MOONSHINE FOR M_{24} AND DONALDSON INVARIANTS OF $\mathbb{C P}{ }^{2}$

ANDREAS MALMENDIER AND KEN ONO

Abstract

Eguchi, Ooguri, and Tachikawa recently conjectured [9] a new moonshine phenomenon. They conjecture that the coefficients of a certain mock modular form $H(\tau)$, which arises from the $K 3$ surface elliptic genus, are sums of dimensions of irreducible representations of the Mathieu group M_{24}. We prove that $H(\tau)$ surprisingly also plays a significant role in the theory of Donaldson invariants. We prove that the Moore-Witten [15] u-plane integrals for $H(\tau)$ are the $\mathrm{SO}(3)$-Donaldson invariants of $\mathbb{C P}^{2}$. This result then implies a moonshine phenomenon where these invariants conjecturally are expressions in the dimensions of the irreducible representations of M_{24}. Indeed, we obtain an explicit expression for the Donaldson invariant generating function $\mathrm{Z}(p, S)$ in terms of the derivatives of $H(\tau)$.

1. Introduction and statement of RESULTS

This paper concerns the deep properties of the modular forms and mock modular forms which arise from a study of the $K 3$ surface elliptic genus. To define these objects, we require Dedekind's eta-function $\eta(\tau):=q^{\frac{1}{24}} \prod_{n=1}^{\infty}\left(1-q^{n}\right)$ (note. $\tau \in \mathbb{H}$ throughout and $\left.q:=e^{2 \pi i \tau}\right)$, and the classical Jacobi theta function

$$
\vartheta_{a b}(v \mid \tau):=\sum_{n \in \mathbb{Z}} q^{\frac{(2 n+a)^{2}}{8}} e^{\pi i(2 n+a)\left(v+\frac{b}{2}\right)}
$$

where $a, b \in\{0,1\}$ and $v \in \mathbb{C}$. We recall some standard identities.

$\vartheta_{1}(v \mid \tau)=\vartheta_{11}(v \mid \tau)$	$\vartheta_{1}(0 \mid \tau)=0$	$\vartheta_{1}^{\prime}(0 \mid \tau)=-2 \pi \eta^{3}(\tau)$
$\vartheta_{2}(v \mid \tau)=\vartheta_{10}(v \mid \tau)$	$\vartheta_{2}(0 \mid \tau)=\sum_{n \in \mathbb{Z}} q^{\frac{(2 n+1)^{2}}{8}}$	$\vartheta_{2}^{\prime}(0 \mid \tau)=0$
$\vartheta_{3}(v \mid \tau)=\vartheta_{00}(v \mid \tau)$	$\vartheta_{3}(0 \mid \tau)=\sum_{n \in \mathbb{Z}} q^{\frac{n^{2}}{2}}$	$\vartheta_{3}^{\prime}(0 \mid \tau)=0$
$\vartheta_{4}(v \mid \tau)=\vartheta_{01}(v \mid \tau)$	$\vartheta_{4}(0 \mid \tau)=\sum_{n \in \mathbb{Z}}(-1)^{n} q^{\frac{n^{2}}{2}}$	$\vartheta_{4}^{\prime}(0 \mid \tau)=0$

Moreover, for convenience we let $\vartheta_{j}(\tau):=\vartheta_{j}(0 \mid \tau)$ for $j=2,3,4$.
The $K 3$ surface elliptic genus [7] is given by

$$
Z(z \mid \tau)=8\left[\left(\frac{\vartheta_{2}(z \mid \tau)}{\vartheta_{2}(\tau)}\right)^{2}+\left(\frac{\vartheta_{3}(z \mid \tau)}{\vartheta_{3}(\tau)}\right)^{2}+\left(\frac{\vartheta_{4}(z \mid \tau)}{\vartheta_{4}(\tau)}\right)^{2}\right] .
$$

The second author thanks the NSF and the Asa Griggs Candler Fund for their generous support.

This expression is obtained by an orbifold calculation on T^{4} / \mathbb{Z}_{2} in [6]. Its specializations at $z=0, z=1 / 2$ and $z=(\tau+1) / 2$ gives the classical topological invariants $\chi=24, \sigma=16$ and $\hat{A}=-2$ respectively. Here we consider the following alternate representation obtained by Eguchi and Hikami [8] motivated by superconformal field theory:

$$
Z(z \mid \tau)=\frac{\vartheta_{1}(z \mid \tau)^{2}}{\eta(\tau)^{3}}(24 \mu(z ; \tau)+H(\tau))
$$

