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Abstract. Answering problems of Manin, we use the critical L-values of even weight k ≥ 4
newforms f ∈ Sk(Γ0(N)) to define zeta-polynomials Zf (s) which satisfy the functional
equation Zf (s) = ±Zf (1 − s), and which obey the Riemann Hypothesis: if Zf (ρ) = 0,
then Re(ρ) = 1/2. The zeros of the Zf (s) on the critical line in t-aspect are distributed in a
manner which is somewhat analogous to those of classical zeta-functions. These polynomials
are assembled using (signed) Stirling numbers and “weighted moments” of critical L-values.
In analogy with Ehrhart polynomials which keep track of integer points in polytopes, the
Zf (s) keep track of arithmetic information. Assuming the Bloch–Kato Tamagawa Number
Conjecture, they encode the arithmetic of a combinatorial arithmetic-geometric object which
we call the “Bloch-Kato complex” for f . Loosely speaking, these are graded sums of weighted
moments of orders of Šafarevič–Tate groups associated to the Tate twists of the modular
motives.

1. Introduction and Statement of Results

Let f ∈ Sk(Γ0(N)) be a newform of even weight k and level N . Associated to f is its
L-function L(f, s), which may be normalized so that the completed L-function

Λ(f, s) :=
(√N

2π

)s
Γ(s)L(f, s),

satisfies the functional equation Λ(f, s) = ε(f)Λ(f, k − s), with ε(f) = ±1. The critical
L-values are the complex numbers L(f, 1), L(f, 2), . . . , L(f, k − 1).

In a recent paper [15], Manin speculated on the existence of natural zeta-polynomials
which can be canonically assembled from these critical values. A polynomial Z(s) is a zeta-
polynomial if it is arithmetic-geometric in origin, satisfies a functional equation of the form

Z(s) = ±Z(1− s)

and obeys the Riemann Hypothesis: if Z(ρ) = 0, then Re(ρ) = 1/2.

Key words and phrases. period polynomials, modular forms, zeta-polynomials, Ehrhart polynomials,
Bloch-Kato complex.
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Here we confirm his speculation. To this end, we define the m-th weighted moments of
critical values

(1.1) Mf (m) :=
k−2∑
j=0

(√
N

2π

)j+1
L(f, j + 1)

(k − 2− j)!
jm =

1

(k − 2)!

k−2∑
j=0

(
k − 2

j

)
Λ(f, j + 1)jm.

For positive integers n, we recall the usual generating function for the (signed) Stirling
numbers of the first kind

(1.2) (x)n = x(x− 1)(x− 2) · · · (x− n+ 1) =:
n∑

m=0

s(n,m)xm.

Using these numbers we define the zeta-polynomial for these weighted moments by

(1.3) Zf (s) := ε(f) ·
k−2∑
h=0

(−s)h
k−2−h∑
m=0

(
m+ h

h

)
· s(k − 2,m+ h) ·Mf (m).

To be a zeta-polynomial in the sense of Manin [15], we must show that Zf (s) satisfies a
functional equation and the Riemann Hypothesis. Our first result confirms these properties.

Theorem 1.1. If f ∈ Sk(Γ0(N)) is an even weight k ≥ 4 newform, then the following are
true:

(1) For all s ∈ C we have that Zf (s) = ε(f)Zf (1− s).
(2) If Zf (ρ) = 0, then Re(ρ) = 1/2.

It is natural to study the distribution of the zeros of Zf (s) on the line Re(s) = 1/2.
Although the Zf (s) are polynomials, do their zeros behave in a manner which is analogous
to the zeros of the Riemann zeta-function ζ(s)? Namely, how are their zeros distributed in
comparison with the growth of

N(T ) := #{ρ = s+ it : ζ(ρ) =
1

2
with 0 < t ≤ T},

which is well known to satisfy

(1.4) N(T ) =
T

2π
log

T

2π
− T

2π
+O(log T )?

We find that the zeros of Zf (s) behave in a manner that is somewhat analogous to (1.4) in
terms of its highest zero.

