is equivalent to the hyperbolicity of the polynomials J d,n
γ (X ) for all nonnegative integers d and n (1–3). Since this

condition is preserved under differentiation, to prove RH, it would be enough to show hyperbolicity for the J d,0
γ (X ).

∗
Due to

the difficulty of proving RH, research has focused on establishing hyperbolicity for all shifts n for small d . Previous to this paper,
hyperbolicity was known for d ≤ 3 by work† of Csordas et al. (5) and Dimitrov and Lucas (3).

Asymptotics for the γ(n) were obtained from Coffey (6) and Pustyl’nikov (7). We improve on their results by obtaining an arbitrary
precision asymptotic formula‡ (Theorem 9), a result that is of independent interest. We will use this strengthened result to prove the
following theorem for all degrees d .
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The Pólya–Jensen criterion for the Riemann hypothesis asserts that RH is equivalent to the hyperbolicity of certain Jensen poly-
nomials for all degrees d ≥ 1 and all shifts n. For each degree d ≥ 1, we confirm this criterion for all sufficiently large shifts n.
This represents a theoretical advance in the field. The method of proof is rooted in the newly discovered phenomenon that these
polynomials are nicely approximated by Hermite polynomials. Furthermore, it is shown that this method applies to a large class of
related problems.
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Theorem 1. If d ≥ 1, then J d,n
γ (X ) is hyperbolic for all sufficiently large n .

An effective proof of Theorem 1 for small d gives the following theorem.

Theorem 2. If 1≤ d ≤ 8, then J d,n
γ (X ) is hyperbolic for every n ≥ 0.

Theorem 1 follows from a general phenomenon that Jensen polynomials for a wide class of sequences α can be modeled by the
Hermite polynomials Hd(X ), which we define (in a somewhat nonstandard normalization) as the orthogonal polynomials for the
measure µ(X ) = e−X2/4 or more explicitly by the generating function

∞∑
d=0

Hd(X )
td

d !
= e−t2+Xt = 1 +X t + (X 2− 2)

t2

2!
+ (X 3− 6X )

t3

3!
+ · · · . [3]

More precisely, we will prove the following general theorem describing the limiting behavior of Jensen polynomials of sequences with
appropriate growth.

Theorem 3. Let {α(n)}, {A(n)}, and {δ(n)} be three sequences of positive real numbers with δ(n) tending to zero and satisfying

log

(
α(n + j )

α(n)

)
=A(n)j − δ(n)2j 2 + o

(
δ(n)d

)
asn→∞, [4]

for some integer d ≥ 1 and all 0≤ j ≤ d . Then, we have

lim
n→∞

(
δ(n)−d

α(n)
J d,n
α

(
δ(n)X − 1

exp(A(n))

))
= Hd(X ), [5]

uniformly for X in any compact subset of R.
Since the Hermite polynomials have distinct roots, and since this property of a polynomial with real coefficients is invariant under

small deformation, we immediately deduce the following corollary.

Corollary 4. The Jensen polynomials J d,n
α (X ) for a sequence α : N→R satisfying the conditions in Theorem 3 are hyperbolic for all but

finitely many values n .
Theorem 1 is a special case of this corollary. Namely, we shall use Theorem 9 to prove that the Taylor coefficients {γ(n)} satisfy the

required growth conditions in Theorem 3 for every d ≥ 2.
Theorem 3 in the case of the Riemann zeta function is the derivative aspect Gaussian unitary ensemble (GUE) random matrix

model prediction for the zeros of Jensen polynomials. To make this precise, recall that Dyson (8), Montgomery (9), and Odlyzko
(10) conjecture that the nontrivial zeros of the Riemann zeta function are distributed like the eigenvalues of random Hermitian
matrices. These eigenvalues satisfy Wigner’s Semicircular Law, as do the roots of the Hermite polynomials Hd(X ), when suitably
normalized, as d→+∞ (see chapter 3 of ref. 11). The roots of J d,0

γ (X ), as d→+∞, approximate the zeros of Λ
(
1
2

+ z
)

(see
ref. 1 or lemma 2.2 of ref. 12), and so GUE predicts that these roots also obey the Semicircular Law. Since the derivatives of
Λ
(
1
2

+ z
)

are also predicted to satisfy GUE, it is natural to consider the limiting behavior of J d,n
γ (X ) as n→+∞. The work here

proves that these derivative aspect limits are the Hermite polynomials Hd(X ), which, as mentioned above, satisfy GUE in degree
aspect.