Here $H(\tau)$ is defined by

$$
\begin{equation*}
H(\tau):=-8 \sum_{w \in\left\{\frac{1}{2}, \frac{1+\tau}{2}, \frac{\tau}{2}\right\}} \mu(w ; \tau)=2 q^{-\frac{1}{8}}\left(-1+\sum_{n=1}^{\infty} A_{n} q^{n}\right) \tag{1.1}
\end{equation*}
$$

where $\mu(z ; \tau)$ is the famous function

$$
\mu(z ; \tau)=\frac{i e^{\pi i z}}{\vartheta_{1}(z \mid \tau)} \sum_{n \in \mathbb{Z}}(-1)^{n} \frac{q^{\frac{1}{2} n(n+1)} e^{2 \pi i n z}}{1-q^{n} e^{2 \pi i z}}
$$

defined by Zwegers [18] in his thesis on Ramanujan's mock theta functions.
As explained in [8], $H(\tau)$ is the holomorphic part of a weight $1 / 2$ harmonic Maass form, a so-called mock modular form. Its first few coefficients A_{n} are:

n	1	2	3	4	5	6	7	8
\cdots								
A_{n}	45	231	770	2277	5796	13915	30843	65550
\cdots								

Amazingly, Eguchi, Ooguri, and Tachikawa [9] recognized these numbers as sums of dimensions of the irreducible representations of the Mathieu group M_{24}. Indeed, the dimensions of the irreducible representations are (in increasing order):

$$
\begin{array}{r}
1,23,45,45,231,231,252,253,483,770,770,990,990,1035,1035,1035, \\
1265,1771,2024,2277,3312,3520,5313,5544,5796,10395 .
\end{array}
$$

One sees that $A_{1}, A_{2}, A_{3}, A_{4}$ and A_{5} are dimensions, while

$$
A_{6}=3520+10395 \quad \text { and } \quad A_{7}=10395+5796+5544+5313+2024+1771
$$

We have their "moonshine" conjecture ${ }^{1}$ - also referred to as "umbral moonshine" [4]:
Conjecture (Moonshine). The Fourier coefficients A_{n} of $H(\tau)$ are given as special sums ${ }^{2}$ of dimensions of irreducible representations of the simple sporadic group M_{24}.

Here we prove that the coefficients of $H(\tau)$ encode further deep information. We compute the numbers $\mathbf{D}_{m, 2 n}[H(\tau)]$, the Moore-Witten [15] u-plane integrals for $H(\tau)$, and we prove that they are, up to a multiplicative factor of 12 , the $S O(3)$-Donaldson invariants for $\mathbb{C P}^{2}$.

[^0]These invariants are a sequence of rational numbers which together form a diffeomorphism class invariant for $\mathbb{C P}^{2}$ (for background see $[5,12,13,14]$).
Theorem 1.1. For all $m, n \in \mathbb{N}_{0}$, the $\mathrm{SO}(3)$-Donaldson invariants $\boldsymbol{\Phi}_{m, 2 n}$ for $\mathbb{C P}^{2}$ satisfy

$$
12 \boldsymbol{\Phi}_{m, 2 n}=\mathbf{D}_{m, 2 n}[H(\tau)]
$$

Remark. The u-plane integrals $\mathbf{D}_{m, 2 n}[H(\tau)]$ are given explicitly in terms of the coefficients of $H(\tau)$ (see 3.1). Therefore, the Eguchi-Ooguri-Tachikawa Moonshine Conjecture implies that these Donaldson invariants are given explicitly in terms of the dimensions of the irreducible representations of M_{24}. We will discuss the numerical identities implied by Theorem 1.1 in Section 3.2. We also describe the Donaldson invariant generating function in terms of derivatives of $H(\tau)$.

This paper builds upon earlier work by the authors [14] on the Moore-Witten Conjecture for $\mathbb{C P}^{2}$. We shall make substantial use of the results in that paper, and we will recall the main facts that we need to prove Theorem 1.1.

In Section 2 we recall basic facts about those weight $1 / 2$ harmonic Maass forms whose shadow is the cube of Dedekind's eta-function. In Section 3 we recall and apply the main results from [14]. In particular, we recall the relationship between the u-plane integrals for such forms and the $S O(3)$-Donaldson invariants for $\mathbb{C P}^{2}$. We then conclude with the proof of Theorem 1.1.

