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Abstract. Ramanujan’s last letter to Hardy concerns the asymptotic properties of mod-
ular forms and his “mock theta functions”. For the mock theta function f(q), Ramanujan
claims that as q approaches an even order 2k root of unity, we have

f(q)− (−1)k(1− q)(1− q3)(1− q5) · · ·
(
1− 2q + 2q4 − · · ·

)
= O(1).

We prove Ramanujan’s claim as a special case of a more general result. The implied con-
stants in Ramanujan’s claim are not mysterious. They arise in Zagier’s theory of “quantum
modular forms”. We provide explicit closed expressions for these “radial limits” as val-
ues of a “quantum” q-hypergeometric function which underlies a new relationship between
Dyson’s rank mock theta function and the Andrews-Garvan crank modular form. Along
these lines, we show that the Rogers-Fine false ϑ-functions, functions which have not been
well understood within the theory of modular forms, specialize to quantum modular forms.

Overview

In his 1920 deathbed letter to Hardy, Ramanujan gave examples of 17 curious q-series
he referred to as “mock theta functions” [11]. In the decades following Ramanujan, math-
ematicians were unable to determine how these functions fit into the theory of modular
forms, despite their rather ubiquitous natures. Finally, the 2002 Ph.D. thesis of Zwegers [45]
showed that while the mock theta functions were not modular, they could be “completed”
to produce real analytic vector valued modular forms. Zwegers’s breakthrough catalyzed the
development of the overarching theory of “weak Maass forms” by Bringmann-Ono, Ono, and
collaborators [15, 16, 35, 42]. Ramanujan’s mock theta functions, it turns out, are examples
of “holomorphic parts” of weak Maass forms, originally defined by Bruinier-Funke [18].

While the theory of weak Maass forms has led to a flood of applications in many disparate
areas of mathematics (see [35, 42] and references therein), it is still not the case that we fully
understand the deeper framework surrounding the contents of Ramanujan’s last letter to
Hardy. Here we revisit Ramanujan’s original claims and motivations. His last letter summa-
rizes asymptotic properties near roots of unity of modular “Eulerian” series. Ramanujan asks
whether other Eulerian series with similar asymptotics are necessarily the sum of a modular
theta function and a function which is O(1) at all roots of unity. He writes: “The answer
is it is not necessarily so... I have not proved rigorously that it is not necessarily so... But
I have constructed a number of examples...” In fact, Ramanujan’s sole example and claim
pertains to his third order mock theta function f(q).

The authors thank the NSF and the Asa Griggs Candler Fund for their generous support.
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Claim (Ramanujan [11]). As q approaches an even order 2k root of unity, we have

f(q)− (−1)k(1− q)(1− q3)(1− q5) · · ·
(
1− 2q + 2q4 − · · ·

)
= O(1).

Here, we prove (in Theorem 1.1) Ramanujan’s claim as a special case of a more general
result (Theorem 1.2). We provide an explicit closed formula for the implied constants in Ra-
manujan’s claim, and show they are values of a “quantum” q-hypergeometric function which
underlies a new relationship between Dyson’s rank mock theta function and the Andrews-
Garvan crank modular form, two of the most studied q-series in the theory of partitions (see
for example [5, 8, 16, 23, 33]).

In this paper, it is the new theory of quantum modular forms that serves as a foundation
for our main theorems. As defined by Zagier [43], a quantum modular form is (loosely)
a C-valued function defined on Q that exhibits usual modular transformation properties,
up to the addition of a “suitably” continuous or analytic function. A crucial property we
use is that quantum modular forms make it possible to pass between the upper and lower
halves of the complex plane. In doing so, we are led to the Rogers-Fine “false” ϑ-functions,
functions which Ramanujan claimed “do not enter into mathematics as beautifully as the
ordinary theta functions.” On the contrary, we prove (in Theorem 1.3) that the Rogers-Fine
false ϑ-functions specialize to quantum modular forms, and that Ramanujan’s own mock
functions play key roles.

1. Introduction and Statement of Results

Ramanujan’s enigmatic last letter to Hardy [11] gave tantalizing hints of his theory of
mock theta functions. Thanks to Zwegers [44, 45], it is now known that these functions
are specializations of non-holomorphic Jacobi forms. They are holomorphic parts of certain
weight 1/2 harmonic weak Maass forms of Bruinier and Funke [18]. This realization has
many applications in combinatorics, number theory, physics, and representation theory (for
example, see [35, 42]).

Here we revisit Ramanujan’s original claims and motivation from his deathbed letter [11]:

“...I discovered very interesting functions recently which I call “Mock” ϑ-functions. Unlike
the “False” ϑ-functions (studied partially by Prof. Rogers in his interesting paper) they enter
into mathematics as beautifully as the ordinary theta functions....”

The next page of the letter summarizes the asymptotic properties, near roots of unity, of
Eulerian series (a.k.a. q-hypergeometric series) which are modular theta functions. He then
asks whether other Eulerian series with similar asymptotics are necessarily the sum of a
modular theta function and a function which is O(1) at all roots of unity. He writes:

“The answer is it is not necessarily so. When it is not so I call the function Mock ϑ-function.
I have not proved rigorously that it is not necessarily so. But I have constructed a number
of examples in which it is inconceivable to construct a ϑ-function to cut out the singularities
of the original function.”1

1Griffin, the second author, and Rolen [28] have confirmed Ramanujan’s speculation. There are no weakly
holomorphic modular forms which exactly cut out the singularities of Ramanujan’s mock theta functions.
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The only specific example Ramanujan offers pertains to the q-hypergeometric function

(1.1) f(q) := 1 +
q

(1 + q)2
+

q4

(1 + q)2(1 + q2)2
+ . . . .

This function is convergent for |q| < 1 and those roots of unity q with odd order. For even
order roots of unity, f(q) has exponential singularities. For example, as q → −1, we have

f(−0.994) ∼ −1.08 · 1031, f(−0.996) ∼ −1.02 · 1046, f(−0.998) ∼ −6.41 · 1090.

To cancel the exponential singularity at q = −1, Ramanujan found the function b(q), which

is modular2 up to multiplication by q−
1
24 , defined in his notation by

(1.2) b(q) := (1− q)(1− q3)(1− q5) · · ·
(
1− 2q + 2q4 − · · ·

)
.

The exponential behavior illustrated above is canceled in the numerics below.

q −0.990 −0.992 −0.994 −0.996 −0.998
f(q) + b(q) 3.961 . . . 3.969 . . . 3.976 . . . 3.984 . . . 3.992 . . .

.

It appears that limq→−1(f(q) + b(q)) = 4. More generally, as q approaches an even order 2k
root of unity, Ramanujan claimed that

(1.3) f(q)− (−1)kb(q) = O(1).

Remark. In his survey of Ramanujan’s “lost notebook” [10], Berndt writes eloquently about
this claim and Ramanujan’s imprecise definition of a mock theta function.

Remark. Ramanujan’s last letter also inspired the problem of determining the asymptotics
of the coefficients of mock theta functions such as f(q). Andrews [1] and Dragonette [22]
obtained asymptotics for the coefficients of f(q), and Bringmann and the second author [15]
later obtained an exact formula for these coefficients.

