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ABSTRACT. We show that the rank generating function U (¢; q) for strongly unimodal sequences
lies at the interface of quantum modular forms and mock modular forms. We use U(—1;¢q) to
obtain a quantum modular form which is “dual” to the quantum form Zagier constructed from
Kontsevich’s “strange” function F(q). As a result we obtain a new representation for a certain
generating function for L-values. The series U (i;q) = U(—i; q) is a mock modular form, and we
use this fact to obtain new congruences for certain enumerative functions.

1. INTRODUCTION AND STATEMENT OF RESULTS

A sequence of integers {a;}5_, is a strongly unimodal sequence of size n if it satisfies
O<a; <ay<---<agp>ags) > Agyo > - >as >0

for some k and a; +- - - + a5 = n. Let u(n) be the number of such sequences. The rank of such a
sequence is s — 2k + 1, the number of terms after the maximal term minus the number of terms
that precede it.

By letting ¢ (resp. t™1) keep track of the terms after (resp. before) a maximal term, we find
that u(m,n), the number of size n and rank m sequences, satisfies’

(L1) Utq) =Y _um,n)t"q" =Y (—tg:q)n(—t ' ¢:0)ng™" = g+ +(t+ 1+t )+,
m,n n=0

where (z;¢), == (1 —2)(1 —2q)(1 — x¢?*) -+ (1 —x¢" ') for n > 1 and (z;q) := 1.

Example. The strongly unimodal sequences of size 5 are: {5}, {1,4}, {4, 1}, {1,3,1}, {2,3},
{3,2}, and so u(5) = 6. Respectively, their ranks are 0,—1,1,0,—1, 1.

The g-series U(—1;q), the generating function for the number of size n sequences with even
rank minus the number with odd rank, is intimately related to Kontsevich’s strange function?

o

(12)  Fl@=> (@@n=1+01-+1-q(1-)+(1-)1-¢)1-¢")+....

n=0

The authors thank the NSF and the Asa Griggs Candler Fund for their generous support.

'In [1] u(n) is denoted u*(n) and U(1;q) is denoted U*(q).

2Zagier credits Kontsevich for relating F/(q) to Feynmann integrals in a lecture at Max Planck in 1997.
1



2 JENNIFER BRYSON, KEN ONO, SARAH PITMAN AND ROBERT C. RHOADES

It is strange because it does not converge on any open subset of C, but is well-defined at all
roots of unity. Zagier [2| proved that this function satisfies the even “stranger” identity

]_ > n271
(1.3) F(q) = —3 ;nxlz(n)qm,

where xi2(e) = (%) Neither side of this identity makes sense simultaneously. Indeed, the
right hand side® converges in the unit disk |¢| < 1, but nowhere on the unit circle. The identity
means that F'(q) at roots of unity agrees with the radial limit of the right hand side.

We prove that U(—1;¢), which converges in |g| < 1, also gives F'(¢~') at roots of unity.

Theorem 1.1. If q is a root of unity, then F(qg') = U(—1;q).
Example. Here are two examples: U(—1;—1) = F(—1) =3 and U(—1;7) = F(—i) = 8 4 3i.

Remark. Th. 1.1 is analogous to the result of Cohen [3, 4] that o(q) = —o*(q~ ') for roots of
unity ¢, for the well-known g¢-series o(q) and o*(¢q) that Andrews, Dyson, and Hickerson [5]
defined in their work on partition ranks.

Zagier [2] used (1.3) to obtain the following identity

(1.4) e By (I—e)(l—e).  (1—em)=)" % : (%) ,

where Glaisher’s T,, numbers (see (2.3) and A002439 in [6]) are the “algebraic factors” of
L(x12,2n + 2). As a companion to Th. 1.1, we use U(—1;q) to give these same L-values.
Theorem 1.2. As a power series in t, we have that

[e9]

3 U(—1;e7t) = ZTn , (—t)” _ G\ég,iw.L(sznJrz). (%)n

n \ 24 T n!

= n=0
These results are related to the next theorem which gives a new quantum modular form.
Following Zagier* [4], a weight k quantum modular form is a complex-valued function f on Q,

or possibly P}(Q) \ S for some finite set S, such that for all v = (2%) € SLy(Z) the function

hy() := f(x) — e(y)(cx +d) " f (ﬁiiz)

satisfies a “suitable” property of continuity or analyticity. The €(vy) are roots of unity, such as
those in the theory of half-integral weight modular forms when k € %Z \ Z. We prove that

(1.5) d(z) == e 12 - U(—1;*)

is a weight 2 quantum modular form. Since SLo(Z) = ((41), (9 3")) and ¢(z)—eTz-p(z+1) = 0,
it suffices to consider (9 '). The following theorem establishes the desired relationship on the
larger domain Q U H — {0}, where H is the upper-half of the complex plane.