2. Certain harmonic MaAss forms

We let $M(\tau)$ be a weight $1 / 2$ harmonic Maass form ${ }^{3}$ (for definitions see $[3,16,17]$) for $\Gamma(2) \cap \Gamma_{0}(4)$ whose shadow ${ }^{4}$ is $\eta(\tau)^{3}$. Namely, we have that

$$
\begin{equation*}
\sqrt{2} i \frac{d}{d \bar{\tau}} M(\tau)=\frac{1}{\sqrt{\operatorname{Im} \tau}} \overline{\eta^{3}(\tau)} \tag{2.1}
\end{equation*}
$$

For such $M(\tau)$, we write $M(\tau)=M^{+}(\tau)+M^{-}(\tau)$, where the holomorphic part, a mock modular form, is $M^{+}(\tau)=q^{-1 / 8} \sum_{n \geq 0} H_{n} q^{n / 2}$. The non-holomorphic part $M^{-}(\tau)$ is

$$
M^{-}(\tau)=-\frac{2 i}{\sqrt{\pi}} \sum_{l \geq 0}(-1)^{l} \Gamma\left(\frac{1}{2}, \pi \frac{(2 l+1)^{2}}{2} \operatorname{Im} \tau\right) q^{-\frac{(2 l+1)^{2}}{8}}
$$

where $\Gamma(1 / 2, t)$ is the incomplete Gamma function. This follows from Jacobi's identity

$$
\eta(\tau)^{3}=q^{\frac{1}{8}} \sum_{n=0}^{\infty}(-1)^{n}(2 n+1) q^{\frac{n^{2}+n}{2}}
$$

Remark. Note that the non-holomorphic part $M^{-}(\tau)$ is the same for every weight $1 / 2$ harmonic Maass form with shadow $\eta^{3}(\tau)$ since this part is obtained as the "Eichler-Zagier" integral of the shadow. However, the holomorphic part is not uniquely determined. It is unique up to the addition of a weakly holomorphic modular form, a form whose poles (if any) are supported at cusps.

[^1]The next result gives families of modular forms from such an $M(\tau)$ using Cohen brackets. To make this precise, we recall the two Eisenstein series

$$
E_{2}(\tau):=1-24 \sum_{n=1}^{\infty} \sum_{d \mid n} d q^{n} \quad \text { and } \quad \widehat{E}_{2}(\tau):=E_{2}(\tau)-\frac{3}{\pi \operatorname{Im} \tau}
$$

The authors proved the following lemma in [14].
Lemma 2.1. [Lemma 4.10 of [14]] Assuming the hypotheses above, we have that

$$
\mathcal{E}_{\frac{1}{2}}^{k}[M(\tau)]:=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} \frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}+j\right)} 2^{2 j} 3^{j} E_{2}^{k-j}(\tau)\left(q \frac{d}{d q}\right)^{j} M(\tau)
$$

is modular of weight $2 k+1 / 2$ for $\Gamma(2) \cap \Gamma_{0}(4)$, and it satisfies

$$
\sqrt{2} i \frac{d}{d \bar{\tau}} \mathcal{E}_{\frac{1}{2}}^{k}[M(\tau)]=\frac{1}{\sqrt{\operatorname{Im} \tau}} \widehat{E}_{2}^{k}(\tau) \overline{\eta^{3}(\tau)} .
$$

This lemma implies the following corollary:
Corollary 2.2. If $M(\tau)$ and $\widetilde{M}(\tau)$ are weight $\frac{1}{2}$ harmonic Maass forms on $\Gamma(2) \cap \Gamma_{0}(4)$ whose shadow is $\eta(\tau)^{3}$, then

$$
\mathcal{E}_{\frac{1}{2}}^{k}[M(\tau)]-\mathcal{E}_{\frac{1}{2}}^{k}[\widetilde{M}(\tau)]=\mathcal{E}_{\frac{1}{2}}^{k}[M(\tau)-\widetilde{M}(\tau)]=\mathcal{E}_{\frac{1}{2}}^{k}\left[M^{+}(\tau)-\widetilde{M}^{+}(\tau)\right]
$$

is a weakly holomorphic modular form of weight $2 k+1 / 2$.
2.1. The $\mathcal{Q}(q)$ series. Here we recall one explicit example of a harmonic Maass form which plays the role of $M(\tau)$ in the previous subsection. To this end, we define modular forms $\mathcal{A}(\tau)$ and $\mathcal{B}(\tau)$ by

$$
\begin{aligned}
& \mathcal{A}(\tau):=A(8 \tau)=\sum_{n=-1}^{\infty} a(n) q^{n}:=\frac{\eta(4 \tau)^{8}}{\eta(8 \tau)^{7}}=q^{-1}-8 q^{3}+27 q^{7}-\cdots \\
& \mathcal{B}(\tau):=B(8 \tau)=\sum_{n=-1}^{\infty} b(n) q^{n}:=\frac{\eta(8 \tau)^{5}}{\eta(16 \tau)^{4}}=q^{-1}-5 q^{7}+9 q^{15}-\cdots
\end{aligned}
$$

