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Abstract. This expository article describes recent work by the authors on the partition
function p(n). This includes a finite formula for p(n) as a “trace” of algebraic singular moduli,
and an overarching `-adic structure which controls partition congruences modulo powers of
primes ` ≥ 5.

1. Introduction and statement of results

A partition [4] of a positive integer n is any nonincreasing sequence of positive integers
which sum to n, and the partition function p(n), which counts the number of partitions of n,
defines the rapidly increasing provocative sequence:

1, 1, 2, 3, 5, . . . , p(100) = 190569292, . . . , p(1000) = 24061467864032622473692149727991, . . . .

In famous work [34] which gave birth to the “circle method”, Hardy and Ramanujan proved
the asymptotic formula:

p(n) ∼ 1

4n
√

3
· eπ
√

2n/3.

Rademacher [49, 50] subsequently perfected this method to derive the “exact” formula

(1.1) p(n) = 2π(24n− 1)−
3
4

∞∑
k=1

Ak(n)

k
· I 3

2

(
π
√

24n− 1

6k

)
.

Here I 3
2
(·) is a modified Bessel function of the first kind, and Ak(n) is the Kloosterman-type

sum

Ak(n) :=
1

2

√
k

12

∑
x (mod 24k)

x2≡−24n+1 (mod 24k)

(−1){
x
6} · exp

(
2πix

12k

)
,

where {α} denotes the integer nearest to α.

Remark. Individual values of p(n) can be obtained by rounding sufficiently accurate trunca-
tions of (1.1). Recent work by the second author and Masri [26] gives the best known results
on the problem of optimally bounding the error between p(n) and such truncations.

In recent work [18], two of the authors answer questions raised in [14] by establishing a
new formula for the partition function, one which expresses p(n) as a finite sum of algebraic
numbers. These numbers are singular moduli for a weak Maass form which we describe using
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Dedekind’s eta-function η(z) := q
1
24

∏∞
n=1(1 − qn) (note. q := e2πiz throughout) and the

quasimodular Eisenstein series

(1.2) E2(z) := 1− 24
∞∑
n=1

∑
d|n

dqn.

To this end, we define the Γ0(6) weight −2 meromorphic modular form F (z) by

(1.3) F (z) :=
1

2
· E2(z)− 2E2(2z)− 3E2(3z) + 6E2(6z)

η(z)2η(2z)2η(3z)2η(6z)2
= q−1 − 10− 29q − . . . .

Using the convention that z = x+ iy, with x, y ∈ R, we define the weak Maass form

(1.4) P (z) := −
(

1

2πi
· d
dz

+
1

2πy

)
F (z) =

(
1− 1

2πy

)
q−1 +

5

πy
+

(
29 +

29

2πy

)
q + . . . .

This nonholomorphic modular form has weight 0, and is a weak Maass form (for background
on weak Maass forms, see [15]). It has eigenvalue −2 with respect to the hyperbolic Laplacian

∆ := −y2
(
∂2

∂x2
+

∂2

∂y2

)
.

The formula uses discriminant −24n+1 = b2−4ac positive definite integral binary quadratic
forms Q(x, y) = ax2 + bxy+ cy2 with the property that 6 | a. The congruence subgroup Γ0(6)
acts on such forms, and we let Qn be any set of representatives of those equivalence classes
with a > 0 and b ≡ 1 (mod 12). For each Q(x, y), we let αQ be the CM point in H, the upper
half of the complex plane, for which Q(αQ, 1) = 0. In terms of the “trace”

(1.5) Tr(n) :=
∑
Q∈Qn

P (αQ),

we have the following theorem.

Theorem 1.1. (Theorem 1.1 of [18]) If n is a positive integer, then we have that

p(n) =
1

24n− 1
· Tr(n).

The numbers P (αQ), as Q varies over Qn, form a multiset of algebraic numbers which is
the union of Galois orbits for the discriminant −24n + 1 ring class field. Moreover, for each
Q ∈ Qn we have that (24n− 1)P (αQ) is an algebraic integer.

Theorem 1.1 shows the partition numbers are natural invariants associated with the “class
polynomials” defined by

(1.6) Hn(x) = xh(−24n+1) − (24n− 1)p(n)xh(−24n+1)−1 + · · · :=
∏
Q∈Qn

(x− P (αQ)) ∈ Q[x].