Watson [40] was the first to prove Ramanujan’s claim about f(q). We provide a new proof
of Ramanujan’s claim. Moreover, we obtain a simple closed formula for the suggested O(1)
constants as values of a “quantum” q-hypergeometric series.

Theorem 1.1. If ζ is a primitive even order 2k root of unity, then, as q approaches ζ
radially within the unit disk, we have that

lim
q→ζ

(
f(q)− (−1)kb(q)

)
= −4 ·

k−1∑
n=0

(1 + ζ)2(1 + ζ2)2 · · · (1 + ζn)2ζn+1.

Example. Since empty products equal 1, Theorem 1.1 confirms that limq→−1 (f(q) + b(q)) =
4.

2Here q−
1
24 b(q) is modular with respect to z where q := e2πiz.
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Example. For k = 2, Theorem 1.1 gives limq→i (f(q)− b(q)) = 4i. The table below nicely
illustrates this fact:

q 0.992i 0.994i 0.996i
f(q) ∼ 1.9 · 106 − 4.6 · 106i ∼ 1.6 · 108 − 3.9 · 108i ∼ 1.0 · 1012 − 2.5 · 1012i

f(q)− b(q) ∼ 0.0577 + 3.855i ∼ 0.0443 + 3.889i ∼ 0.0303 + 3.924i

Remark. The values of f(q) at odd order roots of unity are well defined, and can be easily
computed directly from (1.1).

It turns out that Theorem 1.1 is a special case of a much more general theorem, one which
surprisingly relates two of the most famous q-series in the theory of partitions. To make
it precise, we require Dyson’s rank function R(w; q), the Andrews-Garvan crank function
C(w; q), and the recently studied q-hypergeometric series U(w; q). The q-series R(w; q) and
C(w; q) are among the most important generating functions in the theory of partitions.
These famous series play a prominent role in the study of integer partition congruences (for
example, see [5, 8, 16, 23, 33]).

To define these series, throughout we let (a; q)0 := 1 and

(a; q)n :=

{
(1− a)(1− aq)(1− aq2) · · · (1− aqn−1) if n ∈ Z+,

(1− a)(1− aq)(1− aq2) · · · if n = ∞.

Dyson’s rank function is given by

(1.4) R(w; q) =
∞∑

n=0

∑
m∈Z

N(m,n)wmqn := 1 +
∞∑

n=1

qn2

(wq; q)n · (w−1q; q)n

.

Here N(m,n) is the number of partitions of n with rank m, where the rank of a partition is
defined to be its largest part minus the number of its parts. If w 6= 1 is a root of unity, then
it is known that R(w; q) is (up to a power of q) a mock theta function (i.e. the holomorphic
part of a weight 1/2 harmonic Maass form) (for example, see [16]). The Andrews-Garvan
crank function is defined by

(1.5) C(w; q) =
∞∑

n=0

∑
m∈Z

M(m,n)wmqn :=
(q; q)∞

(wq; q)∞ · (w−1q; q)∞
.

Here M(m,n) is the number of partitions of n with crank m [5]. For roots of unity w, C(w; q)
is (up to a power of q) a modular form.

The series U(w; q) has recently been studied by several authors [2, 7, 19, 37] in work
related to unimodal sequences. This q-hypergeometric series is defined by

(1.6) U(w; q) =
∞∑

n=0

∑
m∈Z

u(m,n)(−w)mqn :=
∞∑

n=0

(wq; q)n · (w−1q; q)nq
n+1.

Here u(m,n) is the number of strongly unimodal sequences of size n with rank m [19].
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Remark. In terms of the standard notation for q-hypergeometric series (for example, see p.4
of [26]), it turns out that U(w; q) is a 3φ2 q-hypergeometric series. Namely, we have that

q−1U(w; q) = 3φ2(wq,w
−1q, q; 0, 0; q, q).

Theorem 1.1 is a special case of the following general theorem which relates the asymptotic
behavior of these three q-series. Throughout, we let ζn := e2πi/n.

Theorem 1.2. Let 1 ≤ a < b and 1 ≤ h < k be integers with gcd(a, b) = gcd(h, k) = 1
and b | k. If h′ is an integer satisfying hh′ ≡ −1 (mod k), then, as q approaches ζh

k radially
within the unit disk, we have that

lim
q→ζh

k

(
R (ζa

b ; q)− ζ−a2h′k
b2 C (ζa

b ; q)
)

= −(1− ζa
b )(1− ζ−a

b ) · U(ζa
b ; ζh

k ).

Five remarks.
1) There is an integer c(a, b, h, k) such that the limit in Theorem 1.2 reduces to the finite
sum

−(1− ζa
b )(1− ζ−a

b )

c(a,b,h,k)∑
n=0

(ζa
b ζ

h
k ; ζh

k )n · (ζ−a
b ζh

k ; ζh
k )n · ζh(n+1)

k .

2) Theorem 1.1 is the a = 1 and b = 2 case of Theorem 1.2 because R(−1; q) = f(q),
combined with the well known fact that C(−1; q) = b(q).

3) A variant of Theorem 1.2 holds when b - k. This is obtained by modifying the proof to
guarantee that the two resulting asymptotic expressions match.

4) At roots of unity where R(ζa
b ; q) does not have a singularity, the value can be computed

directly. The remark after Theorem 1.1 is a special case of this fact. Moreover, this value is
related to the value of a partial theta function. See the paper of Bringmann and the first and
last authors [13] for more about the relationship between partial theta functions and mock
theta functions at roots of unity where there are not singularities. Theorem 1.3 contains a
result dealing with the relation between mock theta functions and partial theta functions at
roots of unity where the mock theta function does not have singularities.

5) It is natural to ask how Theorem 1.1 and Theorem 1.2 may generalize to Ramanujan’s
other mock theta functions. In this regard we first note that Theorem 1.2 applies to many of
Ramanujan’s mock theta functions using the relationshipR(w; q) = (1−w)+w(1−w)g3(w; q).
Here, g3(w; q) is the “universal” mock theta function, aptly named, as it can be related to
Ramanujan’s original mock theta functions upon suitable specialization of its parameters
(see [27]). See also recent related works by the first author [25], as well as [9], for more along
these lines.

Recently, the second two authors, together with Bryson and Pitman [19], investigated the
q-series U(w; q) in connection with the theory of quantum modular forms. Following Zagier3

3Zagier’s definition is intentionally vague with the idea that flexibility is required to allow for interesting
examples. Here we modify his definition to include half-integral weights k and multiplier systems ε(γ).
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[43], a weight k quantum modular form is a complex-valued function f on Q, or possibly
P1(Q) \ S for some set S, such that for all γ = ( a b

c d ) ∈ SL2(Z) the function

hγ(x) := f(x)− ε(γ)(cx+ d)−kf

(
ax+ b

cx+ d

)
satisfies a “suitable” property of continuity or analyticity. The ε(γ) are suitable complex
numbers, such as those in the theory of half-integral weight modular forms when k ∈ 1

2
Z\Z.

In particular, Zagier offered a number of examples of such forms by making use of Dedekind
sums, period polynomials, and a few curious q-series identities. Particularly interesting
examples of such forms relate functions which are simultaneously defined on both H = H+

and H−, the upper-half and lower-half of the complex plane respectively. The quantum form
is the device which makes it possible to pass between the two half-planes.