To make this precise, we find it useful to compare the Zf (s) with two families of combi-
natorial polynomials. In what follows, we note that for x, y ∈ C, the binomial coefficient

(
x
y

)
is defined by (

x

y

)
:=

Γ(x+ 1)

Γ(y + 1)Γ(x− y + 1)
.

We find that the Zf (s), depending on ε(f), can naturally be compared with the polynomials

(1.5) H+
k (s) :=

(
s+ k − 2

k − 2

)
+

(
s

k − 2

)
,
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(1.6) H−k (s) :=
k−3∑
j=0

(
s− j + k − 3

k − 3

)
.

Theorem 1.2. Assuming the notation and hypotheses above, the following are true:
(1) The zeros of H−k (−s) lie on the line Re(s) = 1/2, and they are the complex numbers

ρ = 1
2

+ it where the t are the real numbers such that the value of the monotonically
decreasing function

hk(t) :=
k−3∑
j=0

cot−1

(
2t

2j + 1

)
lies in the set {π, 2π, . . . , (k − 3)π}. Similarly, the zeros of H+

k (−s) lie on the line
Re(s) = 1/2 and have imaginary parts t which may be found by solving for hk(t) to
lie in the set {π/2, 3π/2, . . . , (k − 5/2)π}. Moreover, as k → ∞, the highest pair of
complex conjugate roots (i.e., those whose imaginary parts have the largest absolute
values) of H−k (s) have imaginary part equal in absolute value to

(k − 3)(k − 1)

2π
+O(1),

and the height of the highest roots of H+
k (s) is

(k − 3)(k − 1)

π
+O(1).

(2) Let f ∈ S4(Γ0(N)) be a newform. If ε(f) = −1, then the only root of Zf (s) is at
s = 1/2. If ε(f) = 1, then there are two roots of Zf (s), and as N → ∞, their roots
converge on the sixth order roots of unity exp(±πi/3).

(3) For fixed k ≥ 6, as N → +∞, the zeros of Zf (s) for newforms f ∈ Sk(Γ0(N)) with
ε(f) = ±1 converge to the zeros of H±k (−s). Moreover, for all k,N , if ε(f) = 1
(resp. ε(f) = −1), then the imaginary part of the largest root is strictly bounded by
(k − 3)

(
k − 7

2

)
(resp. (k − 4)

(
k − 9

2

)
).

Remark. Theorem 1.2 (2) is somewhat analogous to (1.4). Since the zeros of Zf (s) are
approximated by those of H±k (−s), the analog of N(T ) is dictated by Theorem 1.2 (1), where
the largest zero has imaginary part ∼ k2

2π
or ∼ k2

π
depending on the sign of the functional

equation.

By means of the “Rodriguez-Villegas Transform” of [17], Theorem 1.1 is naturally related
to the arithmetic of period polynomials1

(1.7) Rf (z) :=
k−2∑
j=0

(
k − 2

j

)
· Λ(f, k − 1− j) · zj.

1This is a slight reformulation of the period polynomials considered in references such as [5, 14, 16, 21].
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The values of Zf (s) at non-positive integers are the coefficients expanded around z = 0 of
the rational function

Rf (z)

(1− z)k−1
.

This result, which we state next, can be thought of as a natural analogue of the well-
known exponential generating function of the values of the Riemann zeta function at negative
integers:

(1.8)
t

et − 1
= 1− 1

2
t+ t

∞∑
n=1

ζ(−n) · (−t)n

n!
.

Theorem 1.3. Assuming the notation and hypotheses above, as a power series in z we have

Rf (z)

(1− z)k−1
=
∞∑
n=0

Zf (−n)zn.