In a forthcoming paper [19], Sutherland and the first and fourth authors will describe an
efficient algorithm for computing these class polynomials by combining the Chinese Remainder
Theorem with the theory of isogeny volcanoes for elliptic curves with complex multiplication.
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Remark. Using Maass-Poincaré series and identities and formulas for Kloosterman-type sums,
one can use Theorem 1.1 to give a new proof of the exact formula (1.1). Work along these
lines has been done by Dewar and Murty [20].

Example. We give an amusing proof that p(1) = 1. We have that 24n− 1 = 23, and we use
the Γ0(6)-representatives

Q1 = {Q1, Q2, Q3} = {6x2 + xy + y2, 12x2 + 13xy + 4y2, 18x2 + 25xy + 9y2}.

The corresponding CM points are

αQ1 := − 1

12
+

1

12
·
√
−23, αQ2 := −13

24
+

1

24
·
√
−23, αQ3 := −25

36
+

1

36
·
√
−23.

Using the explicit Fourier expansion of P (z), we find that P (αQ3) = P (αQ2), and we have
that

P (αQ1) =
β1/3

138
+

2782

3β1/3
+

23

3
,

P (αQ2) = −β
1/3

276
− 1391

3β1/3
+

23

3
−
√
−3

2
·
(
β1/3

138
− 2782

3β1/3

)
,

where β := 161529092 + 18648492
√

69. Therefore, we have that

H1(x) :=
3∏

m=1

(x− P (αQm)) = x3 − 23x2 +
3592

23
x− 419,

and this confirms that p(1) = 1
23

Tr(1) = 1.

Example. Here are the first four partition class polynomials.

n (24n− 1)p(n) Hn(x)

1 23 x3 − 23x2 + 3592
23
x− 419

2 94 x5 − 94x4 + 169659
47

x3 − 65838x2 + 1092873176
472

x+ 1454023
47

3 213 x7 − 213x6 + 1312544
71

x5 − 723721x4 + 44648582886
712

x3

+9188934683
71

x2 + 166629520876208
713

x+ 2791651635293
712

4 475 x8 − 475x7 + 9032603
95

x6 − 9455070x5 + 3949512899743
952

x4

−97215753021
19

x3 + 9776785708507683
953

x2

−53144327916296
192

x− 134884469547631
54·19 .
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Theorem 1.1 is an example of a general theorem on “traces” of CM values of certain weight 0
weak Maass forms which are images under the Maass raising operator of weight −2 harmonic
Maass forms. Theorem 1.1 is obtained by applying this general theorem to F (z). This
general theorem is a new result which adds to the extensive literature (for example, see
[13, 16, 17, 21, 22, 23, 37, 43, 44]) inspired by Zagier’s seminal paper [57] on “traces” of
singular moduli.

The congruence properties of p(n) have served as a testing ground for fundamental construc-
tions in the theory of modular forms. Indeed, some of the deepest results on partition congru-
ences have been obtained by making use of modular equations, Hecke operators, Shimura’s
correspondence, and the Deligne-Serre theory of `-adic Galois representations.

Here we describe recent work [25] by some of the authors on questions inspired by Ramanu-
jan’s celebrated congruences, which assert for m ∈ N and primes ` ∈ {5, 7, 11} that

p(5mn+ δ5(m)) ≡ 0 (mod 5m),

p(7mn+ δ7(m)) ≡ 0 (mod 7bm/2c+1),

p(11mn+ δ11(m)) ≡ 0 (mod 11m),

where 0 < δ`(m) < `m satisfies the congruence 24δ`(m) ≡ 1 (mod `m). To prove these
congruences, Atkin, Ramanujan, and Watson [6, 51, 52, 54] relied heavily on the properties
of the generating functions

(1.7) P`(b; z) :=
∞∑
n=0

p

(
`bn+ 1

24

)
q

n
24

(note that p(0) = 1, and p(α) = 0 if α < 0 or α 6∈ Z).
Expanding on these works, some of the authors studied the general `-adic properties of the

P`(b; z), as b→ +∞, for fixed primes ` ≥ 5. Despite the absence of modular equations, which
played a central role for the primes ` ∈ {5, 7, 11}, it turns out that these generating functions
are strictly constrained `-adically. They are “self-similar”, with resolution that improves as
one “zooms in” appropriately. Throughout, if ` ≥ 5 is prime and m ≥ 1, then we let

(1.8) b`(m) := 2

(⌊
`− 1

12

⌋
+ 2

)
m− 3.

