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Ramanujan’s radial limits

Amanda Folsom, Ken Ono, and Robert C. Rhoades

Abstract. Ramanujan’s famous deathbed letter to G. H. Hardy concerns the
asymptotic properties of modular forms and his so-called mock theta functions.
For his mock theta function f(q), he asserts, as q approaches an even order 2k
root of unity, that we have

f(q) − (−1)k(1 − q)(1 − q3)(1 − q5) · · ·
`
1 − 2q + 2q4 − · · ·

´
= O(1).

We give two proofs of this claim by offering exact formulas for these limiting
values. One formula is a specialization of a general result which relates Dyson’s
rank mock theta function and the Andrews-Garvan crank modular form. The
second formula is ad hoc, and it relies on the elementary manipulation of q-
series which are themselves mock modular forms. Both proofs show that the
O(1) constants are not mysterious; they are values of special q-series which are
finite sums at even order roots of unity.

1. Introduction and Statement of Results

Ramanujan’s enigmatic last letter to Hardy [7] gave tantalizing hints of his
theory of mock theta functions. By work of Zwegers [31, 32], it is now known that
Ramanujan’s examples are essentially holomorphic parts of weight 1/2 harmonic
weak Maass forms (see [13] for their definition). This realization has resulted in
many applications in combinatorics, number theory, physics, and representation
theory (for example, see [25, 29]).

Here we revisit Ramanujan’s original claims from this letter [7]. The letter
begins by summarizing the asymptotic properties, near roots of unity, of Eulerian
series which are modular forms. He then asks whether other Eulerian series with
similar asymptotics are necessarily the sum of a modular form and a function which
is O(1) at all roots of unity. He writes:

“The answer is it is not necessarily so. When it is not so I call the function Mock
ϑ-function. I have not proved rigorously that it is not necessarily so. But I have
constructed a number of examples in which it is inconceivable to construct a ϑ-
function to cut out the singularities of the original function.”
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Ramanujan offers a specific example for the q-hypergeometric function

(1.1) f(q) := 1 +
q

(1 + q)2
+

q4

(1 + q)2(1 + q2)2
+ . . . ,

which he claims (but does not prove) is a mock theta function according to his
imprecise definition. This function is convergent for |q| < 1 and those roots of unity
q with odd order. For even order roots of unity, it has exponential singularities.
For example, as q → −1, we have

f(−0.994) ∼ −1.08 · 1031, f(−0.996) ∼ −1.02 · 1046, f(−0.998) ∼ −6.41 · 1090.

To cancel the exponential singularity at q = −1, Ramanujan found the function
b(q), which is modular1 up to multiplication by q−

1
24 , defined by

(1.2) b(q) := (1− q)(1− q3)(1− q5) · · ·
(
1− 2q + 2q4 − · · ·

)
.

The exponential behavior illustrated above is canceled in the numerics below.

q −0.990 −0.992 −0.994 −0.996 −0.998
f(q) + b(q) 3.961 . . . 3.969 . . . 3.976 . . . 3.984 . . . 3.992 . . .

.

It appears that limq→−1(f(q) + b(q)) = 4. More generally, as q approaches an even
order 2k root of unity radially within the unit disk, Ramanujan claimed that

(1.3) f(q)− (−1)kb(q) = O(1).

Ramanujan’s point is that b(q) is a “near miss”, a modular form which almost
cuts out the exponential singularities of f(q). He asserts that b(q) cuts out the
exponential singularities of f(q) for half of the even order roots of unity, while
−b(q) cuts out the exponential singularities for the remaining even order roots of
unity. Of course, if f(q) is a mock theta function according to his definition, then
there are no modular forms which exactly cut out its exponential singularitites.

Remark. Claim (1.3) is intimately related to the problem of determining the
asymptotics of the coefficients of f(q). Andrews [1] and Dragonette [16] obtained
asymptotics for these coefficients, and Bringmann and the second author [11] later
obtained an exact formula for these coefficients.