Returning to the general case of sequences with suitable growth conditions, Theorem 3 has applications in combinatorics where the
hyperbolicity of polynomials determines the log-concavity of enumerative statistics. For example, see the classic theorem by Heilmann
and Leib (13), along with works by Chudnovsky and Seymour (14), Haglund (15), Haglund et al. (16), Stanley (17), and Wagner (18),
to name a few. Theorem 3 represents a criterion for establishing the hyperbolicity of polynomials in enumerative combinatorics. The
theorem reduces the problem to determining whether suitable asymptotics hold. Here, we were motivated by a conjecture of Chen,
Jia, and Wang concerning the Jensen polynomials J d,n

p (X ), where p(n) is the partition function. Nicolas (19) and Desalvo and Pak
(20) proved that J 2,n

p (X ) is hyperbolic for n ≥ 25, and, more recently, Chen et al. proved (21) that J 3,n
p (X ) is hyperbolic for n ≥ 94,

inspiring them to state as a conjecture the following result.

Theorem 5 (Chen–Jia–Wang Conjecture). For every integer d ≥ 1, there exists an integer N (d) such that J d,n
p (X ) is hyperbolic for

n ≥N (d).
Table 1 gives the conjectured minimal value for N (d) for d = 2j with 1≤ j ≤ 5. More precisely, for each d ≤ 32 it gives the smallest

integer such that J d,n
p (X ) is hyperbolic for N(d) ≤ n ≤ 50,000.

Remark 6: Larson and Wagner (22) have made the proof of Theorem 5 effective by a brute-force implementation of Hermite’s
criterion (see theorem C of ref. 3). They showed that the values in the table are correct for d = 4 and d = 5 and that
N (d)≤ (3d)24d(50d)3d

2

in general. The true values are presumably much smaller and are probably of only polynomial growth,
the numbers N (d) in the table being approximately of size 10 d2 log d .

Table 1. Conjectured minimal values of N(d)

d 1 2 4 8 16 32

N(d) 1 25 206 1,269 6,917 35,627
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Table 2. Comparison of γ(n) and γ̂(n)

n γ̂(n) γ(n) γ(n)/γ̂(n)

10 ≈ 1.6313374394 ×10−17 ≈ 1.6323380490 ×10−17 ≈ 1.000613367
100 ≈ 6.5776471904 ×10−205 ≈ 6.5777263785 ×10−205 ≈ 1.000012038
1,000 ≈ 3.8760333086 ×10−2567 ≈ 3.8760340890 ×10−2567 ≈ 1.000000201
10,000 ≈ 3.5219798669 ×10−32265 ≈ 3.5219798773 ×10−32265 ≈ 1.000000002
100,000 ≈ 6.3953905598 ×10−397097 ≈ 6.3953905601 ×10−397097 ≈ 1.000000000

Theorem 5 suggests a natural generalization. As is well known, the numbers p(n) are the Fourier coefficients of a modular form,
namely,

1

η(τ)
=

∞∑
n=0

p(n) qn− 1
24 (=(τ)> 0, q = e2πiτ ), [6]

where η(τ) = q1/24∏(1− qn) is the Dedekind eta-function. Theorem 5 is then an example of a more general theorem about the
Jensen polynomials of the Fourier coefficients of an arbitrary weakly holomorphic modular form, which, for the purposes of this
work, will mean a modular form (possibly of fractional weight and with multiplier system) with real Fourier coefficients on the full
modular group SL2(Z) that is holomorphic apart from a pole of (possibly fractional) positive order at infinity. If f is such a form, we
denote its Fourier expansion by§

f (τ) =
∑

n∈−m+Z≥0

af (n) qn (m ∈Q>0, af (−m) 6= 0). [7]

Then, we will prove the following theorem, which includes Theorem 5.