To illustrate the general theorem (see Theorem 1.3), we first explain the situation for the
primes 5 ≤ ` ≤ 31.

Theorem 1.2. (Theorem 1.1 of [25]) Suppose that 5 ≤ ` ≤ 31 is prime, and that m ≥ 1. If
b1 ≡ b2 (mod 2) are integers for which b2 > b1 ≥ b`(m), then there is an integer A`(b1, b2,m)
such that for every non-negative integer n we have

p

(
`b2n+ 1

24

)
≡ A`(b1, b2,m) · p

(
`b1n+ 1

24

)
(mod `m).

If ` ∈ {5, 7, 11}, then A`(b1, b2,m) = 0.

Remark. Boylan and Webb [12] have recently lengthened the range on b in Theorem 1.2. Their
work and numerics suggest that one can generically take b`(m) := 2m− 1.
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Example. For m = 1 and ` = 13, Theorem 1.2 applies for every pair of positive integers
b1 < b2 with the same parity. We let b1 := 1 and b2 := 3. It turns out that A13(1, 3, 1) = 6,
and so

p(133n+ 1007) ≡ 6p(13n+ 6) (mod 13).

We “zoom” in and consider m = 2. It turns out that b1 := 2 and b2 := 4 satisfy the conclusion
of Theorem 1.2 with A13(2, 4, 2) = 45, which in turn implies that

p(134n+ 27371) ≡ 45p(132n+ 162) (mod 132).

Theorem 1.2 follows from a more general theorem. If ` ≥ 5 is prime and m ≥ 1, then
let k`(m) := `m−1(` − 1). We define a certain alternating sequence of operators applied to
Sk`(m) ∩ Z[[q]], the space of weight k`(m) cusp forms on SL2(Z) with integer coefficients. We
define Ω`(m) to be the Z/`mZ-module of the reductions modulo `m of those forms which arise
as images after applying at least the first b`(m) operators. We bound the dimension of Ω`(m)
independently of m, and we relate the partition generating functions to the forms in this
space.

Theorem 1.3. (Theorem 1.2 of [25]) If ` ≥ 5 is prime and m ≥ 1, then Ω`(m) is a Z/`mZ-
module with rank ≤ b `−1

12
c. Moreover, if b ≥ b`(m), then we have that

P`(b; z) ≡


F`(b;z)
η(z)

(mod `m) if b is even,

F`(b;z)
η(`z)

(mod `m) if b is odd,

where F`(b; z) ∈ Ω`(m).

Four remarks.

(1) As the proof will show, each form F`(b; z) ∈ Ω`(m) is congruent modulo ` to a cusp form
in S`−1 ∩Z[[q]]. Since these spaces are trivial for ` ∈ {5, 7, 11}, then for all b ≥ b`(m) we have

p(`bn+ δ`(b)) ≡ 0 (mod `m),

giving a weak form of the Ramanujan congruences modulo powers of 5, 7, and 11.

(2) As mentioned earlier, Boylan and Webb [12] have improved the bound for b`(m).

(3) Theorem 1.3 shows that the partition numbers are self-similar `-adically with resolutions
that improve as one zooms in properly using the iterative process which defines the P`(b; z).
Indeed, the P`(b; z) (mod `m), for b ≥ b`(m), form periodic orbits. This is “fractal”-type
behavior where the simple iterative process possesses self-similar structure with increasing
resolution.

(4) In October 2010 Mazur [42] asked the fourth author questions about the modules Ω`(m).
Calegari has answered some of these questions by fitting Theorem 1.3 into the theory of
overconvergent half-integral weight p-adic modular forms as developed in the recent works of
Ramsey. The Appendix of [25] by Ramsey includes a detailed discussion of this result.