We sieve on the Fourier expansion of $\mathcal{A}(\tau)$ to define the modular forms

$$
\begin{aligned}
& \mathcal{A}_{3,8}(\tau):=A_{3,8}(8 \tau)=\sum_{n \equiv 3} a(n) q^{n}=-8 q^{3}-56 q^{11}+\cdots \\
& \mathcal{A}_{7,8}(\tau):=A_{7,8}(8 \tau)=\sum_{n \equiv 7} a(n) q^{n}=q^{-1}+27 q^{7}+105 q^{15}+\cdots
\end{aligned}
$$

We also recall the definition of the following mock theta function

$$
\mathcal{M}(q):=q^{-1} \sum_{n=0}^{\infty} \frac{(-1)^{n+1} q^{8(n+1)^{2}} \prod_{k=1}^{n}\left(1-q^{16 k-8}\right)}{\prod_{k=1}^{n+1}\left(1+q^{16 k-8}\right)^{2}}=-q^{7}+2 q^{15}-3 q^{23}+\cdots
$$

We define

$$
\mathcal{Q}^{+}(q)=\mathcal{Q}^{+}(\tau):=-\frac{7}{2} \mathcal{A}_{3,8}(\tau)+\frac{3}{2} \mathcal{A}_{7,8}(\tau)-\frac{1}{2} \mathcal{B}(\tau)+4 \mathcal{M}(q),
$$

and so we have that

$$
\begin{equation*}
\mathcal{Q}^{+}(\tau / 8)=\frac{1}{q^{\frac{1}{8}}}\left(1+28 q^{\frac{1}{2}}+39 q+196 q^{\frac{3}{2}}+161 q^{2}+\ldots\right) \tag{2.2}
\end{equation*}
$$

In terms of this q-series, the authors proved the following theorem in [14].
Theorem 2.3. [Theorem 7.2 of [14]] The function $\mathcal{Q}^{+}(\tau / 8)$ is the holomorphic part of a weight $1 / 2$ harmonic Maass form on $\Gamma(2) \cap \Gamma_{0}(4)$ whose shadow is $\eta(\tau)^{3}$.
3. u-Plane integrals, Donaldson invariants and the proof of Theorem 1.1

Suppose again that $M(\tau)$ is a weight $1 / 2$ harmonic Maass form on $\Gamma(2) \cap \Gamma_{0}(4)$ whose shadow is $\eta(\tau)^{3}$. For $m, n \in \mathbb{N}_{0}$, the authors proved that the quantities

$$
\begin{equation*}
\mathbf{D}_{m, 2 n}\left[M^{+}(\tau)\right]:=\sum_{k=0}^{n} \frac{(-1)^{k+1}}{2^{n-1} 3^{n}} \frac{(2 n)!}{(n-k)!k!}\left[\frac{\vartheta_{4}^{9}(\tau)\left[\vartheta_{2}^{4}(\tau)+\vartheta_{3}^{4}(\tau)\right]^{m+n-k}}{\left[\vartheta_{2}(\tau) \vartheta_{3}(\tau)\right]^{2 m+2 n+3}} \mathcal{E}_{\frac{1}{2}}^{k}\left[M^{+}(\tau)\right]\right]_{q^{0}} \tag{3.1}
\end{equation*}
$$

where $[.]_{q^{0}}$ denotes the constant coefficient term, are the Moore-Witten u-plane integrals for $M(\tau)$ (cf. [14]). Notice that if $\widetilde{M}(\tau)$ is another such form, then

$$
\begin{equation*}
\mathbf{D}_{m, 2 n}\left[M^{+}(\tau)\right]-\mathbf{D}_{m, 2 n}\left[\widetilde{M}^{+}(\tau)\right]=\mathbf{D}_{m, 2 n}\left[M^{+}(\tau)-\widetilde{M}^{+}(\tau)\right] \tag{3.2}
\end{equation*}
$$

In their seminal paper [15], Moore and Witten essentially conjectured that the u-plane integrals in (3.1) for a suitable $M^{+}(\tau)$ should give the $\mathrm{SO}(3)$-Donaldson invariants of $\mathbb{C P}^{2}$. These invariants are an infinite sequence of rational numbers $\boldsymbol{\Phi}_{m, 2 n}$ labeled by integers $m, n \in \mathbb{N}$ that can be assembled in a generating function in the two formal variables p, S :

$$
\mathbf{Z}(p, S)=\sum_{m, n \geq 0} \boldsymbol{\Phi}_{m, 2 n} \frac{p^{m}}{m!} \frac{S^{2 n}}{(2 n)!}
$$

This power series is a diffeomorphism invariant for $\mathbb{C P}^{2}$. The main theorem in [14] proved this conjecture for $\mathcal{Q}^{+}(\tau / 8)$.