In a recent paper [20], the authors proved (1.3) by obtaining a simple closed
formula for the implied O(1) constants.

Theorem 1.1 (Theorem 1.1 of [20]). If ζ is a primitive even order 2k root of
unity, then, as q approaches ζ radially within the unit disk, we have that

lim
q→ζ

(
f(q)− (−1)kb(q)

)
= −4 ·

k−1∑
n=0

(1 + ζ)2(1 + ζ2)2 · · · (1 + ζn)2ζn+1.

Example. Since empty products equal 1, Theorem 1.1 confirms that

lim
q→−1

(f(q) + b(q)) = 4.

1Here q−
1
24 b(q) is modular with respect to z where q := e2πiz .
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Example. For k = 2, Theorem 1.1 gives limq→i (f(q)− b(q)) = 4i. The table
below nicely illustrates this fact:

q 0.992i 0.994i 0.996i

f(q) ∼ 1.9 · 106 − 4.6 · 106i ∼ 1.6 · 108 − 3.9 · 108i ∼ 1.0 · 1012 − 2.5 · 1012i

f(q)− b(q) ∼ 0.0577 + 3.855i ∼ 0.0443 + 3.889i ∼ 0.0303 + 3.924i

Remark. Zudilin [30] has recently obtained an elementary proof of Theo-
rem 1.1.

Theorem 1.1 is a special case of a more general theorem, one which surprisingly
relates two well-known q-series: Dyson’s rank function R(w; q) and the Andrews-
Garvan crank function C(w; q). These series play a prominent role in the study of
integer partition congruences (for example, see [4, 6, 12, 17, 24]).

To define these series, throughout we let (a; q)∞ := (1− a)(1− aq)(1− aq2) · · ·
and for n ∈ Z

(a; q)n :=
(a; q)∞

(aqn; q)∞
.

Dyson’s rank function is given by

(1.4) R(w; q) =
∞∑

n=0

∑
m∈Z

N(m,n)wmqn := 1 +
∞∑

n=1

qn2

(wq; q)n · (w−1q; q)n
.

Here N(m,n) is the number of partitions of n with rank m, where the rank of a
partition is defined to be its largest part minus the number of its parts. If w 6= 1
is a root of unity, then it is known that R(w; q) is (up to a power of q) a mock
theta function (i.e. the holomorphic part of a weight 1/2 harmonic Maass form)
(for example, see [12] or [29]). The Andrews-Garvan crank function is defined by

(1.5) C(w; q) =
∞∑

n=0

∑
m∈Z

M(m,n)wmqn :=
(q; q)∞

(wq; q)∞ · (w−1q; q)∞
.

Here M(m,n) is the number of partitions of n with crank m [4]. For roots of unity
w, C(w; q) is (up to a power of q) a modular form. We also require the series
U(w; q) [2, 5, 14, 26], which arises in the study of unimodal sequences. This
q-hypergeometric series is defined by

(1.6) U(w; q) =
∞∑

n=0

∑
m∈Z

u(m,n)(−w)mqn :=
∞∑

n=0

(wq; q)n · (w−1q; q)nq
n+1.

Here u(m,n) is the number of strongly unimodal sequences of size n with rank m
[14].

Theorem 1.1 is a special case of the following theorem which relates these three
q-series. Throughout, we let ζn := e2πi/n.

Theorem 1.2. (Theorem 1.2 of [20]) Let 1 ≤ a < b and 1 ≤ h < k be integers
with gcd(a, b) = gcd(h, k) = 1 and b | k. If h′ is an integer satisfying hh′ ≡ −1
(mod k), then, as q approaches ζh

k radially within the unit disk, we have that

lim
q→ζh

k

(
R (ζa

b ; q)− ζ−a2h′k
b2 C (ζa

b ; q)
)

= −(1− ζa
b )(1− ζ−a

b ) · U(ζa
b ; ζh

k ).
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Four remarks.
1) There is an integer c(a, b, h, k) such that the limit in Theorem 1.2 reduces to the
finite sum

−(1− ζa
b )(1− ζ−a

b )
c(a,b,h,k)∑

n=0

(ζa
b ζ

h
k ; ζh

k )n · (ζ−a
b ζh

k ; ζh
k )n · ζh(n+1)

k .