3As Zagier points out in Section 6 of [2], the right hand side of the identity is essentially the “half-derivative”
of Dedekind’s eta-function, which then suggests that the series may be related to a weight 3/2 modular object.

4Zagier’s definition of a quantum modular form is intentionally vague with the idea that sufficient flexibility
is required to allow for interesting examples. Here we modify his defintion to include half-integral weights k£ and
multiplier systems e(7y).
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Theorem 1.3. If x € QUH — {0}, then
L \_3
¢(x) + (—iz) 2 ¢(—1/x) = h(z),
3

where (ix)~2 is the principal branch and

h(l‘) — £ . 77(7) . dr — 26 3 (627rzx; 6271'2:(:)20 / 77(7—) . dr.
2mi Jo o (—i(z +7))2 2 o (—i(x+71))2
Here n(7) = €5 (2™ ¢2")  is Dedekind’s eta-function. Moreover, taking n(z) = 0 for

r €R, h:R — CisaC® function which is real analytic everywhere except at x = 0, and
h™M(0) = (—7i/12)" - T,,, where T), is the nth Glaisher number.

T

Remark. Zagier [2] proved that e12 - F(e*™*) is a quantum modular form. Th. 1.3 gives a dual
quantum modular form, one whose domain naturally extends beyond Q to include H. This is
somewhat analogous to the situation for o(q) and 0*(q) discussed above. Zagier constructed a
quantum modular form from these g-series in Example 1 of [4].

Remark. Th. 1.3 implies that ®(z) := n(2)¢(z) behaves analogously to a weight 2 modular
form for SLy(Z ) for z € H with a suitable error function. Namely, ®(z + 1) = ®(z) and
®(z) — 272® (1) = n(2)h(2), see also Th. 1.1 of [7].

It turns out that U(1;¢) and U(=i;q) also possess deep properties. We have that U(1;q) [1]
is a mixed mock modular form, and U(=%i;q) is a mock theta function (see [8, 9, 10]). We use
these facts to study congruences for certain enumerative functions.

Theorem 1.4. If 3 < ¢ # 23 (mod 24) is prime, 6({) := (> —1)/24 and {1 k, then for alln
u(lPn+kl —5() =0 (mod 2).
Example. If ¢ = 7, then Th. 1.4 gives u(49n + a) =0 (mod 2) for a € {5,12, 19,26, 33, 40}.

The nature of Th. 1.4 suggests the existence of a Hecke-type identity for U(—1;¢) analogous
to those obtained for o(¢q) and ¢*(g) in [5]. Here we obtain such an identity.

Theorem 1.5. We have that

Z Z 1)itlq D) Z Z 1)itlq 2n2mn— 105D

n>0 6n>|65+1| n,m>0 6n>|65+1|

These congruences appear to have refinements modulo 4. In analogy with the theory of
partition ranks [11, 12, 13], we suspect that ranks also “explain” these congruences. Namely,
let u(a, b;n) be the number of size n strongly unimodal sequences with rank = a (mod b).

Conjecture 1.6. If ¢ =7,11,13,17 (mod 24) is prime and (%) = —1, then for all n we have
(1.6) u(Pn+kl—5(0)) =0 (mod 4).

Moreover, for a € {0,1,2,3} we have u(a,4;*n + kl — 5(¢)) =0 (mod 2) and

(1.7) u(0,4; Pn + kl — 6(0)) = u(2,4;n + kl — 6(¢))  (mod 4).
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We have that u(1,4;n) = u(3,4;n), and so the truth of (1.7) is a proposed explanation
of (1.6). Therefore, it is natural to study U(%1;¢) and the 3rd order mock theta function
14, 15, 16]

Ulticg) = 0(g) =S L S Lty gt — 0y (S0
(i;9) = (Q)_ZW_Z(_Q’Q>”‘] —(q4) Z 1 — gintl
n=1 ‘171 /" p—g *© nez

Using this mock theta function we are able to obtain the following related congruences.
Theorem 1.7. If (Q),6) = 1, then there are arithmetic progressions An + B such that
u(0,4; An+ B) = u(2,4; An+ B) (mod Q).
Example. For Q = 5 the cusp form in the proof of Th. 1.7 is annihilated by 7'(11?), and so if
a(24n — 1) :=u(0,4;n) — u(2,4;n) (mod 5)
(note. a(n) =0 if n # 23 (mod 24)), then for every n = 23,47 (mod 120) we have that

a(121n) — (%) a(n) +a(n/121) =0 (mod 5).