Theorem 3.1. [Theorem 1.1 of [14]] For $m, n \in \mathbb{N}_{0}$ we have that

$$
\boldsymbol{\Phi}_{m, 2 n}=\mathbf{D}_{m, 2 n}\left[\mathcal{Q}^{+}(\tau / 8)\right]
$$

Using the work in [14], we prove the following important theorem.
Theorem 3.2. Let $M(\tau)$ be as above, then for all $m, n \in \mathbb{N}_{0}$ we have:

$$
\mathbf{D}_{m, 2 n}\left[\mathcal{Q}^{+}(\tau / 8)\right]-\mathbf{D}_{m, 2 n}\left[M^{+}(\tau)\right]=\mathbf{D}_{m, 2 n}\left[\mathcal{Q}^{+}(\tau / 8)-M^{+}(\tau)\right]=0
$$

Proof. We prove that the constant terms vanish in expressions of the form

$$
\sum_{k=0}^{n} \frac{(-1)^{k+1}}{2^{n-1} 3^{n}} \frac{(2 n)!}{(n-k)!k!} \frac{\vartheta_{4}^{9}(\tau)\left[\vartheta_{2}^{4}(\tau)+\vartheta_{3}^{4}(\tau)\right]^{m+n-k}}{\left[\vartheta_{2}(\tau) \vartheta_{3}(\tau)\right]^{2 m+2 n+3}} \mathcal{E}_{\frac{1}{2}}^{k}\left[\mathcal{Q}^{+}(\tau / 8)-M(\tau)\right]
$$

It is sufficient to show that this is the case for each summand. Therefore, after rescaling $\tau \rightarrow 8 \tau$ and $q \rightarrow q^{8}$ it is enough to show that the constant vanishes in

$$
\begin{align*}
& \frac{\Theta_{4}^{9}(\tau)\left[16 \Theta_{2}^{4}(\tau)+\Theta_{3}^{4}(\tau)\right]^{m+n-k}}{\left[\Theta_{2}(\tau) \Theta_{3}(\tau)\right]^{2 m+2 n+3}} \mathcal{E}_{\frac{1}{2}}^{k}\left[\mathcal{Q}^{+}(\tau)-M(8 \tau)\right] \tag{3.3}\\
= & \frac{\Theta_{4}^{9}(\tau)}{\Theta_{2}(\tau) \Theta_{3}(\tau) \eta(8 \tau)^{3}} \frac{\left[16 \Theta_{2}^{4}(\tau)+\Theta_{3}^{4}(\tau)\right]^{m+n-k}}{\left[\Theta_{2}(\tau) \Theta_{3}(\tau)\right]^{2 m+2 n-2 k}} \frac{\eta(8 \tau)^{3}}{\left(\Theta_{2}(\tau) \Theta_{3}(\tau)\right)^{2 k+2}} \mathcal{E}_{\frac{1}{2}}^{k}\left[\mathcal{Q}^{+}(\tau)-M(8 \tau)\right] .
\end{align*}
$$

Here the classical theta functions are defined by

$$
\begin{gathered}
\Theta_{2}(\tau):=\frac{\eta(16 \tau)^{2}}{\eta(8 \tau)}=\sum_{n=0}^{\infty} q^{(2 n+1)^{2}}=q+q^{9}+q^{25}+\cdots, \\
\Theta_{3}(\tau):=\frac{\eta(8 \tau)^{5}}{\eta(4 \tau)^{2} \eta(16 \tau)^{2}}=1+2 \sum_{n=1}^{\infty} q^{4 n^{2}}=1+2 q^{4}+2 q^{16}+2 q^{36}+\cdots, \\
\Theta_{4}(\tau):=\frac{\eta(4 \tau)^{2}}{\eta(8 \tau)}=1+2 \sum_{n=1}^{\infty}(-1)^{n} q^{4 n^{2}}=1-2 q^{4}+2 q^{16}-2 q^{36}+\cdots
\end{gathered}
$$

These are related to the theta functions $\vartheta_{2}(\tau), \vartheta_{3}(\tau)$ and $\vartheta_{4}(\tau)$ by

$$
\vartheta_{2}(\tau)=2 \Theta_{2}\left(\frac{\tau}{8}\right), \quad \vartheta_{3}(\tau)=\Theta_{3}\left(\frac{\tau}{8}\right), \quad \vartheta_{4}(\tau)=\Theta_{4}\left(\frac{\tau}{8}\right)
$$