2) Theorem 1.1 is the a = 1 and b = 2 case of Theorem 1.2 because R(−1; q) = f(q),
combined with the elementary fact that C(−1; q) = b(q).

3) A variant of Theorem 1.2 holds when b - k. This is obtained by modifying the
proof to guarantee that the two resulting asymptotic expressions match.

4) Garvan [21] was the first to compare the asymptotics of the rank and crank
generating functions. His observations were made in the context of the moments
for the rank and crank statistic. A precise form of these results has been obtained
by Bringmann and Mahlburg and the third author [9, 10].

Theorem 1.2, which in turn implies Theorem 1.1, relies on an identity of Choi
[15] and Ramanujan (see Entry 3.4.7 in [3]). This identity reduces the proof of
Theorem 1.2 to the claim, upon appropriate specialization of variables, that a cer-
tain mixed mock modular form is asymptotic to a suitable multiple of the modular
crank function.

Here we offer a second proof of (1.3). This proof is ad hoc, and gives a different
formula for the O(1) constants in (1.3).

Theorem 1.3. If ζ is a primitive even order 2k root of unity, then, as q ap-
proaches ζ radially within the unit disk, we have

lim
q→ζ

(
f(q)− (−1)kb(q)

)

=


4

k
2−1∑
n=0

(−1)nζn+1(1 + ζ2)(1 + ζ4) · · · (1 + ζ2n) if k ≡ 0 (mod 2),

2 + 2

k−1
2∑

n=0

(−1)n+1ζ2n+1(1 + ζ)(1 + ζ3) · · · (1 + ζ2n−1) if k ≡ 1 (mod 2).

Remark. We leave it as a challenge to find an elementary proof that the
constants appearing in Theorem 1.3 match those appearing in Theorem 1.1.

In Section 2 we sketch2 the proof of Theorem 1.2, and in Section 3 we give
the proof of Theorem 1.3. In the last section we conclude with a discussion of the
observations which played a role in the discovery of Theorem 1.3.

Acknowledgements
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2The complete proof is contained in [20].
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2. Sketch of the proof of Theorem 1.2

The proof of Theorem 1.2 requires the theory of modular units and mock modu-
lar forms. In particular, we employ the modular properties of Dedekind’s η-function

η(z) := q
1
24

∞∏
n=1

(1− qn),

and certain Klein forms t(r,s)(z) = t
(N)
(r,s)(z) [23]. We also require the Appell-Lerch

function which played an important role in the work of Zwegers [32] on Ramanujan’s
mock theta functions. For q = e2πiz, z ∈ H, and u, v ∈ C \ (Zz + Z), this function
is defined by

µ(u, v; z) :=
eπiu

ϑ(v; z)

∑
n∈Z

(−1)nq
n(n+1)

2 e2πinv

1− e2πiuqn
.

Here the Jacobi theta function is defined by

ϑ(v; z) := i
∑
n∈Z

(−1)nq
1
2 (n+ 1

2 )
2

e2πiv(n+ 1
2 )(2.1)

= −iq 1
8 e−πiv

∞∏
n=1

(1− qn)(1− e2πivqn−1)(1− e−2πivqn).

The µ-function satisfies the following beautiful bilateral series identity.

Theorem 2.1 (see p.67 of [3]). Let q = e2πiz, where z ∈ H. For suitable complex
numbers α = e2πiu and β = e2πiv, we have

∞∑
n=0

(αβ)nqn2

(αq; q)n(βq; q)n
+

∞∑
n=1

qn(α−1; q)n(β−1; q)n

= iq
1
8 (1− α)(βα−1)

1
2

(
qα−1; q

)
∞

(
β−1; q

)
∞ µ(u, v; z).