Theorem 1.3 of [19] proves that φ(x) := e−
πix
12 ·U(1; e2πix) is a weight 3/2 quantum modular

form on H+ ∪Q \ {0} (meaning that φ(x) is quantum on Q \ {0}, and this domain may be
extended to include H+). Therefore, in view of the roles that R(w; q) (which is essentially a
mock modular form for roots of unity w 6= 1) and U(w; q) play in Theorem 1.2, it is natural to
ask about the more general relationship between mock theta functions and quantum modular
forms. To this end, we seek q-hypergeometric series related to mock theta functions which
are defined on both H+ and H−. In doing so, we are led to the “False” ϑ-functions of Rogers
and Fine, which Ramanujan claimed do not “enter into mathematics as beautifully as the
ordinary theta functions”.

We recall these functions. In 1917 Rogers [39] defined the important q-hypergeometric
series

(1.7) F (α, β, t; q) :=
∞∑

n=0

(αq; q)nt
n

(βq; q)n

.

This series does not typically specialize to modular forms, but instead often gives “halves”
of modular theta functions. These include many of the primary examples of “false” and
“partial” ϑ-functions. For example, we have the following special case of the work of Rogers
and Fine [24]:

1

1 + w
· F (wq−1,−w,w; q) :=

1

1 + w
·
∞∑

n=0

(w; q)nw
n

(−wq; q)n

=
∞∑

n=0

(−1)nw2nqn2

.

Here we consider the following specializations, where q := e2πiz:

G(a, b; z) :=
q

a2

b2

1− q
a
b

· F
(
−q

a
b
−1, q

a
b ,−q

a
b ; q
)
,(1.8)

H(a, b; z) := q
1
8 · F

(
ζ−a
b q−1, ζ−a

b , ζ−a
b q; q2

)
.(1.9)
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We have the following false theta function identities, the second of which follows from equa-
tion (1) of [39], and the first of which is in [6].

G(a, b; z) =q
a2

b2

∞∑
n=0

(−q a
b ; q)n

(q
a
b ; q)n+1

· (−1)nqn a
b =

∞∑
n=0

(−1)nq(n+a
b )

2

,(1.10)

H(a, b; z) =q
1
8

∞∑
n=0

(ζ−a
b q; q2)n

(ζ−a
b q2; q2)n

· (ζ−a
b q)n =

∞∑
n=0

ζ−an
b q

1
2(n+ 1

2)
2

.(1.11)

Remark. The second equalities in (1.10) and (1.11) are only valid for |q| < 1.

These specializations satisfy the following nice properties often associated to quantum
modular forms: convergence in H±, a modular transformation law, and asymptotic expan-
sions which are generating functions for values of L-functions. More precisely, we prove the
following theorem.

Theorem 1.3. Let 0 < a < b be coprime integers, with b even, and let

Qa,b :=

{
h

k
∈ Q : gcd(h, k) = 1, h > 0, b | 2h, b - h, k ≡ a (mod b), k ≥ a

}
.

The following are true:
(1) The functions G(a, b; z) and H(a, b; z) converge for z ∈ H+ ∪H−.

(2) For x ∈ Qa,b ∪H+, we have that

G(a, b;−x) +
e−

πia
b

√
2ix

·H
(
a, b;

1

2x

)
= −

∫ i∞

0

(−iu)− 3
2T
(
a, b;− 1

u

)
du√

−i(u+ x)
,

where T (a, b; z) is a weight 3/2 modular form defined in (2.2). That is, G(a, b;x) and
H(a, b;x) are weight 1/2 quantum modular forms on Qa,b ∪H+.

(3) Let Br(n) be the rth Bernoulli polynomial. For h
k
∈ Qa,b, as t→ 0+, we have

G

(
a, b;

−h
k

+
it

2π

)
∼

∞∑
r=0

L(−2r, cG) · (−t)r

r! · b2r
,

H

(
a, b;

k

2h
+

it

2π

)
∼

∞∑
r=0

L(−2r, cH) · (−t)r

r! · 8r
,

where

L(−r, cG) = −(2kb2)r

r + 1

2kb2∑
n=1

cG(n)Br+1

( n

2kb2

)
,

L(−r, cH) = −(16h)r

r + 1

16h∑
n=1

cH(n)Br+1

( n

16h

)
,
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cG(n) :=


ζ−hn2

kb2 , if n ≡ a (mod 2b),

−ζ−hn2

kb2 , if n ≡ a+ b (mod 2b),

0, otherwise,

(1.12)

cH(n) :=

{
ζ
−a(n−1

2 )
b ζkn2

16h , if n ≡ 1 (mod 2),

0, otherwise.
(1.13)

Four remarks.
1) In Section 2.1 we will prove a lemma (see Lemma 2.1) which implies, for x = h

k
∈ Qa,b,

that G(a, b;−x) and H
(
a, b; 1

2x

)
converge. Moreover, they are explicitly given by the finite

sums

G

(
a, b;−h

k

)
= ζ−a2h

b2k

m∑
n=0

(−ζ−ah
bk ; ζ−h

k )n(−ζ−ah
bk )n

(ζ−ah
bk ; ζ−h

k )n+1

,(1.14)

H

(
a, b;

k

2h

)
= ζk

16h

∑̀
n=0

(ζ−a
b ζk

2h; ζ
k
h)n(ζ−a

b ζk
2h)

n

(ζ−a
b ζk

h ; ζk
h)n

,(1.15)

where the non-negative integers ` and m satisfy b(2`+1) = 2h and a+ bm = k, respectively.

2) In Theorem 1.3 (2), we are using the vector-valued notion of a quantum modular form.

3) Theorem 1.2 (3) gives generating functions for values of L-functions. Similar theorems
have been previously discovered by Zagier and others (for example, see [6, 21, 29, 31, 32, 41]).

4) The series G(a, b; z) and H(a, b; z) are related to mock modular forms when z ∈ H− (see
Section 2). The idea to pass between half-planes to relate mock theta functions and partial
theta functions has been observed previously. For example, Zwegers observed and Lawrence
and Zagier reported on such a relationship in [31]. The relationship is also discussed at
length in work of the third author [38] and Mortenson [34].

Example. Here we will illustrate how the different parts of Theorem 1.3 may be used to
understand the Rogers-Fine functions (1.10) and (1.11), and relations between them, at
rational numbers z by way of an example. If a = 1 and b = 2, then (1.10) and (1.11) give
the identities

G(1, 2; z) := q
1
4

∞∑
n=0

(−q 1
2 ; q)n(−1)nq

n
2

(q
1
2 ; q)n+1

=
∞∑

n=0

(−1)nq
(2n+1)2

4 ,

H(1, 2; z) := q
1
8

∞∑
n=0

(−q; q2)n(−q)n

(−q2; q2)n

=
∞∑

n=0

(−1)nq
(2n+1)2

8 ,

so that G(1, 2; z) = H(1, 2; 2z). For simplicity, we consider the rational number h
k

= 1
1
∈ Q1,2.