Theorem 7. If f is a weakly holomorphic modular form as above, then for any fixed d ≥ 1, the Jensen polynomials J d,n
af (X ) are hyperbolic

for all sufficiently large n .
Our results are proved by showing that each of the sequences of interest to us [the partition function, the Fourier coefficients of

weakly holomorphic modular forms, and the Taylor coefficients at s = 1
2

of 4s(1− s)Λ(s)] satisfies the hypotheses of Theorem 3,
which we prove in Section 2. Actually, in Section 2, we prove a more general result (Theorem 8) that gives the limits of suitably
normalized Jensen polynomials for an even bigger class of sequences having suitable asymptotic properties (but without necessarily
the corollary about hyperbolicity). Theorem 7 giving the hyperbolicity for coefficients of modular forms (and hence also for the
partition function) is proved in Section 3. In Section 4, we prove Theorem 9, which gives an asymptotic formula to all orders for
the Taylor coefficients of Λ(s) at s = 1

2
, and in Section 5, we prove Theorems 1 and 2 for the Riemann zeta function by using these

asymptotics to verify that the hypotheses of Theorem 3 are fulfilled by the numbers γ(n). We conclude in Section 6 with some
numerical examples.

2. Proof of Theorem 3
We deduce Theorem 3 from the following more general result.

Theorem 8. Suppose that {E(n)} and {δ(n)} are positive real sequences with δ(n) tending to 0, and that F (t) =
∑∞

i=0 ci t
i is a

formal power series with complex coefficients. For a fixed d ≥ 1, suppose that there are real sequences {C0(n)}, . . . , {Cd(n)}, with
limn→+∞ Ci(n) = ci for 0≤ i ≤ d , such that for 0≤ j ≤ d , we have

α(n + j )

α(n)
E(n)−j =

d∑
i=0

Ci(n) δ(n)i j i + o
(
δ(n)d

)
as n→+∞. [8]

Then, the conclusion of Theorem 3 holds with exp(A(n)) replaced by E(n) and Hd(X ) replaced by HF ,d(X ), where the poly-
nomials HF ,m(X )∈C[x ] are now defined either by the generating function F (−t) eXt =

∑
HF ,m(X ) tm/m! or in closed form by

HF ,m(X ) : = m!
∑m

k=0 (−1)m−kcm−k X
k/k ! .

Proof of Theorems 8 and 3. After replacing exp(A(n)) by E(n), the polynomial appearing on the left-hand side of [5] becomes

δ(n)−d

α(n)
J d,n
α

(
δ(n)X − 1

E(n)

)
=

d∑
k=0

(
d

k

) δ(n)k−d
d∑

j=k

(−1)j−k

(
d − k

j − k

)
α(n + j )

α(n)E(n)j

X k .

Since 0≤ j ≤ d , and since the error term in [8] is o(δ(n)d), we may reorder summation and find that the limiting value as n→+∞
of the quantity in square brackets satisfies

lim
n→+∞

 d∑
i=0

Ci(n) δ(n)k−d+i
d∑

j=k

(−1)j−k

(
d − k

j − k

)
j i

= (−1)d−k (d − k)! cd−k ,

§Note that with these notations we have p(n) = af (n− 1
24 ) for f = 1/η, but making this shift of argument is irrelevant for the applicability of Theorem 7 to Theorem 5, since the

required asymptotic property is obviously invariant under translations of n.
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Table 3. The polynomials Ĵ2, n
p and Ĵ3, n

p

n Ĵ2, n
p (X) Ĵ3, n

p (X)

100 ≈ 0.9993X2 + 0.0731X − 1.9568 ≈ 0.9981X3 + 0.2072X2− 5.9270X + 1.1420
200 ≈ 0.9997X2 + 0.0459X − 1.9902 ≈ 0.9993X3 + 0.1284X2− 5.9262X − 1.4818
300 ≈ 0.9998X2 + 0.0346X − 1.9935 ≈ 0.9996X3 + 0.0965X2− 5.9497X − 1.3790
400 ≈ 0.9999X2 + 0.0282X − 1.9951 ≈ 0.9998X3 + 0.0786X2− 5.9621X − 1.2747

...
...