Remark. Theorem 2.1 is also obtained in a beautiful paper by Choi [15].

To make use of this identity, we study the function A(u, v; z) := ϑ(v; z)µ(u, v; z)
which was previously studied by Zwegers [33] and the first author and Bringmann
[8]. We employ the “completed” function Â(u, v; z), defined by Zwegers as

Â(u, v; z) := A(u, v; z) +
i

2
ϑ(v; z)R(u− v; z),(2.2)

where

R(v; z) :=
∑
n∈Z

{
sgn

(
n+

1
2

)
− E

((
n+

1
2

+
Im(v)
Im(z)

) √
2 · Im(z)

)}
× (−1)nq−

1
2 (n+ 1

2 )
2

e−2πiv(n+ 1
2 ),

and for w ∈ C we have

E(w) := 2
∫ w

0

e−πu2
du.

Using the transformation properties [32] of the functions µ and ϑ, we have, for
integers m,n, r, s and γ =

(
a b
c d

)
∈ SL2(Z), that
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Â (u+mz + n, v + rz + s; z) = (−1)m+ne2πiu(m−r)e−2πivmq
m2
2 −mrÂ(u, v; z),

(2.3)

Â

(
u

cz + d
,

v

cz + d
; γz

)
= (cz + d)eπic

(−u2+2uv)
(cz+d) Â(u, v; z).(2.4)

Sketch of the Proof of Theorem 1.2. The proof makes use of the mod-
ular transformation properties described above. We consider Choi’s identity with
α = ζ−a

b and β = ζa
b , (hence u = −a

b , v = a
b ), and q replaced by e

2πi
k (h+iz), and we

define

(2.5) m(a, b;u) := ie
πiu
4 (1− ζ−a

b )ζa
b (ζa

b e
2πiu; e2πiu)∞(ζ−a

b ; e2πiu)∞.

To prove Theorem 1.2, noting that the function U(ζa
b ; ζh

k ) is a finite convergent sum
when b|k, it suffices to prove that upon appropriate specialization of variables, the
mixed mock modular form m ·µ is asymptotic to a suitable multiple of the modular
crank generating function C.

To be precise, let b|k, gcd(a, b) = 1, gcd(h, k) = 1, where a, b, h, k are positive
integers. As z → 0+, we must prove that

(2.6) m

(
a, b;

1
k

(h+ iz)
)
µ

(
−a
b
,
a

b
;
1
k

(h+ iz)
)
∼ ζ−a2h′k

b2 C

(
ζa
b ;

1
k

(h+ iz)
)
.

Above and in what follows, we let z ∈ R+, and let z → 0+. This corresponds
to the radial limit q = e

2πi
k (h+iz) → ζh

k from within the unit disk.
The claim (2.6) is obtained by comparing separate asymptotic results for the

crank function and the mixed mock modular form. To describe this, we let

(2.7) q := e
2πi
k (h+iz), q1 := e

2πi
k (h′+ i

z ).

For the mixed mock modular m · µ, we obtain the following asymptotics. Let
b|k, gcd(a, b) = 1, gcd(h, k) = 1, where a, b, h, k are positive integers, and let b′ and
h′ be positive integers such that bb′ = k and hh′ ≡ −1 (mod k). For z ∈ R+, as
z → 0+, we established in Theorem 3.2 of [20] that there is an α > 1/24 for which

m

(
a, b;

1
k

(h+ iz)
)
µ

(
−a
b
,
a

b
;
1
k

(h+ iz)
)

=
(
i

z

) 1
2

(ψ(γ))−1q
1
24 q

− 1
24

1 (−1)ab′ζah′−a
2b ζ−3a2kh′

2b2
ζa
b − 1

1− ζah′
b

(1 +O(qα
1 )).