Remark. The generating function (1.8) for the values ζ(−n) has a well-known interpretation
in K-theory [9]. It is essentially the generating function for the torsion of the K-groups for
Q. In view of this interpretation, it is natural to ask whether the z-series in Theorem 1.3 has
an analogous interpretation. In other words, what (if any) arithmetic information is encoded
by the values Zf (−n)? Manin recently speculated [15] on the existence of results such as
Theorems 1.1 and 1.3. Indeed, in [15] he produced similar zeta-polynomials by applying the
Rodriguez-Villegas transform [17] to the odd period polynomials for Hecke eigenforms on
SL2(Z) studied by Conrey, Farmer, and Imamoḡlu [6]. He asked for a generalization for the
full period polynomials for such Hecke eigenforms in connection to recent work of El-Guindy
and Raji [10]. Theorems 1.1 and 1.3 answer this question and provide the generalization for
all even weight k ≥ 4 newforms on congruence subgroups of the form Γ0(N). Theorem 1.1
additionally offers an explicit combinatorial description of the zeta-polynomials in terms of
weighted moments.

We offer a conjectural combinatorial arithmetic-geometric interpretation of the Zf (s). To
this end, we make use of the Bloch-Kato Conjecture, which offers a Galois cohomological
interpretation for critical values of motivic L-functions [4]. Here we consider the special
case of the critical values L(f, 1), L(f, 2), . . . , L(f, k − 1). These conjectures are concerned
with motivesMf associated to f , but the data needed for this conjecture can be found in
the λ-adic realization Vλ of Mf for a prime λ of Q(f), where Q(f) is the field generated
by the Hecke eigenvalues an(f) (where we have a1(f) = 1). The Galois representation
Vλ associated to f is due to Deligne, and we recall the essential properties below. For a
high-brow construction of Vλ fromMf , we refer to the seminal paper of Scholl [18].

Deligne’s theorem [8] says that for a prime λ of OQ(f) lying above l, there is a continuous
linear representation Vλ unramified outside lN

ρf,λ : Gal(Q/Q)→ GL(Vλ)

so that for a prime p - lN , the arithmetic Frobenius Frobp satisfies

Tr(ρf (Frob−1
p )) = ap(f), and det(ρf (Frob−1

p )) = pk−1.
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Wemay also consider the j-th Tate twist Vλ(j), which is Vλ but with the action of Frobenius
multiplied by pj. After choosing a Gal(Q/Q)-stable lattice Tλ in Vλ, we may consider the
short exact sequence

0 −→ Tλ(j) −→ Vλ(j)
π−→ Vλ/Tλ(j) −→ 0.

Bloch and Kato define local conditions H1
f (Qp, Vλ(j)) for each prime p, discussed in more

detail in Section 3. We let H1
f (Q, Vλ(j)) be the corresponding global object, i.e. the elements

of H1(Q, Vλ(j)) whose restriction at p lies in H1
f (Qp, Vλ(j)). Analogously, we may define

H1
f (Q, Vλ/Tλ(j)), which is the Bloch–Kato λ- Selmer group. The Šafarevič–Tate group is

Xf (j) =
⊕
λ|l

H1
f (Q, Vλ/Tλ(j))
π∗H1

f (Q, Vλ(j))
.

The Bloch–Kato Tamagawa number conjecture then asks the following:

Conjecture (Bloch–Kato). Let 0 ≤ j ≤ k − 2, and assume L(f, j + 1) 6= 0. Then we have

L(f, j + 1)

(2πi)j+1Ω(−1)j+1 = uj+1 ×
Tam(j + 1)#Xf (j + 1)

#H0
Q(j + 1)#H0

Q(k − 1− j)
=: C(j + 1)

Here, Ω± denotes the Deligne period, Tam the product of the Tamagawa numbers, H0
Q is

the set of global points (precisely defined in Section 3), and uj+1 is a non-specified unit of
Q(f).

Remark. Note that L(f, j + 1) 6= 0 in this range provided that j + 1 6= k/2.

We denote the normalized version of C(j + 1) by

(1.9) ˜C(j + 1) = C(j + 1) · (i
√
N)j+1Ω(−1)j+1

(k − 2− j)!
,

but when L(f, j + 1) = 0, we define ˜C(j + 1) := 0.