On one hand, from Theorem 1.3 (3), we find that asymptotically, as t→ 0+, we have

G

(
1, 2;−1 +

it

2π

)
∼

∞∑
r=0

L(−2r, cG) · (−t)r

r! · b2r
.
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We compute (using that B1(x) = x−1/2) that L(0, cG) = − i
2
, and so G(1, 2;−1) ∼ − i

2
. On

the other hand, Thereom 1.3 gives G(1, 2;−1) exactly, as a finite sum, using (1.14) (see also
Lemma 2.1). In particular, we have m = 0 for (a, b, h, k) = (1, 2, 1, 1), and hence we compute

that at the root of unity−1, the functionG(1, 2;−1) is exactly equal toG(1, 2;−1) =
ζ−1
4

1−ζ−1
2

=

− i
2
.

Similarly, using Theorem 1.3 (3), we find that asymptotically, H
(
1, 2; 1

2

)
∼ ζ16. On the

other hand, we may evaluate H
(
1, 2; 1

2

)
exactly as a finite sum using (1.15) (see also Lemma

2.1). Indeed, we find that H
(
1, 2; 1

2

)
= ζ16.

We may combine these calculations with Theorem 1.3 (2), to find an exact value for the
integral expression appearing in Theorem 1.3 (2). Namely, we have that

i

4

∫ i∞

0

(−iu)− 3
2 Θ1,4

(
− 1

u

)
du√

−i(u+ 1)
=
i

2
−
√
i

2
· ζ16,

where Θ1,4(z) :=
∑

n≡1 (mod 4) nq
n2

16 .

Amusing remark. The theorems in this paper bring together some of most interesting objects
which appear in Ramanujan’s legacy to mathematics. Indeed, Dyson’s rank, the Andrews-
Garvan crank, the mock theta functions, and early examples of quantum modular forms
appear as four different items in the top4 5 of the “ten most fascinating formulas” from
Ramanujan’s “lost notebook” as tabulated [3] by Andrews and Berndt in 2008. Surprisingly,
the theorems here now reveal that these objects are in fact tightly intertwined in the quantum
world.

We shall prove Theorem 1.3 first. The proof will require a discussion of the convergence of
the relevant Rogers-Fine series at roots of unity, the calculation of asymptotic expansions in
terms of values of L-functions, and the mock modularity of two families of q-hypergeometric
series. We shall use results of Lawrence and Zagier [31] and work of Bringmann and the
second two authors [17] in this regard. These results are recalled in Section 2.1, and the
proof of Theorem 1.3 is then given in Section 2.2.

To prove Theorem 1.2, which in turn implies Theorem 1.1, we make use of a beautiful
identity of Choi [20] and Ramanujan (see Entry 3.4.7 in [4]). This identity reduces the proof of
Theorem 1.2 to the claim, upon appropriate specialization of variables, that a certain mixed
mock modular form is asymptotic to a suitable multiple of the modular crank function. To
establish this claim, we carry out a careful analysis of the asymptotic properties of modular
Klein functions, certain Lerch-type series, and Mordell integrals. This is done in Section 3.
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4These objects appear in the formulas ranked #1,#2,#3, and #5.
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2. Proof of Theorem 1.3

Here we prove Theorem 1.3 after first proving a lemma about the convergence of relevant
q-hypergeometric series at roots of unity, and after recalling important results of Lawrence
and Zagier [31] and Bringmann and the second two authors [17].

2.1. Preliminaries for the proof of Theorem 1.3. We begin with a simple lemma.

Lemma 2.1. Let 0 < a < b be coprime integers, where b is even, and let Qa,b be as in
the statement of Theorem 1.3. If x = h

k
∈ Qa,b, then G(a, b;−x) and H

(
a, b; 1

2x

)
converge.

Moreover, they are explicitly given by the finite sums

G

(
a, b;−h

k

)
= ζ−a2h

b2k

m∑
n=0

(−ζ−ah
bk ; ζ−h

k )n(−ζ−ah
bk )n

(ζ−ah
bk ; ζ−h

k )n+1

,

H

(
a, b;

k

2h

)
= ζk

16h

∑̀
n=0

(ζ−a
b ζk

2h; ζ
k
h)n(ζ−a

b ζk
2h)

n

(ζ−a
b ζk

h ; ζk
h)n

,

where the non-negative integers ` and m satisfy b(2`+ 1) = 2h and a+ bm = k, respectively.

Proof. By the definition of Qa,b, there is an integer ` ≥ 0 such that (2`+ 1) = 2h/b, and so
a
b
≡ k(2`+1)

2h
(mod 1). Using this, the fact that k ≥ a, k ≡ a (mod b), and (1.9), we see that

for n ≥ `+ 1, the numerator of the nth summand in the series defining H(a, b; k/2h) will be
zero. Next, it is not difficult to show that there are no integers s for which a

b
≡ k

h
s (mod 1).

This implies that none of the denominators vanish. This proves the claim for H(a, b; k/2h).
Next, by the definition of Qa,b, there is a non-negative integer m for which a + bm = k.
Arguing as above, one easily arrives at the conclusion for G(a, b;−h/k). �

Theorem 1.3 (2) concerns the quantum modularity of the functionsG(a, b;x) andH(a, b;x).
To derive this we make use of earlier work of Bringmann and the second two authors. We
summarize the required results from Theorem 4.3 and Lemma 4.5 of [17] in the theorem
below. These results involve the q-hypergeometric functions5

g(a, b; z) :=
∞∑

n=0

(−q; q)nq
n(n+1)

2(
q

a
b ; q
)

n+1

(
q−

a
b q; q

)
n+1

,

h(a, b; z) :=
∞∑

n=0

(−1)nqn2
(q; q2)n

(ζa
b q

2; q2)n(ζ−a
b q2; q2)n

,

(2.1)

and the important theta function

T (a, b; z) := i

∞∑
n=−∞

(
n+

1

4

)
cosh

(
2πi

(
n+

1

4

)(
2a

b
− 1

))
q(n+ 1

4)
2

.(2.2)

Equations (2.7) and (2.8) will give explicit identities relating these functions to G and H.

5These functions were also studied by Gordon and McIntosh in [27]. In [17] §4.1, the function g(a, b; z) is
shown to be equal to what the authors call H(a, 0, b; z). We do not use this notation to avoid confusion.
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Theorem 2.2 (Th. 4.3 and Lemma 4.5 of [17]). Let z ∈ H, and suppose that 0 < a < b are
coprime integers. We have that

q
a
b (1−a

b )g(a, b; z) =

√
2i

z

e
πi
8z

4 sin
(
π a

b

)h(a, b; −1

2z

)
+

∫ i∞

0

(−iu)− 3
2T
(
a, b;− 1

u

)
du√

−i(u+ z)
.

Theorem 1.3 (3) relates asymptotic expansions to values of L-functions. To obtain our
result in this direction, we make use of the following proposition of Lawrence and Zagier
[31].