Here, γ = γ(h, k) ∈ SL2(Z), and ψ(γ) is a 24th root of unity, both of which are
defined in [20].

Under the same hypotheses, we show in Proposition 3.3 of [20] that the modu-
larity of Dedekind’s eta-function and the Klein forms implies, for the crank function,
that

C

(
ζa
b ;

1
k

(h+ iz)
)

(2.8)

=
(
i

z

) 1
2

(ψ(γ))−1q
1
24 q

− 1
24

1 (−1)ab′ζah′−a
2b ζ−a2kh′

2b2
ζa
b − 1

1− ζah′
b

(1 +O(qβ
1 )),
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for some β > 1/24. Combining these asymptotics gives (2.6), which in turn implies
Theorem 1.2.

�

It is important to explain the automorphic reasons which underlie the asymp-
totic relationship of Theorem 1.2. The rank generating function R(w; q) and the
crank generating function C(w; q) are Jacobi forms with the same weight and mul-
tiplier. This coincidence explains why their radial asymptotics are closely related.
However, they are not of the same index, and this difference accounts for the (−1)k

in Theorem 1.1, and the ζ−a2h′k
b2 in Theorem 1.2. Of course, these facts alone do

not directly lead to Theorem 1.2. To make this step requires the bilateral series of
Theorem 2.1, namely,∑

n∈Z

qn2

(wq)n(w−1q)n
= R(w; q) + (1− w)(1− w−1)

∞∑
n=0

qn+1(wq)n(w−1q)n.

It turns out that this series is related to a mixed-mock Jacobi form which has
asymptotics resembling that of crank generating function. Although such coinci-
dences are mysterious, it is not uncommon that such a bilateral series possesses
better modular properties than either half of the series (See [22] for more dealing
with bilateral series and mock theta functions).

3. Proof of Theorem 1.3

Here we prove Theorem 1.3, a second formula for the O(1) constants in (1.3).

Proof of Theorem 1.3. In his deathbed letter, Ramanujan defined four “third
order” mock theta functions. Three of them are f(q), which we saw above, and

φ(q) :=1 +
q

1 + q2
+

q4

(1 + q2)(1 + q4)
+ · · · =

∞∑
n=0

qn2

(−q2; q2)n

ψ(q) :=
q

1− q
+

q4

(1− q)(1− q3)
+

q9

(1− q)(1− q3)(1− q5)
+ · · · =

∞∑
n=1

qn2

(q; q2)n
.

In his final letter, Ramanujan stated the following relation between these three
functions

2φ(−q)− f(q) = f(q) + 4ψ(−q) = b(q),(3.1)

where b(q) is defined in (1.2). These relations were proved by Watson [28]. Later,
Fine [19] gave elegant proofs which rely on his detailed study of the basic hyper-
geometric series

(3.2) F (a, b; t) = F (a, b; t, q) :=
∞∑

n=0

(aq; q)n

(bq; q)n
tn.

From (3.1), we have

f(q)− b(q) = −4ψ(−q).(3.3)

Note that if q → ζ and ζ is a 2k root of unity with k even, then both functions on
the left hand side of (3.3) must have singularities, while the function on the right
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hand side of (3.3) is a constant. Likewise, if q → ζ and ζ is a 2k root of unity with
k odd, then we have

f(q) + b(q) = 2φ(−q).(3.4)

The function on the right hand side of (3.4) tends to a finite number, while the
functions on the left hand side of (3.4) each have singularities.

Therefore, to establish the theorem it is enough to show that

(3.5) ψ(q) =
∞∑

n=0

qn+1(−q2; q2)n and φ(q) = 1 +
∞∑

n=0

q2n+1(−1)n(q; q2)n.

Both of these identities follow as special cases of Fine [19] (7.31), which is

F (b/t, 0; t) =
1

1− t

∞∑
n=0

(−b)nq
n2+n

2

(tq; q)n
.