Theorem 1.4. Assuming the Bloch-Kato Conjecture and the notation above, we have that

Mf (m) =
∑

0≤j≤k−2

˜C(j + 1)jm,

which in turn implies for each non-negative integer n that

Zf (−n) = ε(f)
k−2∑
j=0

(
k−2∑
h=0

k−2−h∑
m=0

nh
(
m+ h

h

)
· s(k − 2,m+ h)

)
jm ˜C(j + 1).

Each Zf (s) can be thought of as an arithmetic-geometric Ehrhart polynomial, and the
combinatorial structure in Theorem 1.4, which we call the “Bloch-Kato complex”, serves as
an analogue of a polytope. Assuming the Bloch-Kato Conjecture, Theorem 1.4 describes
the values Zf (−n) as combinatorial sums of m-weighted moments of the j-th Bloch-Kato
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components. To describe this combinatorial structure, we made use of the Stirling numbers
s(n, k) which can be arranged in a “Pascal-type triangle”

1
0 1

0 −1 1
0 2 −3 1

0 −6 11 −6 1
0 24 −50 35 −10 1

0 −120 274 −225 85 −15 1

thanks to the recurrence relation

s(n, k) = s(n− 1, k − 1)− (n− 1) · s(n− 1, k).

This follows from the obvious relation

(x)n = (x)n−1(x− n+ 1) = x(x)n−1 − (n− 1)(x)n−1.

The Bloch-Kato complex is then obtained by cobbling together weighted layers of these
Pascal-type triangles using the binomial coefficients appearing in (1.3).

The connection to Ehrhart polynomials arises from the central role of the H±k (−s) in our
study of the Zf (s). In [17], Rodriguez-Villegas proved that certain Hilbert polynomials,
such as the H±k (−s), which are Rodriguez-Villegas transforms of xk−2 ± 1, are examples of
zeta-polynomials. These well-studied combinatorial polynomials encode important geometric
structure such as the distribution of integral points in polytopes.

Given a d-dimensional integral lattice polytope P in Rn, we recall that the Ehrhart poly-
nomial LP(x) is determined by

LP(m) = # {p ∈ Zn : p ∈ mP} .
The polynomials H−k (s) whose behavior determines an estimate for those of Zf (s) (when
ε(f) = −1) as per Theorem 1.2 are the Ehrhart polynomials of the simplex (cf. [2])

conv

{
e1, e2, . . . , ek−3,−

k−3∑
j=1

ej

}
,

where ei denotes the i-th unit vector in Rk−3. We note that in Section 1.10 of [11], Gunnells
and Rodriguez-Villegas also gave an enticing interpretation of the modular-type behavior of
Ehrhart polynomials. Namely, they noted that the polytopes P with vertices in a lattice
L, when acted upon by GL(L) in the usual way, have a fixed Ehrhart polynomial for each
equivalence class of polytopes. Hence, these classes may be thought of as points on a “modular
curve”, and the `-th coefficient of the Ehrhart polynomial is analogous to a weight ` modular
form. This analogy is strengthened as they define a natural Hecke operator on the set of
Ehrhart polynomials, such that the `-th coefficients of them are eigenfunctions. Moreover,
they show that these eigenclasses are all related to explicit, simple Galois representations.
Thus, it is natural, and intriguing, to speculate on the relationship between these observations
and our Theorem 1.2. In particular, we have shown that as the level N of cusp forms of
a fixed weight k tends to infinity, the coefficients of the zeta-polynomial Zf (s) tend to (a
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multiple of) these coefficients of Ehrhart polynomials considered in [11]. It is also interesting
to note that Zagier defined [20] a natural Hecke operator on the period polynomials of cusp
forms, which commutes with the usual Hecke operators acting on cusp forms, and so one
may ask if there is a reasonable interpretation of Hecke operators on the zeta functions Zf (s)
which ties together this circle of ideas.