) =0 and a(n/121) = 0 when 11||n, this gives congruences such as

u(0,2; 732050 + 721) = u(2, 4; 732050 + 721)  (mod 5).

n

Since (11

2. QUANTUM PROPERTIES OF U(—1;¢)

Here we prove the quantum properties of U(—1;¢q). We first prove Th. 1.1 relating the values
of Kontsevich’s F(q) and U(—1;q) at roots of unity. We then prove Th. 1.2 giving a new
representation of Zagier’s L-value generating function, and we conclude with a proof of Th. 1.3.

2.1. Proof of Theorem 1.1. For ¢ a fixed kth root of unity, define the polynomial
k—1

C(X)=) (X =& (X =&,

n=0
We have the identity

(2.1) CE'X)=(X-1D}CX)-X(XF-1)+ X.
Define the functions u,(X) for a > 1 by
(2= X )u (67°X) = C(€7°X) = (1= X)* - (1 - £ IX)’C(X).
Hence for a = k we have
(2.2) XFC(X) = up(X).
Then we have
(2= X5) (a1 (X) = (X)) = (1 = EX)2 - (1 = €°X)HC(EX) — (1 — €720 (€1 X)),

By (2.1), we have
C(faX) — (1 - €a+1X)2c(£a+1X) 4 é-a+1.
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Letting X =1 gives uy;1(1) — ua(1) = €471 = €)%+ (1 — £%)2. Induction and (2.2) gives
k—1

C1) =) &1 =€) - (1 -2

n=0

2.2. Proof of Theorem 1.2. By the results of Andrews, Zwegers and the fourth author [7]
(see (9.2) and Prop. 9.2 and 9.3) with ¢ = ¢72™, we have

[e'e] w1l _3 %) : 2rx
gt es(:72%) _m? sinh(FF) N
= —= 3z ¢ — d . 1 O
WO =2 g T Ve ) ey (L OED)

n=0
for any positive N where v(q) = > 7, ﬁ. Since we have U(—1;q) = (¢;¢9)%quv(q) and
(¢;9)% = e 59271 (1 4+ O(zN)) for any positive N, we have
1 =2 sinh(%%)
— / xe 3z . —3
V322 Jr cos(mz)
for any N. The Glaisher’s T-numbers are given by
sinh (222 2 — T, ' 2l
(2.3) M == Z __An (T .
cosh(mx) i (2n+1)!' \ 3

n=0

¢ #U(-Lq) = da (1+0 ("))

We also have the identity

- i) J .
/xQJe_ 3z dx = (2) (i) V3227,
R

211 \ 27

Combining these identities and then setting t = 27z completes the proof.

2.3. Proof of Theorem 1.3. Define G(z) := (e*™%; €2™*) U (—1;e*#). Th. 1.1 of [7] gives
. 100 3 3 100

o)~ [T Py [T
2 =z (—i(z+71))2 2m =z (—i(t+2))2

(2.4)

(o () () [ s ()

z

Note that using n (—%) = /—izn(z) we have
(2.5) 7 <—1)3 [oo (_Zn(;)gldr =(vV—=iz)’n(z2)* /0 n(=3)" _r2dr

2y (i -2 = (=i (-1- 1))
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Similarly, we have

(2.6) 0 (—é) /OO ﬁdr — _2(2) /O_Z %dr

Combining (2.4)-(2.6) givezs
2) — 272 —1 zﬁ z = —77(7) T—i 2)3 = —77(7—)3 T
w076 (=) =30 [ i v [

Dividing by 7(z) and using its modular transformation property give the result for x € H.
For x € Q, note that (e2™*; ™) _, = 0. Moreover, Zagier, in the discussion after the theorem

of Section 6 of [2] explains how the integral fooo n(z)(z + x)_%dz is real analytic for real x.

3. CONGRUENCE PROPERTIES AND THE HECKE-TYPE IDENTITY

We first prove Th. 1.4 on the parity of u(n), and we then prove Th. 1.5 giving the Hecke-type
identity for U(—1;¢). We then conclude this section with the proof of Th. 1.7.

3.1. Proof of Theorem 1.4. By Th. 1 of [14] (see equation (1.2)), we have that

L GO R Vi ¢
U(_l’q)_(q;q)mf(Z (1—g¢m)? _Zl—q +Z 1—q )

n=1 n=1

If spt(n) is the smallest parts partition function of Andrews, then by Th. 4 of [17] we have:

Zspt L (i +Z " n()l2+Q)>.

T (9w —

We have used the elementary fact that

(3.1) Zqu _ZW:Z o

n=1 dln S 1l-a

We have U(—1;¢) = S(¢q) (mod 2), and so the theorem follows from Th. 1.2 in [18]°.