To prove the first claim in (3.5), we take b = −q 1
2 and t = q

1
2 to obtain

1
1− q

1
2

∞∑
n=0

q
n2
2 +n

(q
3
2 ; q)n

=
∞∑

n=0

q
n
2 (−q; q)n.

Sending q → q2 and multiplying by q gives the first claim. To prove the second
claim in (3.5), take b = −q 1

2 and t = −q to obtain

1
1 + q

∞∑
n=0

q
n2
2 +n

(−q2; q)n
=

∞∑
n=0

(−q)n(q
1
2 ; q)n.

Sending q → q2 and multiplying by q, then adding 1, gives the second claim of
(3.5). �

4. Discussion related to Theorem 1.3

The remainder of the paper will explain the discovery of Theorem 1.3. Recall
that

lim
t→0+

(
f(−e−t) + b(−e−t)

)
= −4U(−1;−1) = 4.

However, the calculations of [20] yield the stronger asymptotic relation

f(−e−t) + b(−e−t) = −4U(−1;−e−t) as t→ 0+.

Computation gives

(4.1) −U(−1;−e−t) = 1− t+7
t2

2!
−127

t3

3!
+4315

t4

4!
−235831

t5

5!
+1811467

t6

6!
−· · ·

The coefficients of this t-series can be given in closed form.

Theorem 4.1. We have

f(−e−t) + b(−e−t) =
∞∑

n=0

an

n!
(−t)n as t→ 0+,
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where the an are given by

an = (−1)n2
∑

a+2b+c=n

n!
a!(2b)!c!

(
3
2

)a (
5
2

)2b

E2a+2b

+ 2(−1)n
∑

a+2b=n

n!
a!(2b)!

(
3
2

)a (
1
2

)2b

E2a+2b,

where En are the Euler numbers, and summation is taken over a, b, c ∈ N0.

This closed form is not enlightening. For instance, it is not clear from this
formula that the an are all positive.

The significance of this result lies in (4.1). A search in the Online Encyclopedia
of Integer Sequences [27] shows that these numbers are also the values of G(e−t)
as t→ 0+ where

(4.2) G(q) := 1 +
∞∑

n=1

(−1)n(q; q2)n.

This is a function which, as defined, exists only for q a root of unity.
The asymptotic relationship between U(−1;−e−t) and G(e−t) led us to guess

that there might be a relation at other roots of unity. We computed the following
table with ζk = e2πi/k.

k −U(−1;−ζk) G(ζk)
1 1.00000 + 0.00000i 1.00000 + 0.00000i
3 −0.50000 + 0.86603i −0.50000 + 0.86603i
5 2.11803− 0.36327i 2.11803− 0.36327i
7 −1.06853 + 0.78183i −1.06853 + 0.78183i
9 2.85844− 0.11878i 2.85844− 0.11878i

11 −1.54408 + 0.32013i −1.54408 + 0.32013i
13 3.36485 + 0.42938i 3.36485 + 0.42938i
15 −1.83087− 0.37987i −1.83087− 0.37987i
17 3.60849 + 1.17128i 3.60849 + 1.17128i
19 −1.86847− 1.21821i −1.86847− 1.21821i
21 3.56061 + 2.00857i 3.56061 + 2.00857i
23 −1.62459− 2.09747i −1.62459− 2.09747i
25 3.21160 + 2.84281i 3.21160 + 2.84281i
27 −1.09530− 2.92075i −1.09530− 2.92075i
29 2.57645 + 3.57814i 2.57645 + 3.57814i

From this table and additional computation it is clear that for odd roots of
unity ζ we have

−U(−1;−ζ) = G(ζ).

Remark. We would like an elementary proof of this claim.
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Next, we wondered if it was possible to extend the function G to converge in
the domain |q| < 1. The obvious thing to try is to write

G(q) =1 +
∞∑

n=0

(−1)n+1(q; q2)n+1

=1 +
∞∑

n=0

(−1)n+1(q; q2)n −
∞∑

n=0

(−1)n+1q2n+1(q; q2)n

=−
∞∑

n=1

(−1)n(q; q2)n +
∞∑

n=0

(−1)nq2n+1(q; q2)n.