We define a weakly holomorphic modular function by

$$
\begin{equation*}
\widehat{Z_{0}}(q)=\widehat{Z_{0}}(\tau):=\frac{E^{*}(4 \tau)}{\Theta_{2}(\tau)^{2} \Theta_{3}(\tau)^{2}} \tag{3.4}
\end{equation*}
$$

where $E^{*}(4 \tau)$ is the weight 2 Eisenstein series with

$$
E^{*}(4 \tau)=16 \Theta_{2}(\tau)^{4}+\Theta_{3}(\tau)^{4}=1+24 q^{4}+24 q^{2}+\cdots
$$

and $\widehat{Z_{0}}(\tau / 8)$ is a Hauptmodul for $\Gamma_{0}(4)$. A calculation shows that

$$
q \frac{d}{d q} \widehat{Z_{0}}(q)=\frac{\Theta_{4}(\tau)^{9}}{\Theta_{2}(\tau) \Theta_{3}(\tau) \eta(8 \tau)^{3}}
$$

Equation (3.3) becomes

$$
\begin{equation*}
q \frac{d}{d q} \widehat{Z_{0}}(q) \cdot \widehat{Z_{0}}(q)^{m+n-k} \cdot \mathcal{H}_{k}(q) \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{H}_{k}(q):=\frac{\eta(8 \tau)^{3}}{\left(\Theta_{2}(\tau) \Theta_{3}(\tau)\right)^{2 k+2}} \mathcal{E}_{\frac{1}{2}}^{k}\left[\mathcal{Q}^{+}(\tau)-M(8 \tau)\right] \tag{3.6}
\end{equation*}
$$

To prove the theorem, it suffices to show that the constant term in (3.5) vanishes. Hence, it is enough to show that $\mathcal{H}_{k}(q)$ is a polynomial in $\widehat{Z_{0}}(q)$. To this end, we define $M_{0}^{*}\left(\Gamma_{0}(8)\right)$ to be the space of modular function on $\Gamma_{0}(8)$ which are holomorphic away from infinity, and is a subspace of $\mathbb{C}\left(\left(q^{2}\right)\right)$. One can easily verify that $M_{0}^{*}\left(\Gamma_{0}(8)\right)$ is precisely the set of polynomials in $\widehat{Z_{0}}(q)$. From Corollary 2.2 we can observe that $\mathcal{H}_{k}(q)$ is modular with weight 0 . A calculation shows that $\left(\Theta_{2}(\tau) \Theta_{3}(\tau)\right)^{-2}=q^{-2} f\left(q^{4}\right)$ is holomorphic away from infinity, and $f(q) \in \mathbb{Z}[[q]]$. We also have $\eta(8 \tau)^{3}=q g\left(q^{8}\right)$ and $\mathcal{E}_{\frac{1}{2}}^{k}\left[\mathcal{Q}^{+}(\tau)-M(8 \tau)\right]=q^{-1} h\left(q^{4}\right)$, where $g(q), h(q) \in \mathbb{Z}[[q]]$. Hence, $\mathcal{H}_{k}(q) \in \mathbb{C}\left(\left(q^{2}\right)\right)$ is modular of weight 0 on $M_{0}^{*}\left(\Gamma_{0}(8)\right)$, and so is a polynomial in $\widehat{Z}_{0}(\tau)$.
3.1. Proof of Theorem 1.1. Since $H(\tau)$ is the mock modular part of a weight $1 / 2$ harmonic Maass form on $\Gamma(2) \cap \Gamma_{0}(4)$ whose shadow is the $8 \cdot 3 \cdot \eta(\tau)^{3} / 2=12 \eta(\tau)^{3}$, it follows from Theorem 3.1 and 3.2 that for $m, n \in \mathbb{N}_{0}$ we have:

$$
\begin{aligned}
\boldsymbol{\Phi}_{m, 2 n} & =\mathbf{D}_{m, 2 n}\left[\mathcal{Q}^{+}(\tau / 8)\right]=\mathbf{D}_{m, 2 n}[H(\tau) / 12]+\mathbf{D}_{m, 2 n}\left[\mathcal{Q}^{+}(\tau / 8)-H(\tau) / 12\right] \\
& =\mathbf{D}_{m, 2 n}[H(\tau) / 12]=\frac{1}{12} \mathbf{D}_{m, 2 n}[H(\tau)]
\end{aligned}
$$

3.2. Discussion of the identities implied by Theorem 1.1. In the table below we list the first non-vanishing $\mathrm{SO}(3)$-Donaldson invariants $\boldsymbol{\Phi}_{m, 2 n}$ of $\mathbb{C P}^{2}$ as well as the coefficients $\mathbf{D}_{m, 2 n}\left[M^{+}(\tau)\right]$ when the mock modular form is given as $M^{+}(\tau)=q^{-1 / 8} \sum_{k \geq 0} H_{k} q^{k / 2}$. In general, $\mathbf{D}_{m, 2 n}\left[M^{+}(\tau)\right]$ is nonvanishing for $m+n \equiv 0(\bmod 2)$ and a rational linear combination of the first $(m+n) / 2+1$ coefficients of $M^{+}(\tau)$.