3.2. Proof of Theorem 1.5. We prove Th. 1.5 using the method of Bailey pairs. As usual,
we let (a), := (a;q),. Two sequences (o, 3,) form a Bailey pair for a if

b= e

r=0 n—T(CLQ)n+7‘

2n a _1\n % n .
L (1)<_);)<(q)1: : Z(q_”;q)j(aq";Q)jqjﬁj.

The following Bailey pair is central to the proof of Th. 1.5.

oy =

da+1

5Th. 1.2 in [18] is not stated correctly in [18]. One must replace pm? by p***'m?2 where ged(p, m) = 1. Recent

work by Andrews, Garvan, and Liang [19] gives a new proof of this result.
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Lemma 3.1. If 3, =1 and ag =1 and forn >0

then (au, By) is a Bailey pair with respect to 1.

Proof. We apply Th. 8 of [20] with 3, = 1 for all n. By letting b,¢,d — 0, and then letting
a = 1, one obtains the lemma. Some care is required for the j = 0 and 7 = 1 terms. U

The following is Bailey’s Lemma (for example, see [20]).

Lemma 3.2 (Bailey’s Lemma). If o, and 3, form a Bailey pair relative to a, then

3 (pOn(p2)nlad/prp2)" | (0)oc(ad/p1p2)oc S (01)u(p2)alaa/0102)" B

>0 (ag/p1)n(aq/p2)n (ag/p1)oo(aq/p2) o >0

Proof of Theorem 1.5. By Lemma 3.2 with p; = z, p, = 27! and a = 1, Lemma 3.1 gives

Z(l‘)n(w—l)nq" :($Q)OO(:B71Q)OO i (I)m(xzil)oo Z

q’fL
Oy
2 _ n el V) n
= (9)3 (@)% & (—zg")(d —27¢")

Dividing by (1 — z)(1 — z™') and collecting the n = 0 terms give

-1 n_ ! (D s
Z($q>n71($ Qn-14 —(1 Y < (@) 1>

n>0 [e%S)
3.2
. RCNESTNS S (R
(% & 0 —2g)(1—a"'q")
To simplify the «,,, we have that
1_q2j—1 :1. 1+qj+1+qj—1
(l-¢)1=g¢g™) 2 \1l-¢ 1-¢7)’
which in turn implies that
n .
, 1—q¥ ! G- 1 1+ 1" 1+¢" 8n(n-1)
Z(_l)] ( . 4 >A_1 qigjj% _ —. —q . q73 + ( ) . q . qi%
= (1=¢)(1—=g¢) 2 1—¢ 2 1-q
n—1 ;
1 , o 3ig-n 1 —¢¥
=N (=1 1+ -~
e gy
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Thus ag = 1, and for n > 1 we have

_ 3n(n—-1)

_ -2 1[1+ _ —1)"(1 4+ ¢ 2
an:(l_q2n)q2n2 n(q ( q.q 3+( ) ( q )q

1—gq 1—qm

+ )T+ )+ ¢ + q2j)qw>)

n 3n(n—1)
) ) ras —1)" ———1n
—(1 - g (1 S g CC
— 1—gq
J
— /(3+1) (n+3)
2 - 233 n(n
=(=g™e™ | Y (T ) (1" (14N
Jj=—n+1
- (3j+1) (nt1)
2 . 2037 n(n
=(1=g")g | Y (=1 ) +(=D"A+q")q >
Jj=-n
We note that
- n n 7,’1(”-’—1) n
lim 1 ((xq)oo(x 1) oo B 1) _ Z q _ Z (=1)"'q 2 (1+¢ )
=1 (1 —z)(1—271) (@)3% = (1-q)? (1—q")
Now insert these facts in (3.2), let x — 1, and use the identity }f—gz =1+2> 5,¢™. O

3.3. Proof of Theorem 1.7. We give a sketch since it is analogous to Th. 1.5 of [12] and Th. 1
of [21]. We have
Uiz q) = U(g) = > _(w(0,4;n) — u(2,4;n))q",
n=0

where ¥(q) is one of Ramanujan’s 3rd order mock theta functions. We have that ¢~ '¥(¢??) is the
holomorphic part of a weight 1/2 harmonic Maass form whose shadow is a unary theta function.
Using quadratic and trivial twists modulo @, one obtains a weight 1/2 weakly holomorphic
modular form. By work of Treneer, [22], one obtains weakly holomorphic forms of half-integer
weight which are congruent to cusp forms modulo ). By the Shimura correspondence, we obtain
even integer weight cusp forms, which by Lemma 3.30 of [23], are annihilated modulo @ by
infinitely many Hecke operators T'(p). Since the Shimura correspondence is Hecke equivariant,
it follows that infinitely many half-integral weight Hecke operators T'(p?) annihilate these cusp
forms modulo ). The proof follows from the formula for the action of these operators.
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