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A NOTE ON NON-ORDINARY PRIMES

SEOKHO JIN, WENJUN MA, AND KEN ONO

Abstract. Suppose that OL is the ring of integers of a number field L, and suppose that

f(z) =

∞
∑

n=1

af (n)q
n ∈ Sk ∩OL[[q]]

(note: q := e2πiz) is a normalized Hecke eigenform for SL2(Z). We say that f is non-ordinary
at a prime p if there is a prime ideal p ⊂ OL above p for which

af (p) ≡ 0 (mod p).

For any finite set of primes S, we prove that there are normalized Hecke eigenforms which
are non-ordinary for each p ∈ S. The proof is elementary and follows from a generalization
of work of Choie, Kohnen and the third author [1].

1. Introduction and Statement of Results

If k ≥ 4 is even, then let Mk (resp. Sk) denote the finite dimensional C-vector space of
weight k holomorphic modular forms (resp. cusp forms) on SL2(Z). Furthermore, let M !

k

denote the infinite dimensional space of weakly holomorphic modular forms of weight k with
respect to SL2(Z). Recall that a meromorphic modular form is weakly holomorphic if its
poles (if any) are supported at cusps. We shall identify a modular form on SL2(Z) by its
Fourier expansion at infinity

f(z) =
∑

n≫−∞

af(n)q
n,

where q := e2πiz.
Suppose that OL is the ring of integers of a number field L, and suppose that

f(z) =

∞
∑

n=1

af (n)q
n ∈ Sk ∩ OL[[q]]

is a normalized Hecke eigenform for SL2(Z). We say that f is non-ordinary at a prime p if
there is a prime ideal p ⊂ OL above p for which

af (p) ≡ 0 (mod p).

Very little is known about the distribution of non-ordinary primes. We recall the following
well-known open problem (see Gouvêa’s expository article [2]).
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Problem. Are there infinitely many non-ordinary primes for a generic normalized Hecke
eigenform f(z)?

We do not solve this problem here. It remains open. However, we establish the following
related result.

Theorem 1.1. If S is a finite set of primes, then there are infinitely many normalized Hecke

eigenforms for SL2(Z) which are non-ordinary for each p ∈ S.

Remark. The proof of Theorem 1.1 relies on a general theorem about the Fourier coefficients
of weakly holomorphic modular forms modulo p (see Theorem 2.5). For normalized Hecke
eigenforms, this general result incorporates classical results of Hatada [3] (in the case where
p = 2 and 3) and Hida [4, 5, 6] (for primes p ≥ 5) on non-ordinary primes.

Remark. The proof of Theorem 1.1 is constructive. Suppose that S = {p1, p2, . . . , pm} is a
finite set of primes. Suppose that k ≥ 12 is an even integer. If for each p ∈ S there is a choice
of t ∈ A = {4, 6, 8, 10, 14} for which (p − 1)|(k − t), then every prime in S is non-ordinary
for every normalized Hecke eigenform f ∈ Sk. The earlier work of Choie, Kohnen and the
third author [1] is eclipsed by this result thanks to the flexibility in the choice of t above.

In Section 2 we recall certain facts about modular forms, and we prove Theorem 2.5.
The proof is elementary. In Section 3 we obtain Theorem 1.1 as a simple consequence when
p ≥ 5, combining with the known result on p = 2, 3, and in Section 4 we offer some numerical
examples.

2. Preliminaries

2.1. Nuts and Bolts. As usual, let ∆(z) ∈ S12 be the cusp form

(2.1) ∆(z) := q

∞
∏

n=1

(1− qn)24 = q − 24q2 + . . . ,

and, for even k ≥ 4, let Ek(z) ∈ Mk be the normalized Eisenstein series

(2.2) Ek(z) := 1−
2k

Bk

∞
∑

n=1





∑

1≤d|n

dk−1



 qn,

where the rational numbers Bk are the usual Bernoulli numbers given by the generating
function

∞
∑

k=0

Bk ·
tk

k!
=

t

et − 1
= 1−

1

2
t+

1

12
t2 − . . . .

For convenience, we let E0(z) := 1. Finally, we let j(z) be the usual modular function

(2.3) j(z) :=
E4(z)

3

∆(z)
= q−1 + 744 + 196884q + . . . .
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Finally, for convenience, if k ∈ 2Z, then throughout we define δ(k) ∈ {0, 4, 6, 8, 10, 14} so
that

(2.4) δ(k) ≡ k (mod 12).

In the proof, we need the following propositions.

Proposition 2.1. A normalized Hecke eigenform is non-ordinary at p if there is an m ≥ 1
such that af (p

m) ≡ 0 (mod p).