Theorem 1.3 is inspired by work of Atkin and O’Brien [7, 8, 10] from the 1960s, which
suggested the existence of a richer theory of partition congruences than was known at the
time. Although Ramanujan’s congruences had already been the subject of many works (for
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example, see [4, 6, 7, 10, 36, 45, 46, 54, 55] to name a few),1 mathematicians had difficulty
finding further congruences until the pioneering work by Atkin and O’Brien [7, 10] which
surprisingly produced congruences modulo the primes 13 ≤ ` ≤ 31. For example, Atkin
proved that

p(1977147619n+ 815655) ≡ 0 (mod 19).

In the late 1990s, the fourth author revisited their work using `-adic Galois representations
and the theory of half-integral weight modular forms [47], and he proved that there are such
congruences modulo every prime ` ≥ 5. Ahlgren and the fourth author [1, 2] subsequently
extended this to include all moduli coprime to 6. Other works by the fourth author and
Lovejoy, Garvan, Weaver, and Yang [29, 40, 55, 56] gave more results along these lines, further
removing much of the mystery behind the wild congruences of Atkin and O’Brien.

Despite these advances, one problem in Atkin’s program on “congruence Hecke operators”
remained open. In [7] he writes:

“The theory of Hecke operators for modular forms of negative dimension [i.e. positive weight]
shows that under suitable conditions their Fourier coefficients possess multiplicative proper-
ties. . . I have overwhelming numerical evidence, and some theoretical support, for the view that
a similar theory exists for forms of positive dimension [i.e.negative weight] and functions. . . ;
the multiplicative properties being now congruential and not identical.”

Remark. Guerzhoy [32, 33] has confirmed this speculation for level 1 modular functions using
the theory of integer weight p-adic modular forms as developed by Hida, and refined by Wan.

For negative half-integral weights, Atkin offered p(n) as evidence of his speculation. He
suspected that the P`(b; 24z) (mod `m), where the b,m→ +∞, converge to Hecke eigenforms
for ` = 13 and 17. Since the P`(b; 24z), as m→ +∞, lie in spaces whose dimensions grow ex-
ponentially in m, Atkin believed in the existence of a theory of “congruence Hecke operators”,
one which depends on ` but is independent of m.

To be precise, Atkin considered the weight −1
2

Hecke operator with Nebentypus χ12(•) =(
12
•

)
. Recall that if λ is an integer and c is prime, then the Hecke operator T (c2) on the space

of forms of weight λ+ 1
2

with Nebentypus χ is defined by
(1.9)(∑

n

a(n)qn

)
| T (c2) :=

∑
n

(
a(c2n) + cλ−1

(
(−1)λn

c

)
χ(c) a(n) + c2λ−1χ(c2) a(n/c2)

)
qn,

where a(n/c2) = 0 if c2 - n. Atkin and O’Brien found instances in which these series, as
b varies, behave like Hecke eigenforms modulo increasing powers of 13 and 17. For 13 (see
Theorem 5 of [10]) they prove this observation modulo 13 and 132, and for 17 Atkin claims
(see Section 6.3 of [7]) to have a proof modulo 17, 172, and 173.

Some of the authors have confirmed [25] Atkin’s speculation for the primes ` ≤ 31.

1Ramanujan’s congruences have continued to inspire research. Indeed, the subject of ranks and cranks rep-
resents a different thread in number theory which has grown out of the problem of trying to better understand
partition congruences (for example, see [5, 11, 13, 24, 28, 30, 35, 41] to name a few).
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Theorem 1.4. (Theorem 1.3 of [25]) If 5 ≤ ` ≤ 31 and m ≥ 1, then for b ≥ b`(m) we have
that P`(b; 24z) (mod `m) is an eigenform of all of the weight k`(m) − 1

2
Hecke operators on

Γ0(576).

As an immediate corollary, we have the following congruences for p(n).

Corollary 1.5. (Corollary 1.4 of [25]) Suppose that 5 ≤ ` ≤ 31 and that m ≥ 1. If b ≥ b`(m),
then for every prime c ≥ 5 there is an integer λ`(m, c) such that for all n coprime to c we
have

p

(
`bnc3 + 1

24

)
≡ λ`(m, c)p

(
`bnc+ 1

24

)
(mod `m).