...
108 ≈ 0.9999X2 + 0.0000X − 1.9999 ≈ 0.9999X3 + 0.0000X2− 5.9999X − 0.0529

because the inner sum, which is the (d − k)th difference of the polynomial j 7→ j i evaluated at j = 0, vanishes for i < d − k and equals
(d − k)! for i = d − k . Theorem 8 follows, and Theorem 3 is just the special case E(n) = eA(n) and F (t) = e−t2 . �

3. Proof of Theorem 7
Assume that f is a modular form of (possibly fractional) weight k on SL2(Z) (possibly with multiplier system) and with a pole of
(possibly fractional) order m > 0 at infinity and write its Fourier expansion at infinity as in [7]. It is standard, either by the circle
method of Hardy–Ramanujan–Rademacher or by using Poincaré series (for example, see ref. 23), that the Fourier coefficients of f
have the asymptotic form

af (n) =Af n
k−1
2 Ik−1(4π

√
mn) + O

(
nC e2π

√
mn
)

, [9]

as n→∞ for some nonzero constants Af [an explicit multiple of af (−m)] and C , where Iκ(x ) denotes the usual I -Bessel function.
In view of the expansion of Bessel functions at infinity, this implies that af (n) has an asymptotic expansion to all orders in 1/n of the
form

af (n) ∼ e4π
√
mn n

2k−3
4 exp

(
c0 +

c1
n

+
c2
n2

+ · · ·
)

,

for some constants c0, c1, . . . depending on f [and in fact only on m and k if we normalize the leading coefficient af (−m) of f to be
equal to 1]. This gives an asymptotic expansion

log

(
af (n + j )

af (n)

)
∼ 4π

√
m

∞∑
i=1

(
1/2

i

)
j i

n i− 1
2

+
2k − 3

4

∞∑
i=1

(−1)i−1j i

i n i
+
∑
i,k≥1

ck

(
−k
i

)
j i

n i+k
, [10]

valid to all orders in n , and it follows that the sequence {af (n)} satisfies the hypotheses of Theorem 3 with A(n) = 2π
√

m/n +

O(1/n) and δ(n) = (π/2)1/2m1/4n−3/4 + O(n−5/4). Theorem 7 then follows from the corollary to Theorem 3.

4. Asymptotics for Λ(n)( 1
2 )

Previous work of Coffey (6) and Pustyl’nikov (7) offer asymptotics¶ for the derivatives Λ(n)
(
1
2

)
. Here, we follow a slightly different

approach and obtain effective asymptotics, a result which is of independent interest. To describe our asymptotic expansion, we first
give a formula for these derivatives in terms of an auxiliary function, whose asymptotic expansion we shall then determine.

Following Riemann (cf. chapter 8 of ref. 25), we have

Λ(s) =

∫ ∞
0

t
s
2
−1 θ0(t) dt =

1

s(s − 1)
+

∫ ∞
1

(
t

s
2 + t

1−s
2

)
θ0(t)

dt

t
,

where θ0(t) =
∑∞

k=1 e
−πk2t = 1

2
(t−1/2− 1) + t−1/2θ0(1/t). It follows that

Λ(n) ( 1
2

)
=− 2n+2 n! +

F (n)

2n−1
, [11]

for n > 0 (both are of course zero for n odd), where F (n) is defined for any real n ≥ 0 by

F (n) =

∫ ∞
1

(log t)n t−3/4 θ0(t) dt . [12]

In particular, if n is a positive integer, then the Taylor coefficients γ(n) defined in [1] satisfy

γ(n) =
n!

(2n)!
·

(
8

(
2n

2

)
Λ(2n−2) ( 1

2

)
−Λ(2n) ( 1

2

))
=

n!

(2n)!
·

32
(
2n
2

)
F (2n − 2)−F (2n)

22n−1
. [13]

¶It is interesting to note that Hadamard obtained rough estimates for these derivatives in 1893. His formulas are correctly reprinted on p. 125 of ref. 24.
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Theorem 9. If n > 0, then the function F (n) defined by [12] is given to all orders in n by the asymptotic expansion

F (n) ∼
√

2π
Ln+1√

(1 +L)n − 3
4
L2

eL/4−n/L+3/4

(
1 +

b1
n

+
b2
n2

+ · · ·
)

(n→∞),

where L=L(n)≈ log
(

n
log n

)
is the unique positive solution of the equation n =L(πeL + 3

4
) and each coefficient bk belongs to Q(L), the

first value being b1 = 2L4+9L3+16L2+6L+2
24 (L+1)3

.