Proof. This follows from the fact that Tpf(z) = af (p)f(z) for every prime p when f(z) is a
normalized Hecke eigenform of weight k. Here Tp is the p-th Hecke operator. In particular,
on prime power exponents, we have

af (p)af(p
m) = af (p

m+1) + pk−1af (p
m−1) ≡ af (p

m+1) (mod p)

for every non-negative integer n. By induction, we find that

af (p
m) ≡ af (p)

m (mod p).

This proves the proposition. �

The following well-known propositions play a central role in the proof of Theorem 2.5.

Proposition 2.2. If p ≥ 5 is prime, then as a q-series, Ep−1(z) ≡ 1 (mod p).

Proof. This can be found on page 38 of [7]. �

Proposition 2.3. If f(z) =
∑

n≫−∞ af (n)q
n ∈ M !

2, then af(0) = 0.

Proof. By a simple generalization of Lemma 2.34 of [7], it is known that every weakly-
holomorphic modular form h(z) of weight 2 may be represented as P (j(z))E14(z)∆(z)−1,
where P (x) is a polynomial of x. Dropping the dependence on z for convenience, we have
the following well-known identities

−
1

2πi

d

dz
j =

E14

∆
,

jw
d

dz
j =

1

w + 1

d

dz
jw+1,

where w ∈ Z≥0. Therefore, it follows that h is the derivative of a polynomial in j, and so its
constant term in the Fourier expansion is zero. �

Remark. For more standard facts about modular forms the reader may see [7].

2.2. Our main technical result. In 2005 Choie, Kohnen and the third author proved the
following (see Corollary 1.3 of [1]). This result recovered earlier aforementioned results of
Hatada and Hida.

Theorem 2.4. Let p be a prime, and suppose that f(z) =
∑∞

n=1 af(n)q
n ∈ Sk is a normalized

Hecke eigenform. Let Lf be the number field generated by the coefficients of f(z), and let

p ∈ OLf
be any prime ideal above p.
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(1) If p = 2, 3, then

af (p) ≡ 0 (mod p).

(2) If p ≥ 5, δ(k) ∈ {4, 6, 8, 10, 14} and k ≡ δ(k) (mod p− 1), then

af (p) ≡ 0 (mod p).

Here we strengthen this result for primes p ≥ 5 by extending it to all the k without any
condition on δ(k).

Theorem 2.5. Let p ≥ 5 be prime, and suppose that f(z) =
∑∞

n≫−∞ af(n)q
n ∈ M !

k∩OL[[q]],
where k ∈ 2Z and OL is the ring of algebraic integers of a number field L.

(1) Suppose that a ≥ 0 and m ∈ A = {4, 6, 8, 10, 14} are integers for which

k − 2 ≤ (m− 2)pa.

If ord∞(f) > −pa and (p− 1)|(k −m), then for any integer b ≥ a, we have

af (p
b) ≡ −

2m

Bm

af (0) (mod p).

(2) Suppose that k ≤ 2, r, s ∈ Z≥0 and t, u ∈ Z>0 are integers for which

2− k = r(p− 1) + spt,

where s 6= 2. If ord∞(f) > −pu, u ≤ t, then for any integer v such that u ≤ v ≤ t,

we have

af (p
v) ≡ af (0) ≡ 0 (mod p).

Proof. The proofs in both cases begin with the construction of suitable weakly-holomorphic
modular forms of weight 2 − k. The product of such forms with f have weight 2, and so
Proposition 2.3 implies that their constant terms vanish.

For the case (1), first note that (k − 2) − (m − 2)pb ≡ k − m (mod p− 1). As we have
(p− 1)|(k −m) and k − 2 ≤ (m− 2)pb, we may find a non-negative integer c such that

2− k = c(p− 1)− (m− 2)pb.

Let gm be the function

gm := j
E

(1+im)/2
6

E
(m+1+3im)/4
4

=



























j E6

E2
4

for m = 4

j 1
E4

for m = 6

j E6

E3
4

for m = 8

j 1
E2

4
for m = 10

j 1
E3

4
for m = 14

∈ M !
2−m.

Then we have

gp
b

mEc
p−1 ∈ M !

2−k.

That is to say, the constant term of gp
b

mEc
p−1f is zero. From Proposition 2.2 we know that

Ep−1 ≡ 1 (mod p).
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Then we have that constant term of gp
b

mf is zero modulo p. By using Fermat’s little theorem
to compute the multinomials, we get

gp
b

mf = (q−1 + 744 +O(q))p
b

(1− 504q +O(q2))
pb(1+im)

2 (1 + (−240)q +O(q2))
pb(m+1+3im)

4 f

≡ (q−pb + 744 +O(qp
b

))(1− 252(1 + im)qp
b

+O(q2p
b

))

(1− 60(m+ 1 + 3im)qp
b

+O(q2p
b

))
∑∞

n≫−∞ af(n)q
n

≡ (q−pb + 432− 60m− 432im +O(qp
b

))
∑∞

n≫−∞ af (n)q
n (mod p).