Remark. Atkin [7] found such congruences modulo 132, 173, 192, 236, 29, and 31.

The results described here are obtained in the two papers [18] and [25]. Due to the technical
nature of the proof of Theorem 1.1, it is not possible to provide a succinct summary in this
expository paper. A proper treatment requires a discussion of theta lifts, Kudla-Milsson theta
functions, the Weil representation, Maass-Poincareé series, Maass operators, work of Katok
and Sarnak, and the theory of complex multiplication. Instead, in Section 2 we shall offer a
brief discussion of the strategy and method of proof. In Section 3 we offer a slightly more
detailed discussion of the ideas which must be assembled to prove the theorems on the `-adic
properties of p(n), and we sketch the proof of Theorem 1.2.

2. Discussion of finite formula for p(n)

Here we provide a brief overview of the proof of the general theorem which implies Theo-
rem 1.1, the finite algebraic formula for p(n). To obtain this general result, we employ the
theory of theta lifts as in earlier work by Funke and the first author [15, 27]. The idea is to
use the Kudla-Millson theta functions, combined with the action of the Maass lowering and
raising operators, to construct a new theta lift which works for arbitrary level N , a result
which is already of independent interest. The new lift maps spaces of weight −2 harmonic
weak Maass forms to spaces of weight −1/2 vector valued harmonic weak Maass forms. Then
we employ an argument of Katok and Sarnak [38] to obtain formulas for the coefficients of
the weight −1/2 forms as formal “traces” of the values of a weight 0 nonholomorphic modular
function which is obtained by applying a suitable differential operator.

Remark. Alfes [3] has generalized this new theta lift to obtain lifts from harmonic Maass forms
of weight −2k to harmonic Maass forms of weight 1/2− k, when k ≥ 0 is odd, and to weight
3/2 + k when k ≥ 0 is even.

Theorem 1.1, the finite algebraic formula for p(n), corresponds to the theta lift in the special
case when N = 6. The function η(z)−1, which is essentially the generating function for p(n),
can be viewed as a component of a weight −1/2 vector-valued modular form which transforms
suitably with respect to the Weil representation. More precisely, we have the vector-valued
modular form

G(z) :=
∑

r∈Z/12Z

χ12(r)η(z)−1er,
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where χ12(•) =
(
12
•

)
and {e1, e2, . . . e12} is the corresponding standard basis for the Weil

representation in this case. The transformation law for the eta-function under z 7→ z + 1
and z 7→ −1/z easily confirms that G(z) transforms according to the Weil representation.
Moreover, the principal part of G is given by q−1/24(e1 − e5 − e7 + e11).

On the other hand, G(z) can be obtained as a theta lift. Let F (z) be the function defined in
(1.3). It is invariant under the Fricke involution W6, and under the Atkin-Lehner involution W3

it is taken to its negative. By making use of the theory of Poincaré series, which corresponds
nicely with principal parts of vector-valued forms, we then find that the function P (z) defined
by (1.4) is the nonholomorphic weight 0 modular function whose traces give the coefficients
of 1/η(z), namely the partition numbers.

To complete the proof of Theorem 1.1, we must show that the values P (αQ) are algebraic
numbers. In [18] some of the authors were able to obtain the algebraicity of these values
with bounded denominators. The proof of this claim required the classical theory of complex
multiplication, as well as new results which bound denominators of suitable singular moduli.
In particular, it was proved that 6(24n− 1)P (αQ) is always an algebraic integer. This result
was refined by Larson and Rolen [39] who used some work of Masser to prove indeed that
each (24n− 1)P (αQ) is an algebraic integer.

3. `-adic properties of the partition function

Here we briefly describe the main ideas which are involved in the proofs of the results on
partition congruences. We begin by recalling the crucial generating functions.

3.1. Partition generating functions. For every prime ` ≥ 5 we define a sequence of q-series
that naturally contain the generating functions P`(b; z) as factors. Throughout, suppose that
` ≥ 5 is prime, and let

(3.1) Φ`(z) :=
η(`2z)

η(z)
.

We recall Atkin’s U(`)-operator

(3.2)
(∑

a(n)qn
)
| U(`) :=

∑
a(n`)qn,

and we define D(`) by

(3.3) f(z) | D(`) := (Φ`(z) · f(z)) | U(`).