Now we describe the organization of this paper. In Section 2 we prove Theorems 1.1,
1.2, and 1.3. We make use of recent work of Jin, Ma, Soundararajan and the first author
[12] on zeros of period polynomials for modular forms, the framework of Rodriguez-Villegas
transforms [17], and results of Bey, Henk, and Wills [2] on the polynomials H±k (s). In
Section 3 we briefly recall the Bloch-Kato Conjecture for the critical values of modular L-
functions, and give the proof of Theorem 1.4. We conclude in Section 4 with two examples.

2. Proof of Theorems 1.1, 1.2, and 1.3

Here we prove Theorems 1.1, 1.2, and 1.3. We begin by recalling key results of Rodriguez-
Villegas.

2.1. Theorem of Rodriguez-Villegas. Here we recall important observations which were
cleverly assembled in [17]. We provide a special case of these results which is most convenient
for our purposes. First suppose that U(z) is a polynomial of degree e with U(1) 6= 0. Then
consider the rational function

P (z) :=
U(z)

(1− z)e+1
.

Expanding as a power series in z, we have

P (z) =
∞∑
n=0

hnz
n,

and it is easily shown that there is a polynomial H(z) of degree e such that for each n
we have H(n) = hn. We then have the following “zeta-like” properties for the function
Z(s) := H(−s).

Theorem 2.1 (Rodriguez-Villegas). If all roots of U lie on the unit circle, then all roots of
Z(s) lie on the vertical line Re(z) = 1/2. Moreover, if U has real coefficients and U(1) 6= 0,
then Z(s) satisfies the functional equation

Z(1− s) = (−1)eZ(s).

Proof. The first claim is simply the special case of the Theorem of [17] when d = e+ 1. The
second claim was described in Section 4 of [17], but for the reader’s convenience we sketch
the proof. By the single proposition of [17], it suffices to show that P (1/z) = (−1)e+1zP (z).
Now suppose that U factors as

U(z) = (z − ρ1) . . . (z − ρe),
where each ρj is on the unit circle but not equal to 1. Then

zeU

(
1

z

)
= (1− zρ1) . . . (1− zρe).
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Since the coefficients of U are real, we have (−1)eρ1ρ2 . . . ρe = 1, and dividing by this quantity
yields

U

(
1

z

)
= z−eU(z).

The claimed transformation for P then follows from this transformation for U by plugging
into the definition of P :

P

(
1

z

)
=

U
(

1
z

)(
1− 1

z

)e+1 =
U(z) · z(

1− 1
z

)
ze+1

= (−1)e+1z
U(z)

(1− z)e+1
= (−1)e+1zP (z).

�

2.2. Zeros of Period Polynomials. Extending the work of Conrey, Farmer, and Imamoḡlu
[6] and El-Guindy and Raji [10], it is now known that period polynomials of newforms satisfy
the Riemann Hypothesis. More precisely, we have the following theorem.

Theorem 2.2 ([12], Theorem 1.1). If f ∈ Sk(Γ0(N)) is an even weight k ≥ 4 newform, then
all zeros of the period polynomial Rf (z) lie on the unit circle.

Remark. The original result in [12] states an equivalent result for a slightly differently
normalized polynomial (which involves a rescaling of the variable z, and hence a stretching
of the circle that the zeros lie on).

As we shall see, this theorem will provide the link between Theorem 1.1 and Theorem 2.1.
We also require the following basic result.

Lemma 2.3. Under the same conditions as Theorem 2.2, we have that Rf (1) 6= 0 if ε(f) = 1
and Rf (s) has a simple zero at s = 1 if ε(f) = −1.

Proof. The functional equation for Λ(f, s) shows that
(2.1)

Rf (1) = ε(f)
k−2∑
j=0

(
k − 2

j

)
Λ(f, j+1) =

{(
k−2
k−2
2

)
Λ
(
f, k

2

)
+ 2

∑k−2

j= k
2

(
k−2
j

)
Λ(f, j + 1) if ε(f) = 1,

−
(
k−2
k−2
2

)
Λ
(
f, k

2

)
if ε(f) = −1.