Proposition 2.3 (p. 98 of [31]). Let C : Z → C be a periodic function with mean value 0.
Then the associated L-series L(s, C) =

∑∞
n=1C(n)n−s (Re(s) > 1) extends holomorphically

to all of C and the function
∑∞

n=1C(n)e−n2t (t > 0) has the asymptotic expansion

∞∑
n=1

C(n)e−n2t ∼
∞∑

r=0

L(−2r, C) · (−t)r

r!

as t→ 0+. The numbers L(−r, C) are given explicitly by

L(−r, C) = − M r

r + 1

M∑
n=1

C(n)Br+1

( n
M

)
(r = 0, 1, . . .)

where Bk(x) denotes the kth Bernoulli polynomial and M is any period of the function C(n).

2.2. Proof of Theorem 1.3. We first prove (1). Let ρ := q−1, where q = e2πiz and z ∈ H.
We compute

−ρ
a
b
−a2

b2 G(a, b;−z) = −ρ
a
b

∞∑
n=0

(−ρa
b ; ρ)n

(ρ
a
b ; ρ)n+1

(−ρ
a
b )n =

∞∑
n=0

(−q a
b ; q)n

(q
a
b ; q)n+1

qn(1−a
b ) =: G∗(a, b; z),

(2.3)

where we use the fact that

(a; ρ)n = (−a)nq−
n(n−1)

2 (a−1; q)n.(2.4)

Thus from (1.8) and (2.3) we see that the series defining G(a, b; z) is defined for z ∈ H∪H−.
Similarly, using (2.4), it is not difficult to show that

q
1
8H(a, b;−z) = F

(
q−1ζa

b , ζ
a
b , ζ

−a
b ; q2

)
,(2.5)

and hence that H(a, b; z) is defined for z ∈ H∪H−. We justify the convergence of the series
F
(
q−1ζa

b , ζ
a
b , ζ

−a
b ; q2

)
in (2.5) as follows. By considering the Rogers-Fine series F (α, β, t; q)

purely formally, we have the functional equation

F
(
q−1ζa

b , ζ
a
b , ζ

−a
b ; q2

)
= −ζa

b

(
1− ζa

b − q

ζa
b − 1

F
(
q−1ζa

b , ζ
a
b , ζ

−a
b q2; q2

))
.

(See also (2.4) of [24].) Iterating this recurrence relationship, it follows that F (α, β, t; q)
converges for all t 6= q−n, n ∈ N0. (See also [24] page 2.) This proves (1).
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We now prove (2). We relate G∗(a, b; z) to the mock modular form g(a, b; z). The identity

(1− t)F (α, β; t) =
∞∑

n=0

(
β
α
; q
)

n

(βq; q)n(tq; q)n

· (−αt)nq
n(n+1)

2(2.6)

(see (12.2) of [24]) with α = −q a
b
−1, β = q

a
b , t = q1−a

b shows that

G∗(a, b; z) = g (a, b; z) .(2.7)

We use (2.6) again with α = q−1ζa
b , β = ζa

b , t = ζ−a
b , and q → q2, and find

h(a, b; z) = (1− ζ−a
b )F

(
q−1ζa

b , ζ
a
b , ζ

−a
b ; q2

)
= (1− ζ−a

b )q
1
8H(a, b;−z),(2.8)

where the last equality in (2.8) follows from (2.5). The proof of part (2) now follows from part
(1), (2.3), (2.5), (2.7), (2.8), and Theorem 2.2. While Theorem 2.2 gives a transformation
law for z ∈ H, we have continuation to x ∈ Qa,b by Lemma 2.1. As argued in [41] and [19],
the integral appearing in (2) of Theorem 1.3 is real analytic.

We now prove part (3). The conclusion of part (3) follows from Proposition 2.3 once the
hypotheses are confirmed for certain L-functions related to G(a, b; z) and H(a, b; z).

To this end, we let cG(n) and cH(n) be as defined in (1.12) and (1.13), respectively. Then
using (1.10) and (1.11), we have

G

(
a, b;

−h
k

+
it

2π

)
=

∞∑
n=0

cG(n)e−n2 t
b2 ,

H

(
a, b;

k

2h
+

it

2π

)
=

∞∑
n=0

cH(n)e−n2 t
8 .

It is clear that cG is 2kb2 periodic, and cH is 16h periodic. To prove that cG and cH have
mean value zero, we establish the following claim. Let a and b be positive integers satisfying
gcd(a, b) = 1, with b even. Let h and k be integers such that h

k
∈ Qa,b. Then cG and cH

have mean value zero with periods 2kb2 and 16h, respectively. The truth of this claim, then
combined with Proposition 2.3 gives part (3).

We begin with cG. Because gcd(a, b) = 1, there is some integer a such that aa ≡ 1
(mod b). We have ∑

n (mod 2kb2)

cG(n) = Σ1 − Σ2,

where

Σ1 :=
∑

n (mod 2kb2)

n≡a (mod 2b)

ζ−hn2

kb2 , Σ2 :=
∑

n (mod 2kb2)

n≡a+b (mod 2b)

ζ−hn2

kb2 .
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We have

Σ1 =
∑

n (mod 2kb2)

n≡a (mod 2b)

ζ−hn2

kb2 =
2kb2−bka∑
n=1−bka

n≡a (mod 2b)

ζ−hn2

kb2 =
2kb2∑
n=1

n≡a+bka (mod 2b)

ζ
−h(n−bka)2

kb2 .(2.9)

Now by hypothesis, there exists some integer s (namely, s = 2` + 1) such that h = bs/2.
Thus,

ζ
−h(n−bka)2

kb2 = ζ−hn2

kb2 ζ2hna
b = ζ−hn2

kb2 ζbsna
b = ζ−hn2

kb2 .(2.10)

There also is an integer m for which k = a+ bm, and an integer v with aa = 1 + bv, so that

a+ bka = a+ b(a+ bm)a = a+ aab+ amb2

= a+ (1 + bv)b+ amb2 = a+ b+ b2(v + am) ≡ a+ b (mod 2b),(2.11)

where the last equivalence follows because b is even. We use (2.10) and (2.11) to rewrite
(2.9) as

2kb2∑
n=1

n≡a+b (mod 2b)

ζ−hn2

kb2 ,

which is precisely equal to Σ2.
To prove that cH has mean value with the given period, we use that ` is the non-negative

integer such that b(2`+ 1) = 2h, and write∑
n (mod 16h)

cH(n) =

8b(2`+1)∑
n=1

n odd

ζ
−a(n−1

2 )
b ζkn2

8b(2`+1) = Σ3 + Σ4,

where

Σ3 :=

4b(2`+1)∑
n=1

n odd

ζ
−a(n−1

2 )
b ζkn2

8b(2`+1), Σ4 :=

8b(2`+1)∑
n=4b(2`+1)+1

n odd

ζ
−a(n−1

2 )
b ζkn2

8b(2`+1).

By replacing n = N +4b(2`+1) in Σ4 and summing on N , we find that Σ4 = Σ3, and hence∑
n (mod 16h) cH(n) = 2Σ3. Next, we rewrite Σ3 = Σ31 + Σ32, where

Σ31 :=

2b(2`+1)∑
n=1

n odd

ζ
−a(n−1

2 )
b ζkn2

8b(2`+1), Σ32 :=

4b(2`+1)∑
n=2b(2`+1)+1

n odd

ζ
−a(n−1

2 )
b ζkn2

8b(2`+1).