(m, n)	$\boldsymbol{\Phi}_{m, 2 n}$	$\mathbf{D}_{m, 2 n}\left[M^{+}(\tau)\right]$
$(0,0)$	-1	$-\frac{1}{4} H_{1}+6 H_{0}$
$(0,2)$	$-\frac{3}{16}$	$-\frac{49}{64} H_{2}+\frac{9}{4} H_{1}-\frac{2133}{64} H_{0}$
$(1,1)$	$-\frac{5}{16}$	$-\frac{7}{64} H_{2}+\frac{1}{4} H_{1}-\frac{195}{64} H_{0}$
$(2,0)$	$-\frac{19}{16}$	$-\frac{1}{64} H_{2}-\frac{1}{4} H_{1}+\frac{411}{64} H_{0}$
$(0,4)$	$-\frac{232}{256}$	$-\frac{14641}{1024} H_{3}+\frac{2401}{128} H_{2}+\frac{44631}{1024} H_{1}+\frac{108741}{128} H_{0}$
$(1,3)$	$-\frac{152}{256}$	$-\frac{1331}{1024} H_{3}-\frac{49}{128} H_{2}+\frac{10341}{1024} H_{1}-\frac{1749}{128} H_{0}$
$(2,2)$	$-\frac{136}{256}$	$-\frac{121}{1024} H_{3}-\frac{91}{128} H_{2}+\frac{2895}{1024} H_{1}-\frac{3687}{128} H_{0}$
$(3,1)$	$-\frac{184}{256}$	$-\frac{11}{1024} H_{3}-\frac{29}{128} H_{2}+\frac{589}{1024} H_{1}-\frac{753}{128} H_{0}$
$(4,0)$	$-\frac{680}{256}$	$-\frac{1}{1024} H_{3}-\frac{7}{128} H_{2}-\frac{505}{1024} H_{1}+\frac{1725}{128} H_{0}$

Theorem 3.1 states that choosing $M^{+}(\tau)=\mathcal{Q}^{+}(\tau / 8)$ from (2.2) we find equality of the Donaldson invariants $\boldsymbol{\Phi}_{m, 2 n}$ and the u-plane integral $\mathbf{D}_{m, 2 n}\left[M^{+}(\tau)\right]$. In fact, setting $H_{0}=1, H_{1}=28, H_{2}=39, H_{3}=196$ in the third column of the table above gives the Donaldson invariants of the second column.

On the other hand, the choice $M^{+}(\tau)=H(\tau) / 12$ from (1.1) implies that $H_{0}=-1 / 6$, $H_{2 k}=A_{k} / 6, H_{2 k+1}=0$ for $k \in \mathbb{N}$. Theorem 1.1 states that choosing $M^{+}(\tau)=H(\tau) / 12$ we still find equality of the Donaldson invariants $\boldsymbol{\Phi}_{m, 2 n}$ and the u-plane integral $\mathbf{D}_{m, 2 n}\left[M^{+}(\tau)\right]$.

In fact, setting $H_{0}=-1 / 6, H_{1}=0, H_{2}=45 / 6, H_{3}=0$ in the third column of the table gives the Donaldson invariants of the second column as well.

The proof of Theorem 1.1 implies the following form for the generating function $\mathbf{Z}(p, S)$ of the $\mathrm{SO}(3)$-Donaldson invariants of $\mathbb{C P}^{2}$ in terms of the mock modular form $H(\tau)$:

$$
\begin{align*}
& \mathbf{Z}(p, s)=- \sum_{m, n \geq 0} \\
& \quad \frac{p^{m} S^{2 n}}{2^{2 m+3 n+4} \cdot 3^{n+1} \cdot m!\cdot n!} \tag{3.7}\\
& \times\left[q \frac{d}{d q} \widehat{Z_{0}}(q) \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \widehat{Z_{0}}(q)^{m+n-k} \widehat{\mathcal{E}^{k}}[H(8 \tau)]\right]_{q^{0}}
\end{align*}
$$

where $\widehat{Z_{0}}(q)$ was defined in (3.4) and we have set

$$
\widehat{\mathcal{E}^{k}}[H(8 \tau)]=\frac{\eta(8 \tau)^{3}}{\left(\Theta_{2}(\tau) \Theta_{3}(\tau)\right)^{2 k+2}} \mathcal{E}_{\frac{1}{2}}^{k}[H(8 \tau)] .
$$