This paper depends on a special sequence of modular functions. We begin by letting

(3.4) L`(0; z) := 1.

If b ≥ 1, we then let

(3.5) L`(b; z) :=

{
L`(b− 1; z) | U(`) if b is even,

L`(b− 1; z) | D(`) if b is odd.

We have the following elementary lemma.
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Lemma 3.1 (Lemma 2.1 of [25]). If b is a nonnegative integer, then

L`(b; z) =

{
η(z) · P`(b; z) if b is even,

η(`z) · P`(b; z) if b is odd.

As usual, let Mk(Γ0(N)) denote the space of weight k holomorphic modular forms on Γ0(N).
We let M !

k(Γ0(N)) denote the space of weight k weakly holomorphic modular forms on Γ0(N),
those forms whose poles (if any) are supported at the cusps of Γ0(N). When N = 1 we use
the notation Mk and M !

k.
We have the following crucial lemma about the q-series L`(b; z) which can be used to force

these series to live in the finite dimensional Z/`mZ modules.

Lemma 3.2 (Lemma 2.2 of [25]). If b is a nonnegative integer, then L`(b; z) is in M !
0(Γ0(`))∩

Z[[q]]. In particular, if b ≥ 1, then L`(b; z) vanishes at i∞, and its only pole is at the cusp at
0.

3.2. The space Ω`(m). The basic theory of modular forms mod ` as developed by Serre
[53] is well suited for defining a distinguished space of modular forms modulo `m, a space we
denote by Ω`(m). It will turn out that Ω`(m) contains large ranges of the L`(b; z) (mod `m).

To define these spaces, we consider the alternating sequence of operators

{D(`), U(`), D(`), U(`), D(`), U(`), . . . }.

For a cusp form G(z), to ease notation, we let G`(0; z) := G(z), and for b ≥ 1 we then let

(3.6) G`(b; z) :=

{
G`(b− 1; z) | U(`) if b is even,

G`(b− 1; z) | D(`) if b is odd.

We say that a cusp form G(z) ∈ Sk`(m) ∩Z[[q]] is good for (`,m) if for each b ≥ b`(m) we have
that G`(b; z) is the reduction modulo `m of a cusp form in Sk`(m) ∩Z[[q]]. It will turn out that
each L`(b; z), for b ≥ b`(m), is the reduction modulo `m of a cusp form in Sk`(m) ∩ Z[[q]].

We define the space Ω`(m) to be the Z/`mZ-module generated by the set

(3.7) {G`(b; z) (mod `m) : where b ≥ b`(m) and G(z) is good for (`,m)} .

Using the theory of modular forms modulo ` and Serre’s contraction property for filtrations,
one can prove the following theorem.

Theorem 3.3. (Theorem 3.4 of [25]) If ` ≥ 5 and m ≥ 1, then Ω`(m) is a Z/`mZ-module
with rank ≤ b `−1

12
c.

Using Lemma 3.2 and the theory of modular forms modulo `, some of the authors have
proved the following crucial fact about the forms L`(b; z).

Theorem 3.4. (Theorem 4.3 of [25]) If ` ≥ 5 is prime, m ≥ 1, and b ≥ b`(m), then L`(b; z)
is in Ω`(m).

Proof of Theorem 1.2. The theorem follows trivially from the Ramanujan congruences when
` ∈ {5, 7, 11}. More generally, we consider the two subspaces, Ωodd

` (m) and Ωeven
` (m), of Ω`(m)
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generated by L`(b; z) for odd b and even b, respectively. We observe that applying D(`) to a
form gives q-expansions satisfying

F | D(`) =
∑

n> `2−1
24`

a(n)qn.

Combining this observation with Theorem 1.3 and the fact that the full space Ω`(m) is gener-
ated by alternately applying D(`) and U(`), we have that the ranks of Ωodd

` (m) and Ωeven
` (m)

are ≤ b `−1
12
c − b `2−1

24`
c. If 13 ≤ ` ≤ 31, then direct calculation, when m = 1, shows that each

of these subspaces has dimension 1. The theorem now follows immediately. �
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