We rewrite Σ32 as

Σ32 =

2b(2`+1)∑
n=1

n odd

ζ
−a(n−1

2
+b(2`+1))

b ζ
k(n+2b(2`+1))2

8b(2`+1) =

2b(2`+1)∑
n=1

n odd

ζ
−a(n−1

2 )
b ζkn2

8b(2`+1)ζ
nk
2 .
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Because k ≡ a (mod b), b is even, and gcd(a, b) = 1, we must have that k is odd. Thus,
Σ32 = −Σ31, and hence cH(n) has mean value zero with period 16h as claimed.

3. Proof of Theorem 1.2

To prove Theorem 1.2, we will require some preliminary results pertaining to ordinary
modular forms, modular units, mock modular forms, and Jacobi theta functions. We describe
these results in the following subsection. We then conclude with the proof of Theorem 1.2.

3.1. Preliminaries for the proof of Theorem 1.2.

3.1.1. Special modular forms. A modular form we require is the Dedekind η-function, defined
for q = e2πiz, z ∈ H, by

η(z) := q
1
24

∞∏
n=1

(1− qn).

It is well known [36] that η(z) is modular of weight 1/2, and transforms under γ = ( a b
c d ) ∈

SL2(Z) by

η(γz) = ψ(γ)(cz + d)
1
2η(z),(3.1)

where ψ(γ) is a 24th root of unity.

We will also require the Klein forms t(r,s)(z) = t
(N)
(r,s)(z) defined for pairs (r, s) ∈ Z2 with

respect to a positive integer level N , such that (r, s) 6≡ (0, 0) (mod N ×N). These functions
are defined using the Weierstrass σ-function, and were studied originally by Klein and Fricke.
Here we give some of their key properties as summarized in the more modern source [30]:

t(r,s)(γz) = (cz + d)−1t(r,s)γ(z), for all γ = ( a b
c d ) ∈ SL2(Z),(3.2)

t(r,s)(z) = −
ζ

s(r−N)

2N2

2πi
q

r(r−N)

2N2 (1− ζs
Nq

r
N )

∞∏
n=1

(1− ζs
Nq

n+ r
N )(1− ζ−s

N qn− r
N )

(1− qn)2
,(3.3)

where q = e2πiz, and (r, s)γ denotes matrix multiplication.

3.1.2. Mock Jacobi forms. In his celebrated Ph.D. thesis [45], Zwegers defined the Appell-
Lerch sums for q = e2πiz, z ∈ H, and u, v ∈ C \ (Zz + Z) by

µ(u, v; z) :=
eπiu

ϑ(v; z)

∑
n∈Z

(−1)nq
n(n+1)

2 e2πinv

1− e2πiuqn
.

Here the Jacobi theta function is defined by

ϑ(v; z) := i
∑
n∈Z

(−1)nq
1
2(n+ 1

2)
2

e2πiv(n+ 1
2
) = −iq

1
8 e−πiv

∞∏
n=1

(1− qn)(1− e2πivqn−1)(1− e−2πivqn).

(3.4)

The last equality in (3.4) is the well-known Jacobi product identity. The Jacobi form ϑ(v; z)
transforms as follows [36]:
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ϑ (v + αz + β; z) = (−1)α+βq−
α2

2 e−2πiαvϑ(v; z),(3.5)

ϑ

(
v

cz + d
; γz

)
= ρ(γ)(cz + d)

1
2 e

πicv2

cz+d ϑ(v; z),(3.6)

for all α, β ∈ Z and γ = ( a b
c d ) ∈ SL2(Z), where ρ(γ) = (ψ(γ))3 is an eight root of unity.

A result for the mock Jacobi forms µ(u, v; z) that we will make use of is the following
beautiful and important identity of Choi [20].

Theorem 3.1 (Choi [20]). Let q = e2πiz, where z ∈ H. For suitable complex numbers
α = e2πiu and β = e2πiv, we have

∞∑
n=0

(αβ)nqn2

(αq; q)n(βq; q)n

+
∞∑

n=1

qn(α−1; q)n(β−1; q)n = iq
1
8 (1−α)(βα−1)

1
2

(
qα−1; q

)
∞

(
β−1; q

)
∞ µ(u, v; z).

Remark. We note that Theorem 3.1 can be obtained from Entry 3.4.7 of Ramanujan’s “Lost
Notebook” (see p.67 of [4]).

Remark. We point out that the left hand side of the displayed identity in Theorem 3.1 may

also be re-written as
∞∑

n=−∞

(αβ)nqn2

(αq; q)n(βq; q)n

; however, the relevant expression here is the one

given in Theorem 3.1.

To make use of Theorem 3.1, we shall require the modular transformation properties of
µ(u, v; z). Multivariable generalizations of the function A(u, v; z) := ϑ(v; z)µ(u, v; z) were
studied by Zwegers [46] and the first author and Bringmann [12]. A “completion” of this
function is defined by Zwegers as

Â(u, v; z) := A(u, v; z) +
i

2
ϑ(v; z)R(u− v; z),(3.7)

where

R(v; z) :=
∑
n∈Z

{
sgn

(
n+

1

2

)
− E

((
n+

1

2
+

Im(v)

Im(z)

)√
2 · Im(z)

)}
(−1)nq−

1
2(n+ 1

2)
2

e−2πiv(n+ 1
2),

and for w ∈ C we have

E(w) := 2

∫ w

0

e−πu2

du.

The functions R(v; z) transform as follows [45] under the generators of SL2(Z):

R(v; z + 1) = e−
πi
4 R(v; z),(3.8)

1√
−iz

e
πiv2

z R

(
v

z
;−1

z

)
+R(v; z) = h(v; z),(3.9)
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where the Mordell integeral h(v; z) is defined by

h(v; z) :=

∫ ∞

−∞

eπizu2−2πvu

cosh(πu)
du.

Using the transformation properties of the functions µ (see [45]) and ϑ (see (3.5) and
(3.6)), we have, for integers m,n, r, s and γ = ( a b

c d ) ∈ SL2(Z), that

Â (u+mz + n, v + rz + s; z) = (−1)m+ne2πiu(m−r)e−2πivmq
m2

2
−mrÂ(u, v; z),(3.10)

Â

(
u

cz + d
,

v

cz + d
; γz

)
= (cz + d)eπic

(−u2+2uv)
(cz+d) Â(u, v; z).(3.11)

3.2. Proof of Theorem 1.2. To prove Theorem 1.2, we will first make use of Choi’s identity
in Theorem 3.1 with α = ζ−a

b and β = ζa
b , (hence u = −a

b
, v = a

b
), and q replaced by e

2πi
k

(h+iz).
We define

(3.12) m(a, b;u) := ie
πiu
4 (1− ζ−a

b )ζa
b (ζa

b e
2πiu; e2πiu)∞(ζ−a

b ; e2πiu)∞.

To prove Theorem 1.2, noting that the function U(ζa
b ; ζh

k ) is a finite convergent sum when
b|k, by the argument above, it thus suffices to prove that upon appropriate specialization of
variables, the mixed mock modular form m · µ is asymptotic to a suitable multiple of the
modular crank generating function C.