Example 10: Here, we illustrate Theorem 9. The two-term approximation

F (n) ≈
√

2π
Ln+1√

(1 +L)n − 3
4
L2

eL/4−n/L+3/4

(
1 +

b1
n

)
= : F̂ (n),

is sufficiently strong for the proof of Theorem 1. In particular, Theorem 9 and [13] imply

γ̂(n) : =
n!

(2n)!
26−2n

(
2n

2

)
F̂ (2n − 2) = γ(n)

(
1 +O

(
1

n2−ε

))
. [14]

Here are some approximations γ̂(n) obtained from this expression by numerically computing L using its defining equation above.
Table 2 illustrates the high precision of this formula.

Proof of Theorem 9: We approximate the integrand in [12] by f (t) = (log t)n t−3/4e−πt (from now on, we consider n as fixed and
omit it from the notations). We have t d

dt
log f (t) = n

log t
−πt − 3

4
, so f (t) assumes its unique maximum at t = a , where a = eL is the

solution in (1,∞) of

n =

(
πa +

3

4

)
log a.

We can then apply the usual saddle point method. The Taylor expansion of f (t) around t = a is given by

f ((1 +λ)a)

f (a)
=

(
1 +

log(1 +λ)

log a

)n
(1 +λ)−3/4e−πλa = e−Cλ2/2 (1 +A3λ

3 +A4λ
4 + · · ·

)
,

where C = (ε+ ε2)n − 3
4

(here we have set ε= 1
log a

=L−1) and the Ai (i ≥ 3) are polynomials of degree bi/3c in n with coefficients
in Q[ε]. This expansion is found by expanding log(f ((1 +λ)a))− log(f (a)) in λ. The linear term vanishes by the choice of a , the
quadratic term is −Cλ2/2, and the coefficients of the higher powers of λ are all linear expressions in n with coefficients in Q[ε].
Exponentiating this expansion gives the claimed expression for f ((1 +λ)a)/f (a), where the dominant term of each Ai is governed
primarily by the exponential of the cubic term of the logarithmic expansion. The first few Ai are

A3 =

(
ε

3
+
ε2

2
+
ε3

3

)
n − 1

4
, A4 =−

(
ε

4
+

11ε2

24
+
ε3

2
+
ε4

4

)
n +

3

16
,

A5 =

(
ε

5
+

5ε2

12
+

7ε3

12
+
ε4

2
+
ε5

5

)
n − 3

20
,

A6 =

(
ε2

18
+
ε3

6
+

17ε4

72
+
ε5

6
+
ε6

18

)
n2 −

(
ε

4
+

91ε2

180
+

17ε3

24
+

17ε4

24
+
ε5

2
+
ε6

6

)
n +

5

32
.

Table 4. The polynomials Ĵ2, n
γ and Ĵ3, n

γ

n Ĵ2, n
γ (X) Ĵ3, n

γ (X)

100 ≈ 0.9896X2 + 0.3083X − 2.0199 ≈ 0.9769X3 + 0.7570X2− 5.8690X − 1.2661
200 ≈ 0.9943X2 + 0.2271X − 2.0061 ≈ 0.9872X3 + 0.5625X2− 5.9153X − 0.9159
300 ≈ 0.9960X2 + 0.1894X − 2.0029 ≈ 0.9911X3 + 0.4705X2− 5.9374X − 0.7580
400 ≈ 0.9969X2 + 0.1663X − 2.0016 ≈ 0.9931X3 + 0.4136X2− 5.9501X − 0.6623

...
...

...
108 ≈ 0.9999X2 + 0.0003X − 2.0000 ≈ 0.9999X3 + 0.0009X2− 5.9999X − 0.0014
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Plugging in t = (1 +λ)a immediately gives the asymptotic expansion

∫ ∞
1

f (t) dt = a f (a)

∫ ∞
−1+1/a

e−Cλ2/2 (1 +A3λ
3 +A4λ

4 + · · ·
)
dλ

= a f (a)

√
2π

C

(
1 +

3A4

C 2
+

15A6

C 3
+ · · ·+ (2i − 1)!!A2i

C i
+ · · ·

)
.