References

[1] J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. London Math. Soc. 11 (1979), 308339.
[2] R. E. Borcherds, Monstrous Moonshine and Monstrous Lie superalgebras, Invent. Math. 109 (1992), 405-444.
[3] J. H. Bruinier and J. Funke, On two geometric theta lifts, Duke Math. J. 125 (2004), 45-90.
[4] M. C. N. Cheng, J. F. R. Duncan, J. A. Harvey, Umbral Moonshine, arXiv:1204.2779v2 [math.RT].
[5] S. K. Donaldson and P. B. Kronheimer, The geometry of four-manifolds, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1990.
[6] T. Eguchi, H. Ooguri, A. Taormina and S. K. Yang, Superconformal Algebras And String Compactification On Manifolds With SU(N) Holonomy,' Nuclear Phys. B 315 (1989), no. 1, 193-221.
[7] T. Eguchi, Y. Sugawara, A. Taormina, Modular forms and elliptic genera for ALE spaces. Adv. Stud. Pure Math., 61, Math. Soc. Japan, Tokyo, 2011.
[8] T. Eguchi, K. Hikami, Superconformal algebras and mock theta functions. II. Rademacher expansion for K3 surface. Commun. Number Theory Phys. 3 (2009), no. 3, 531-554.
[9] T. Eguchi, H. Ooguri, Y. Tachikawa, Notes on the K3 surface and the Mathieu group M24. Exp. Math. 20 (2011), no. 1, 91-96.
[10] I. B. Frenkel, J. Lepowsky, and A. Meurman, A natural representation of the Fischer-Griess Monster with the modular J function as character, Proc. Natl. Acad. Sci. USA 81 (1984), 3256-3260.
[11] M. R. Gaberdiel, R. Volpato, Mathieu Moonshine and Orbifold K3s, arXiv:1206.5143v1 [hep-th].
[12] L. Göttsche, Modular forms and Donaldson invariants for 4 -manifolds with $b_{+}=1$, J. Amer. Math. Soc. 9 (1996), no. 3, 827-843.
[13] L. Göttsche and D. Zagier, Jacobi forms and the structure of Donaldson invariants for 4-manifolds with $b_{+}=1$, Selecta Math. 4 (1998), no. 1, 69-115.
[14] A. Malmendier, K. Ono, $\mathrm{SO}(3)$-Donaldson invariants of $\mathbb{C P}^{2}$ and mock theta functions. Geometry and Topology. accepted for publication. arXiv:0808.1442 [math.DG].
[15] G. Moore and E. Witten, Integration over the u-plane in Donaldson theory, Adv. Theor. Math. Phys. 1 (1997), no. 2, 298-387.
[16] K. Ono, Unearthing the visions of a master: Harmonic Maass forms and number theory, Proceedings of the 2008 Harvard-MIT Current Developments in Mathematics Conference, Int. Press, Somerville, Ма., 2009, 347-454.
[17] D. Zagier, Ramanujan's mock theta functions and their applications [d'après Zwegers and Bringmann-Ono], Sém. Bourbaki (2007/2008), Astérisque, No. 326, Exp No. 986, vii-viii, (2010) 143-164.
[18] S. P. Zwegers, mock theta functions, Ph.D. Thesis, Universiteit Utrecht, 2002.
Department of Mathematics, Colby College, Waterville, Maine 04901
E-mail address: andreas.malmendier@colby.edu
Department of Mathematics and Computer Science, Emory University, Atlanta, GeorGIA 30322

E-mail address: ono@mathcs.emory.edu

[^0]: ${ }^{1}$ This is analogous to the "Monstrous Moonshine" conjecture by Conway and Norton which related the coefficients of Klein's j-function to the representations of the Monster [1]. By work of Frenkel, Lepowsky and Meurman [10], and Borcherds [2] (among others), moonshine for $j(\tau)$ is now understood.
 ${ }^{2}$ As in the case of the Montrous Moonshine Conjecture, there are many representations of the generic A_{n}, and so the proper formulation of this conjecture requires a precise description of these sums [11].

[^1]: ${ }^{3}$ These forms were first defined by Bruinier and Funke [3] in their work on geometric theta lifts.
 ${ }^{4}$ The term shadow was coined by Zagier in [17].