Now Λ(f, s) is real-valued on the real line, and well-known work of Waldspurger [19] implies
that Λ

(
f, k

2

)
≥ 0. Moreover, Lemma 2.1 of [12] states that

(2.2) 0 ≤ Λ

(
f,
k

2

)
≤ Λ

(
f,
k

2
+ 1

)
≤ . . .Λ(f, k − 1)

and that Λ
(
f, k

2

)
= 0 if ε(f) = −1. So, if ε(f) = 1, then the expression in the first case of

(2.1) is composed of all non-negative terms, which cannot all vanish as it is impossible for all
periods of f to be zero. Hence, in this case, Rf (1) 6= 0. If ε(f) = −1, then as Λ

(
f, k

2

)
= 0,

we see that Rf (1) = 0. To see that this zero is simple, note in a similar manner that all
terms in R′f (1) are non-positive, with the last term being (2− k)Λ(f, k − 1). But this term
cannot be zero, as the chain of inequalities in (2.2) would then imply that all periods of f
are zero. �
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2.3. Proof of Theorem 1.3. Using Newton’s Binomial Theorem, we have

(1− z)1−k =
∑
n≥0

(
k − 2 + n

k − 2

)
zn,

and so, letting j 7→ k − 2 − j in the sum defining Rf (z), using the functional equation for
Λf , and sending n 7→ n+ j − (k − 2) gives

Rf (z)

(1− z)k−1
= ε(f)

∞∑
n=0

zn
k−2∑
j=0

(
k − 2

j

)
Λ(f, j + 1)

(
n+ j

k − 2

)
.

Calling the coefficient of zn in this last expression hn, we find that

hn = ε(f)
1

(k − 2)!

k−2∑
j=0

(
k − 2

j

)
Λ(f, j + 1)

k−2∑
m=0

s(k − 2,m)(n+ j)m

= ε(f)
1

(k − 2)!

k−2∑
j=0

(
k − 2

j

)
Λ(f, j + 1)

k−2∑
m=0

s(k − 2,m)
m∑
h=0

(
m

h

)
jm−hnh

= ε(f)
1

(k − 2)!

k−2∑
h=0

nh
k−2∑
m=h

(
m

h

)
s(k − 2,m)

k−2∑
j=0

(
k − 2

j

)
Λ(f, j + 1)jm−h

= ε(f)
1

(k − 2)!

k−2∑
h=0

nh
k−2−h∑
m=0

(
m+ h

h

)
s(k − 2,m+ h)

k−2∑
j=0

(
k − 2

j

)
Λ(f, j + 1)jm,

which is Zf (−n) by definition.

2.4. Proof of Theorem 1.1. We begin by setting

R̂f (z) :=
Rf (z)

(1− z)δ−1,ε(f)
,

where δi,j is the Kronecker delta function. By Theorem 2.2 and Lemma 2.3, we see that R̂f

is a polynomial of degree k − 2 − δ−1,ε(f) all of whose roots lie on the unit circle and such
that R̂f (1) 6= 0. Thus, we have

Rf (z)

(1− z)k−1
=

R̂f (z)

(1− z)k−1−δ−1,ε(f)
.

Applying Theorem 1.3 and Theorem 2.1 with e = k − 2 − δ−1,ε(f) yields the result, and in
particular shows that the zeros of Zf (s) lie on the line Re(s) = 1/2.

2.5. Proof of Theorem 1.2.

Proof of Theorem 1.2. To prove (1) we note that the polynomials H−k (x) are Rodriguez-
Villegas transforms of

∑k−3
j=0 x

j and that the H+
k (x) are the transforms of xk−2 + 1. For
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example, we have that ∑k−3
j=0 x

j

(1− x)k−2
=
∑
n≥0

H−k (n)xn

That the zeros of H−k (x) are on Re(x) = 1/2 is one of the main examples of Theorem 2.1 in
[2]. The precise location of its zeros in Theorem 1.2 is a recapitulation of the statement and
proof of Theorem 1.7 of [2]. A simple modification of the proof there yields the locations of
the zeros for H+

k (x). Essentially, they are the same as the polynomials considered in (2.7)
there, but with the degree n shifted by 1 and with the minus sign in the last expression
replaced by a plus, and their proof is then easily adapted by keeping track of an extra sign
throughout.