This implies that

2G(q) = 1 +
∞∑

n=0

(−1)nq2n+1(q; q2)n

= 1 + q − q3 + q4 + q5 − q6 − q7 + 2q9 − 2q11 · · · − q14 − 2q15 + q16 + 3q17 + · · ·

A search in the Online Encyclopedia of Integer Sequences [27] shows that this
q-series matches that of the mock theta function φ(q). A literature search for
relations between f(q) and φ(q) turned up the result f(q) + b(q) = 2φ(−q), which
led to Theorem 1.3.

4.1. Proof of Theorem 4.1. Here we prove Theorem 4.1.

Proof of Theorem 4.1. From [22] page 18 with q = e−t we have

f(−q) +
√
π

t
exp

(
π2

24t
− t

24

)
f(−e−π2

t )(4.3)

=

√
24t
π
e−

t
24

∫ ∞

0

e−
3
2 tx2 cosh

(
5
2 tx

)
+ cosh

(
1
2 tx

)
cosh (3tx)

dx.

Notice that f(−e−π2
t ) = 1 + O

(
e−

π2
t

)
as t → 0+. Next, using the fact that

b(e2πiτ ) = eπiτ/12η3(τ)/η2(2τ), together with the modular transformation law for
the Dedekind η-function, a straightforward calculation shows that

b(−e−t) =
√
π

t
exp

(
π2

24t
− t

24

)
(1 +O(e−

π2
t ))

as t→ 0+. Thus, using these facts, to prove Theorem 4.1 it suffices to analyze the
asymptotic as t→ 0+ of the right hand side of (4.3). A simple change of variables
gives √

24t
π

∫ ∞

0

e−
3
2 tx2 cosh

(
5
2 tx

)
+ cosh

(
1
2 tx

)
cosh (3tx)

dx

=

√
2π
3t

∫
R
e−

π2w2
6t

cosh
(

5
6πw

)
+ cosh

(
1
6πw

)
cosh (πw)

dw.

Recall that the Mordell integral as defined by Zwegers [32] for z ∈ C, τ ∈ H, is
given by

(4.4) h(z; τ) :=
∫

R

eπiτx2−2πzx

cosh (πx)
dx =

∫
R
eπiτw2 cosh (2πzw)

cosh (πw)
dw.
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By Proposition 1.2 (5) of [32] we have

h(z; τ) =
1√
−iτ

e
πiz2

τ

∫
R
e−

πi
τ w2 cosh

(
2πw z

τ

)
cosh (πw)

dw.

Thus, for rational 0 < A < 1 we have∫
R
e−

π2w2
6t

cosh(Aπw)
cosh(πw)

dw =

√
6t
π
e

3
2 A2t

∫
R
e−6tw2 cos(6Atw)

cosh(πw)
dw.(4.5)

Letting A = 5
6 , and then A = 1

6 in (4.5), and adding, we find that√
24t
π
e−

t
24

∫ ∞

0

e−
3
2 tx2 cosh

(
5
2 tx

)
+ cosh

(
1
2 tx

)
cosh (3tx)

dx =2
∫ ∞

−∞

g(w; t)
cosh(πw)

dw,

where

g(w; t) :=e−6tw2 (
et cos(5tw) + cos(tw)

)
(4.6)

= 2 + (1− 12w2)t+
(

1
2
− 19w2 + 36w4

)
t2 +O(t3).

We make use of the well known identity (see [18] for example)∫
R

w2n

cosh(πw)
dw =

(−1)nE2n

22n
,

where En are the Euler numbers. The Taylor expansion of g(w; t) and these con-
stants give the asymptotic as stated in Theorem 4.1. �
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