We already know ord∞(f) > −pa ≥ −pb, then we know the constant term cm,p of gp
b

mf must
satisfy the following congruence

cm,p ≡ af (p
b) + (432− 60m− 432im)af(0) (mod p).

As cm,p is known to be zero modulo p and for m ∈ A,

2m

Bm

= 432− 60m− 432im,

we get the conclusion.
For the case (2), as we have 2− k = r(p− 1)+ spt and spt−u 6= 2, we can find c1, c2 ∈ Z≥0

such that 4c1 + 6c2 = spt−u. Then we have

(Ec1
4 Ec2

6 )p
u

Er
p−1f ∈ M !

2.

Hence we have that the constant term of (Ec1
4 Ec2

6 )p
u

Er
p−1f is zero. As

(Ec1
4 Ec2

6 )p
u

Er
p−1f ≡ (1 +O(qp

u

))f (mod p)

and ord∞(f) > −pu, we know af (0) ≡ 0 (mod p). To prove the case of af (p
v), for u ≤ v ≤ t,

we may find c′1, c
′
2 ∈ Z≥0 such that 4c′1 + 6c′2 = spt−v. Then we have

jp
v

(E
c′1
4 E

c′2
6 )p

v

Er
p−1f ∈ M !

2.

Hence the constant term of jp
v

(E
c′1
4 E

c′2
6 )p

v

Er
p−1f is zero. As

(jE
c′1
4 E

c′2
6 )p

v

Er
p−1f ≡ (q−pv + 744 + 240c′1 − 504c′2 +O(qp

v

))f (mod p)

and ord∞(f) > −pu ≥ −pv, we get

af (p
v) + (744 + 240c′1 − 504c′2)af (0) ≡ 0 (mod p).

Knowing that af (0) ≡ 0 (mod p), we get the conclusion. �

3. Proof of Theorem 1.1

By Theorem 2.4, p = 2 and 3 are non-ordinary for every normalized Hecke eigenform on
SL2(Z). Therefore, we may assume that S consists only of primes p ≥ 5.

For the given finite set of primes S, let kS(j,m) := j
∏

p∈S(p − 1) + m, where j is an

arbitrary non-negative integer, m ∈ A. For each j and m let bS(j,m) be any integer for
which

kS(j,m)− 2 < (m− 2)pbS(j,m)
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for all p ∈ S. Let f =
∑∞

n=1 af (n)q
n be any Hecke eigenform of weight kS(j,m). By

Theorem 2.5 (1), since af (0) = 0, we have

af(p
bS(j,m)) ≡ 0 (mod p)

for all p ∈ S. Applying Proposition 2.1, we know that f is non-ordinary for each p ∈ S. As
j can be chosen freely, we get the conclusion.

4. Examples

Example. Let S = {2, 3, 5, 7, 11, 13, 17, 19}. In the following table we list some of the
weights k for which Hecke eigenforms are non-ordinary at each prime p.

p 12 ≤ k ≤ 42 such that all Hecke eigenforms Sk are non-ordinary at p
2 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
3 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
5 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
7 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
11 14 16 18 20 24 26 28 30 34 36 38 40
13 14 16 18 20 22 26 28 30 32 34 38 40 42
17 14 20 22 24 26 30 36 38 40 42
19 14 22 24 26 28 32 40 42

In particular, we consider the case k = 26 and check its non-ordinariness. We have the
following q-expansion of the normalized weight 26 Hecke eigenform f26 = ∆E6E

2
4 ,

f26(z) = q − 48q2 − 195804q3 − 33552128q4 − 741989850q5 + 9398592q6 + 39080597192q7

+3221114880q8 − 808949403027q9 + 35615512800q10 + 8419515299052q11

+6569640870912q12 − 81651045335314q13 − 1875868665216q14

+145284580589400q15 + 1125667983917056q16 − 2519900028948078q17

+38829571345296q18 − 6082056370308940q19 +O(q20).

We can easily check that af26(p) ≡ 0 (mod p) for each p ∈ S. Of course we can also choose
weights k of the form k = 26 + 720j, for every j ∈ N. Note that 720 = [5 − 1, 7 − 1, 11 −
1, 13− 1, 17− 1, 19− 1].
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