The proof of part (2) follows directly from part (i) of Theorem 1.2 in [12]. Noting that
our polynomials Rf (z) are related to rf (z) in the notation of [12] by

Rf (z) = (
√
N/i)k−1 · rf

(
z

i
√
N

)
.

Therefore, when k = 4 and ε(f) = −1 we see that Rf is a multiple of z2 − 1. Hence, its
corresponding Zf (s) is a multiple of 2s − 1. Similarly, when ε(f) = 1, again by Theorem
1.2 of [12] we see that the roots of Rf (z) lie arbitrarily close to ±i as N → ∞. Hence,
the Rodriguez-Villegas transform becomes arbitrarily close in the limit to the transform of
(a multiple of) z2 + 1, and so the coefficients of Zf (s) tend to those of (a multiple of) the
polynomial s2 − s + 1. As extracting roots of a polynomial is continuous in the coefficients
of the polynomial, we have the desired convergence of the roots of Zf (s) in the limit.

We will prove part (3) similarly using Theorem 1.2 (ii) [12] to determine the zeros of Rf (z)
to high accuracy. That is, we can rephrase Theorem 1.2 (ii) of [12] as saying that for large
N , the roots of Rf (s) may be written as

exp

(
iθ` +O

(
1

2k
√
N

))
,

where for 0 ≤ ` ≤ k − 3 we denote by θ` the unique solution in [0, 2π) to the equation(
k − 2

2

)
θ` −

2π√
N

sin θ` =

{
π
2

+ `π if ε(f) = 1,

`π if ε(f) = −1.

Now as N grows, the angles θ` are very nearly the solutions in [0, 2π) of the equation(
k − 2

2

)
θ′` =

{
π
2

+ `π if ε(f) = 1

`π if ε(f) = −1,

which are exactly the roots of H±k (z) where ε(f) = ±1. Due to the presence of the
√
N

in the denominator of the error term in the estimation of the roots of a period polynomial
Rf (z) above, we conclude that the coefficients of Rf (z) as N → ∞ are approaching those
of a multiple of zk−2 ± 1. The result then follows directly from part (1) and the fact that
taking roots of polynomials is a continuous operation depending on their coefficients. We
note that the matching of distributions of zeros of the two polynomials is made possible by
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the fact (cf. Lemma 2.3) that both zk−2 ± 1 and Rf (z) have the same order of vanishing at
z = 1 and hence that their Rodriguez-Villegas transforms have the same degrees.

To prove the strict upper bound on the imaginary parts of roots, we first consider the case
when ε(f) = 1. Then we directly apply Theorem 1 of [3], using the positivity properties
of critical completed L-values reviewed in Lemma 2.3. When ε(f) = −1, by Lemma 2.3
and the functional equation for Λ(f, s), we see that Rf (x)/(1 − x) is a polynomial with all
non-positive coefficients, and so the Rodriguez-Villegas transform of Rf is the same as the
Rodriguez-Villegas transform of this polynomial with the degree lowered by 1. This shows
that we may again apply Theorem 1 of [3], by applying it to the polynomial Rf (s)/(x− 1)
with positive coefficients and whose transform has the same zeros as Zf (s).

�

3. Ingredients for Theorem 1.4

We first describe the local conditions H1
f (Qp, Vλ(j)) for a given prime p, following [4,

Section 3]. Recall that λ was the prime above l in Deligne’s representation Vλ.
The first case is when p = l. Here, we define

H1
f (Qp, Vλ(j)) := ker

(
H1

f (Dp, Vλ(j))→ H1
f (Dp, Vλ(j)⊗ Bcris)

)
,

whereDp denotes a decomposition group for a prime over p. For a definition of theQp-algebra
Bcris, we refer to Berger’s article [1, II.3].