To be precise, let b|k, gcd(a, b) = 1, gcd(h, k) = 1, where a, b, h, k are positive integers. By
comparing the asymptotics in Theorem 3.2 and Proposition 3.3 below, we immediately find,
as z → 0+, that

(3.13) m

(
a, b;

1

k
(h+ iz)

)
µ

(
−a
b
,
a

b
;
1

k
(h+ iz)

)
∼ ζ−a2h′k

b2 C

(
ζa
b ;

1

k
(h+ iz)

)
.

The error terms in Theorem 3.2 and Proposition 3.3 complete the proof.

Remark. Above and in what follows, we let z ∈ R+, and let z → 0+. This corresponds to
q = e

2πi
k

(h+iz) → ζh
k from within the unit disk as described in the statements of Theorem 1.1

and Theorem 1.2.

Therefore, it remains to obtain these two separate asymptotic results for the crank function
and the mixed mock modular form in question. To describe this, we let

(3.14) q := e
2πi
k

(h+iz), q1 := e
2πi
k (h′+ i

z ).

For the mixed mock modular m · µ, we obtain the following asymptotics.

Theorem 3.2. Let b|k, gcd(a, b) = 1, gcd(h, k) = 1, where a, b, h, k are positive integers, and
let b′ and h′ be positive integers such that bb′ = k and hh′ ≡ −1 (mod k). For z ∈ R+, as
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z → 0+, we have that

m

(
a, b;

1

k
(h+ iz)

)
µ

(
−a
b
,
a

b
;
1

k
(h+ iz)

)
=

(
i

z

) 1
2

(ψ(γ))−1q
1
24 q

− 1
24

1 (−1)ab′ζah′−a
2b ζ−3a2kh′

2b2
ζa
b − 1

1− ζah′
b

(1 +O(qα
1 )),

for some α > 1/24.

Combining Theorem 3.2 with the following asymptotics for the modular crank function
then gives (3.13), which in turn then implies Theorem 1.2 as argued above. The reader
should note the multiplicative constant in front of C(ζa

b ; q) in the statement of Theorem 1.2.

Proposition 3.3. Let b|k, gcd(a, b) = 1, gcd(h, k) = 1, where a, b, h, k are positive integers,
and let b′ and h′ be positive integers such that bb′ = k and hh′ ≡ −1 (mod k). For z ∈ R+,
as z → 0+, we have that

C

(
ζa
b ;

1

k
(h+ iz)

)
=

(
i

z

) 1
2

(ψ(γ))−1q
1
24 q

− 1
24

1 (−1)ab′ζah′−a
2b ζ−a2kh′

2b2
ζa
b − 1

1− ζah′
b

(1 +O(qβ
1 )),

for some β > 1/24.

3.3. Proof of Theorem 3.2. We define

Z :=
1

k
(h+ iz) , Z ′ :=

1

k

(
h′ +

i

z

)
, γ :=

(
h −

“
hh′+1

k

”
k −h′

)
.

Thus, we have that γZ ′ = Z, and because z ∈ R+, we have that Z ∈ H, Z ′ ∈ H. Using (3.4),
(3.5), and the fact that ϑ(v; z) is an odd function with respect to v, we find that

m(a, b;Z) = q
1
24 ζ−a

2b (ζa
b − 1)

ϑ
(

a
b
;Z
)

η(Z)

(where we recall that q = e2πiZ). Using this, we find that

m(a, b;Z)µ
(
−a
b
,
a

b
;Z
)

:= m(a, b;Z)
A
(
−a

b
, a

b
;Z
)

ϑ
(

a
b
;Z
) =

q
1
24 ζ−a

2b (ζa
b − 1)

η(Z)
A
(
−a
b
,
a

b
;Z
)
,

(3.15)

where we recall that

A(u, v;Z) := eπiu
∑
n∈Z

(−1)nq
n(n+1)

2
e2πinv

1− e(u)qn
.

Using the fact that Z = γZ ′, together with (3.11), we find that the completed function Â
(defined in (3.7)) satisfies

Â
(
−a
b
,
a

b
;Z
)

= Â
(
−a
b
,
a

b
; γZ ′

)
=

(
i

z

)
e−

3πika2

b2
· i
z Â

(
−ai
bz
,
ai

bz
;Z ′
)
.
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Next, by hypothesis, there exists some positive integer b′ so that bb′ = k. Thus, we rewrite(
i

z

)
e−

3πika2

b2
· i
z Â

(
−ai
bz
,
ai

bz
;Z ′
)

=

(
i

z

)
e−

3πika2

b2
· i
z Â

(
ab′h′

k
− ab′Z ′,−ab

′h′

k
+ ab′Z ′;Z ′

)
=

(
i

z

)
(−1)ab′ζ−3a2kh′

2b2 Â

(
ah′

b
,−ah

′

b
;Z ′
)
,(3.16)

where we have made use of (3.10).
From (3.15) and (3.16), also using the definition (3.7), we rewrite

m(a, b;Z)µ
(
−a
b
,
a

b
;Z
)

=
q

1
24 ζ−a

2b (ζa
b − 1)

η(Z)

(
i

z

)
(−1)ab′ζ−3a2kh′

2b2 A

(
ah′

b
,−ah

′

b
;Z ′
)

+
q

1
24 ζ−a

2b (ζa
b − 1)

η(Z)

(
i

z

)
(−1)ab′ζ−3a2kh′

2b2

(
i

2

)
R

(
2ah′

b
;Z ′
)
ϑ

(
−ah

′

b
;Z ′
)

− q
1
24 ζ−a

2b (ζa
b − 1)

η(Z)

(
i

2

)
R

(
−2a

b
;Z

)
ϑ
(a
b
; γZ ′

)
.(3.17)

Lemma 3.4. With hypotheses as above, we have that

R

(
−2a

b
;Z

)
=
e−

πihk
4

+πi(k−1)(− 2a
b

+ 1
2)(−1)

(k−1)(h−1)
2

√
kz

×
k−1∑
`=0

e−
πih
k (`− k−1

2 )
2

ζ2a`
b (−1)`(h+1)

(
−R

(
`− k−1

2

k
;
i

kz

)
+ h

(
`− k−1

2

k
;
i

kz

))
.

Proof of Lemma 3.4. We first apply a dissection result for the functions R(v; z) proved by the
first author and Bringmann in Proposition 2.3 of [12]. A direct application to the function
R(−2a/b; (h+ iz)/k) results in a sum on `, where ` ranges from 0 to k−1, of terms involving
the function

R

(
−2ak

b
+ `h− (k − 1)(h− 1)

2
+ iz

(
`− k − 1

2

)
; kh+ ikz

)
.

Now because h and k are relatively prime, at least one of h and k must be odd. Moreover,
we recall that b|k. Together these facts imply that

−2ak

b
+ `h− (k − 1)(h− 1)

2
∈ Z.