(Here, only the part of the integral with Cλ2<B log n , where B is any function of n going to infinity as n does, contributes.)
This equality and the expression in Theorem 9 are interpreted as asymptotic expansions. Although these series themselves may not
converge for a fixed n , we may truncate the resulting approximation at O(n−A) for some A> 0, and as n→+∞, this approximation
becomes true to the specified precision. Substituting into this expansion the formulas for C and Ai in terms of n , we obtain the
statement of the theorem with F (n) replaced by the integral over f (t), with only A2i (i ≤ 3k) contributing to bk . But then the
same asymptotic formula holds also for F (n), since the ratio f (t)/θ0(t) = 1 + e−3πt + · · · is equal to 1 + O(n−K ) for any K > 0 for
t near a . �

5. Proof of Theorems 1 and 2
A. Proof of Theorem 1. For each d ≥ 1, we use Theorem 3 with sequences {A(n)} and {δ(n)} for which

log

(
γ(n + j )

γ(n)

)
= A(n)j − j 2δ(n)2 +

d∑
i=3

gi(n)j i + o
(
δ(n)d

)
, [15]

for all 0≤ j ≤ d , where gi(n) = o
(
δ(n)i

)
. Stirling’s formula, [13], and [14] give

γ(n) =
en−2nn+ 1

2 (1 + 1
12n

)Ln̂

2n̂−3n̂ n̂+ 1
2 (1 + 1

12n̂
)

√
2π

K
· exp

(
L

4
− n̂

L
+

3

4

)(
1 +

b1(n̂)

n̂

)(
1 +O

(
1

n2−ε

))
, [16]

where n̂ : = 2n − 2, L : =L(n̂), and K : =K (n̂) : =
(
L(n̂)−1 +L(n̂)−2

)
n̂ − 3/4. The L(n̂) are values of a nonvanishing holomorphic

function for <(n)> 1, and so for |j |<n − 1, we have the Taylor expansion

L(j ;n) : =
L(n̂ + 2j )

L(n̂)
= 1 +

∑
m≥1

`m(n)
jm

m!
.

If J =λ(n − 1) with −1<λ< 1, then the asymptotic L(n)≈ log( n
log n

) implies

lim
n→+∞

L(J ,n) = lim
n→+∞

L (n̂(λ+ 1))

L(n̂)
= 1.

In particular, we have `1(n) = 2
K ·L2 and `2(n) = −8(n̂−3/4L)(1+L/2)

K3·L5 and `m(n) = o
(

1
(n−1)m

)
. By a similar argument applied to

K(j ;n) : =
K (n̂ + 2j )

K (n̂)
= 1 +

∑
m≥1

km(n)
jm

m!
and B(j ;n) : =

1 + b1(n̂+2j)
n̂+2j

1 + b1(n̂)
n̂

= 1 +
∑
m≥1

βm(n)
jm

m!
,

we find that βm(n) = o
(

1
(n−1)m+1

)
, k1(n) = 2(L+1)

K ·L2 − 2n̂(L+2)

K2L4 , and km(n) = o
(

1
(n−1)m

)
for m ≥ 2.

Table 5. The polynomials Ĵ6, n
γ

n Ĵ6, n
γ (X)

100 ≈ 0.912X6 + 3.086X5− 24.114X4− 55.652X3 + 133.109X2 + 151.696X − 85.419
200 ≈ 0.950X6 + 2.374X5− 26.625X4− 42.824X3 + 153.246X2 + 115.849X − 100.510
300 ≈ 0.965X6 + 2.011X5− 27.608X4− 36.282X3 + 161.084X2 + 97.843X − 106.295
400 ≈ 0.973X6 + 1.780X5− 28.139X4− 32.111X3 + 165.303X2 + 86.428X − 109.388

...
...

1010 ≈ 0.999X6 + 0.000X5− 29.999X4− 0.008X3 + 179.999X2 + 0.020X − 119.999
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Let R(j ;n) be the approximation for γ(n + j )/γ(n) obtained from [16]. We then expand logR(j ;n)= :
∑

m≥1 gm(n)jm , with the
idea that we will choose A(n)∼ g1(n) and δ(n)∼

√
−g2(n). To this end, if J =λ(n − 1) for −1<λ< 1, then a calculation reveals

that

− (1 +λ) log(1 +λ) = lim
n→+∞

logR(J ;n)−J log
(

nL2

4n̂2

)
− J

n − 1
. [17]

Therefore, gm(n) =O
(
(n − 1)1−m

)
, and algebraic manipulations give

g1(n) = log

(
nL2

4n̂2

)
+ n̂`1(n)

L+ 1

L
− 2

L
+
`1(n) ·L

4
− k1(n)

2
+O

(
1

n2−ε

)
,

g2(n) =− 1

n̂
+ (4`1(n) + n̂`2(n))

L+ 1

2L
− n̂`1(n)2

L+ 2

2L
+O

(
1

n2−ε

)
.