For the other cases (i.e. p 6= l), we let

H1
f (Qp, Vλ(j)) := ker

(
H1

f (Dp, Vλ(j))→ H1
f (Ip, Vλ(j))

)
,

where Ip the inertia subgroup. We let H1
f (Q, Vλ(j)) be the corresponding global object, i.e.

the elements of H1(Q, Vλ(j)) whose restriction at p lies in H1
f (Qp, Vλ(j)).

We note that Bloch and Kato’s Tamagawa number conjecture 1 is independent of any
choices, cf. [8, Section 6], or for more detail cf. [4, Proposition 5.14 (iii)] and [4, page 376],
in which the independence of the choice in lattice in the Betti cohomology is discussed.

Second, we describe the set of global points H0
Q, with the appropriate Tate twists:

H0
Q(j) :=

⊕
λ

H0(Q, Vλ/Tλ(j)).

Proof of Theorem 1.4. The proof of Theorem 1.4 follows immediately from replacing the
terms involving L(f, j + 1) by ˜C(j + 1), and appropriate normalizations. �

4. Examples

We conclude with examples which illustrate the results in this paper.
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4.1. Zeta function for the modular discriminant. We consider the normalized Hecke
eigenform f = ∆ ∈ S12(Γ0(1)). In this case, ε(f) = 1 and we have

R∆(z) ≈ 0.114379 ·
(

36

691
z10 + z8 + 3z6 + 3z4 + z2 +

36

691

)
+ 0.00926927 · (4z9 + 25z7 + 42z5 + 25z3 + 4z).

The ten zeros of R∆ lie on the unit circle, and are approximated by the set

{±i,−0.465± 0.885i, −0.744± 0.668i, −0.911± 0.411i, −0.990± 0.140i} .

These are illustrated in the following diagram.

Figure 1. The roots of R∆(z)

By taking the Rodriguez-Villegas transform and letting s 7→ −s we find that

Z∆(s) ≈ (5.11× 10−7)s10 − (2.554× 10−6)s9 + (6.01× 10−5)s8 − (2.25× 10−4)s7

+ 0.00180s6 − 0.00463s5 + 0.0155s4 − 0.0235s3 + 0.0310s2 − 0.0199s+ 0.00596.

Theorem 1.1 establishes that its zeros ρ satisfy Re(ρ) = 1/2; indeed, they are approximately{
1

2
± 8.447i,

1

2
± 5.002i,

1

2
± 2.846i,

1

2
± 1.352i,

1

2
± 0.349i,

}
,

as illustrated in the next figure.
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Figure 2. The roots of Z∆(s)

4.2. Ehrhart polynomials and newforms of weight 6. Here we consider newforms
f ∈ S6(Γ0(N)) with ε(f) = −1. By Theorem 1.2 (2), the roots of Zf (s) are closely related
to the roots of the Ehrhart polynomial of the convex hull

conv {e1, e2, e3,−e1 − e2 − e3} .

The following image renders this tetrahedron.

Figure 3. The tetrahedron whose Ehrhart polynomial is H−6 (s).
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The corresponding Ehrart polynomial counts the number of integer points in dilations of
Figure 4.2, and is given by the Rodriguez-Villegas transform of 1 + x+ x2 + x3. Namely, we
have

H−6 (s) =

(
s+ 3

3

)
+

(
s+ 2

3

)
+

(
s+ 1

3

)
+

(
s

3

)
=

2

3
s3 + s2 +

7

3
s+ 1.

Therefore, we find that

lim
N→+∞

Z̃f (s) = H̃−6 (−s) =

(
s− 1

2

)(
s− 1

2
+

√
−11

2

)(
s− 1

2
−
√
−11

2

)
,

where the limit is over newforms f ∈ S6(Γ0(N)) with ε(f) = −1, and where the polynomials
have been normalized to have leading coefficient 1.
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