Next we use that R(v + 1; z) = −R(v) [45], as well as (3.8) and (3.9). A short calculation
gives the desired result. �

Resuming the proof of Theorem 3.2, we apply Lemma 3.4 to (3.17) and find that

m(a, b;Z)µ
(
−a
b
,
a

b
;Z
)

= Σ1 + Σ2 + Σ3 + Σ4,(3.18)
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where

Σ1 :=
q

1
24 ζ−a

2b (ζa
b − 1)

η(Z)

(
i

z

)
(−1)ab′ζ−3a2kh′

2b2 A

(
ah′

b
,−ah

′

b
;Z ′
)
,

Σ2 :=
q

1
24 ζ−a

2b (ζa
b − 1)

η(Z)

(
i

z

)
(−1)ab′ζ−3a2kh′

2b2

(
i

2

)
R

(
2ah′

b
;Z ′
)
ϑ

(
−ah

′

b
;Z ′
)
,

Σ3 :=
q

1
24 ζ−a

2b (ζa
b − 1)

η(Z)

(
i

2

)
ϑ
(a
b
; γZ ′

)
× e−

πihk
4

+πi(k−1)(− 2a
b

+ 1
2)(−1)

(k−1)(h−1)
2

√
kz

k−1∑
`=0

e−
πih
k (`− k−1

2 )
2

ζ2a`
b (−1)`(h+1)R

(
`− k−1

2

k
;
i

kz

)
,

Σ4 := −q
1
24 ζ−a

2b (ζa
b − 1)

η(Z)

(
i

2

)
ϑ
(a
b
; γZ ′

)
× e−

πihk
4

+πi(k−1)(− 2a
b

+ 1
2)(−1)

(k−1)(h−1)
2

√
kz

k−1∑
`=0

e−
πih
k (`− k−1

2 )
2

ζ2a`
b (−1)`(h+1)h

(
`− k−1

2

k
;
i

kz

)
.

Lemma 3.5. With hypotheses as above, we have that Σ2 + Σ3 = 0.

Proof. We prove this by first using the fact that

ϑ
(a
b
; γZ ′

)
= ρ(γ)

(
i

z

) 1
2

ζh′a2k
2b2 (−1)ab′ϑ

(
−ah

′

b
;Z ′
)
,(3.19)

where ρ(γ) is an 8th root of unity. This follows after applying (3.5) and (3.6), using that
ai
bz

= ab′Z ′ − ah′

b
. Using (3.19), it suffices to show that

iζ−3a2kh
2b2 R

(
2ah′

b
;Z ′
)

(3.20)

equals

√
i

k
e−

πihk
4 eπi(k−1)(− 2a

b
+ 1

2)(−1)
(k−1)(h−1)

2 ρ(γ)ζh′a2k
2b2

k−1∑
`=0

e−
πih
k (`− k−1

2 )
2

ζ2a`
b (−1)`(h+1)R

(
`− k−1

2

k
;
i

kz

)
.

(3.21)

This follows in a similar manner to the argument used by the third author and Bringmann
and Mahlburg to prove Proposition 2.7 in [14]. Namely, all other terms in (3.18) are mero-
morphic, thus it suffices to show that each term in (3.20) and (3.21) has a Fourier expansion
of the form ∑

n∈Q\{0}

a(n)Γ

(
1

2
; 4π|n|y

)
q−n,

where Γ(α;x) :=
∫∞

x
e−ttα−1dt. This follows according to the argument given [14]. �
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Lemma 3.6. With hypotheses as above, we have that

Σ4 = q
1
24 q

1
12
1 κ(1 +O(qα

1 ))

for some constant κ, and some α > 0 as z → 0+.

Proof. We first note, using (3.1) and the definition of η(z), that

η−1(γZ ′) =

(
i

z

)− 1
2

(ψ(γ))−1η−1(Z ′) =

(
i

z

)− 1
2

q
− 1

24
1 (ψ(γ))−1 (1 +O(qα2

1 )),(3.22)

for some α2 > 1/24 as z → 0+. Next, let c ∈ Q. Then by definition

h

(
c;

i

kz

)
=

∫ ∞

−∞

e−
πx2

kz
−2πcx

cosh(πx)
dx.

We have that e−2πcx/ cosh(πx) = O(1) on R, so that

h

(
c;

i

kz

)
= O

(∫ ∞

−∞
e−

πx2

kz dx

)
= O(

√
z),

where we have used the fact that z ∈ R+. The proof of Lemma 3.6 now follows after a
short calculation from this fact, the transformations (3.19) and (3.22), and from the series
expansion for ϑ(x;Z ′) for x ∈ Q given in (3.4). �

Lemma 3.7. With hypotheses as above, we have that

A

(
ah′

b
,−ah

′

b
;Z ′
)

=
ζah′

2b

1− ζah′
b

(1 +O(qα1
1 )),(3.23)

for some α1 > 0 as z → 0+.

Proof. This follows easily using the definition of A(u, v; z). �

Theorem 3.2 now follows after combining (3.18), Lemma 3.5, and Lemma 3.6, noting that
Σ4 → 0 as z → 0+, as well as Lemma 3.7, and (3.22) to obtain

m (a, b;Z)µ
(
−a
b
,
a

b
;Z
)

=

(
i

z

) 1
2

(ψ(γ))−1q
1
24 q

− 1
24

1 (−1)ab′ζah′−a
2b ζ−3a2kh′

2b2
ζa
b − 1

1− ζah′
b

(1 +O(qα3
1 )),

for some α3 > 1/24 as z → 0+.

3.4. Proof of Proposition 3.3. We use the product expansion for the Klein forms t(r,s)(z) =

t
(b)
(r,s)(z) with respect to the modulus b given in (3.3) and the definition of η(z) to rewrite the

crank generating function as

C
(
ζ−a
b ;Z

)
= − q

1
24 ζ−a

2b (1− ζa
b )

(2πi)η(Z)t(0,a)(Z)
= − q

1
24 ζ−a

2b (1− ζa
b )

(2πi)η(γZ ′)t(0,a)(γZ ′)
,(3.24)
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where we again use the fact that Z = γZ ′ to obtain the last equality above. Next we apply
(3.2) and (3.22) to (3.24) and find that

C
(
ζ−a
b ;Z

)
= −q

1
24 q

− 1
24

1 ζ−a
2b (1− ζa

b )

(2πi)t(ak,−ah′)(Z ′)

(
i

z

) 1
2

(ψ(γ))−1 (1 +O(qα2
1 ))(3.25)

for some α2 > 1/24 as z → 0+. We next use (3.3), (3.4), (3.5), and (3.6) to rewrite

t(ak,−ah′)(Z
′) = −

iζ−a2h′k
2b2 q

a2k2

2b2

1 ϑ
(
−ah′

b
+ a

b

(
h′ + i

z

)
;Z ′)

(2πi)η3(Z ′)
= (−1)ab′+1 iζ

a2h′k
2b2 ϑ

(
−ah′

b
;Z ′)

(2πi)η3(Z ′)

= (−1)ab′ ζ
a2h′k
2b2 (ζ−ah′

2b − ζah′

2b )(1 +O(qα3
1 ))

(2πi)
,(3.26)

for some α3 > 0 as z → 0+. Thus, from (3.25) and (3.26) we have that

C
(
ζ−a
b ;Z

)
=

(
i

z

) 1
2

ψ(γ)−1q
1
24 q

−1
24
1 (−1)ab′+1ζ−a

2b ζ
−a2h′k
2b2

1− ζa
b

ζ−ah′

2b − ζah′
2b

(1 +O(qβ
1 ))

for some β > 1/24 as z → 0+. After some simplification, we obtain the proposition.
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