Using the formulas for `1(n), `2(n), and k1(n) above, we define

δ(n) : =

√
1

n̂
− 2

L2 ·K and A(n) : = log

(
nL2

4n̂2

)
+

L− 1

L2 ·K +
n̂(L+ 2)

L4 ·K 2
. [18]

The bounds for the gm(n) and the asymptotics above imply the o(1) error term in [15], and also that for sufficiently large n we have
0<δ(n)→ 0. Therefore, Theorem 3 applies, and its corollary gives Theorem 1.

B. Sketch of the Proof of Theorem 2. Let A(n) and δ(n) be as in [18]. If we let

Ĵ d,n
γ (X ) : =

δ(n)−d

γ(n)
· J d,n
γ

(
δ(n)X − 1

exp(A(n))

)
=

d∑
k=0

βd,n
k X k ,

then Theorem 1 implies that limn→+∞ Ĵ d,n
γ (X ) =Hd(X ) = :

∑d
k=0 hkX

k . We have confirmed the hyperbolicity of the Ĵ d,n
γ (X ) for

n ≤ 106 and 4≤ d ≤ 8 using Hermite’s criterion (see theorem C of ref. 3).
Using this criterion, we also chose vectors εd : = (εd(d), εd(d − 1), . . . , εd(0)) of positive numbers and signs sd , sd−1, . . . , s0 ∈{±1}

for which Ĵ d,n
γ (X ) is hyperbolic if 0≤ sk (βd,n

k − hk )<εd(k) for all k . To make use of these inequalities, for positive integers n and
1≤ j ≤ 8, define real numbers C (n, j ) by

γ(n + j )

γ(n)eA(n)j
· eδ(n)

2j2 = 1 +
C (n, j )

n3/2
. [19]

Using an effective form of [16], it can be shown‖ that 0<C (n, j )< 14.25 for all n ≥ 7 and 1≤ j ≤ 8. Finally, we determined numbers
Mεd for which the required inequalities hold for n ≥Mεd . The proof follows from the fact that we found suitable choices for which
Mεd < 106.

Example 11: We illustrate the case of d = 4 using ε4 : = (0.041, 1.384, 0.813, 7.313, 0.804). For n ≥ 100 the odd degree coefficients
satisfy

0<β4,n
3 < 28 δ(n) and − 145.70δ(n)<β4,n

1 < 0,

while the even degree coefficients satisfy

1− 16.05 δ(n)2<β4,n
4 < 1, −12<β4,n

2 <−12 + 16.20 δ(n), 12− 16.01 δ(n)<β4,n
0 < 12.

It turns out that Mε4 : = 104< 106.

6. Examples

For convenience, we let the Ĵ d,n
α (X ) denote the polynomials which converge to Hd(X ) in [5]. We now illustrate Theorem 7 with [6],

where m = 1/24 and k =−1/2. Using [10], we may choose A(n) = 2π√
24n−1

− 24
24n−1

and δ(n) =
√

12π

(24n−1)3/2
− 288

(24n−1)2
. Although

the one-term approximations of [10] given at the end of Section 3 also satisfy Theorem 3, the two-term approximations converge
more quickly and better illustrate the result. With these data, we observe in Table 3 indeed that the degree 2 and 3 partition Jensen
polynomials are modeled by H2(X ) =X 2− 2 and H3(X ) =X 3− 6X .

Table 4 illustrates Theorem 1 for the Riemann zeta function using (18) in the case of degrees 2 and 3.
Finally, we conclude in Table 5 with data for the degree 6 renormalized Jensen polynomials J 6,n

γ (X ) which converge to H6(X ) =

X 6− 30X 4 + 180X 2− 120.
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‖It turns out that δ(6) is not real.
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