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Abstract. We show that the rank generating function U(t; q) for strongly unimodal sequences
lies at the interface of quantum modular forms and mock modular forms. We use U(−1; q) to
obtain a quantum modular form which is “dual” to the quantum form Zagier constructed from
Kontsevich’s “strange” function F (q). As a result we obtain a new representation for a certain
generating function for L-values. The series U(i; q) = U(−i; q) is a mock modular form, and we
use this fact to obtain new congruences for certain enumerative functions.

1. Introduction and Statement of Results

A sequence of integers {ai}s
i=1 is a strongly unimodal sequence of size n if it satisfies

0 < a1 < a2 < · · · < ak > ak+1 > ak+2 > · · · > as > 0

for some k and a1 + · · ·+as = n. Let u(n) be the number of such sequences. The rank of such a
sequence is s− 2k + 1, the number of terms after the maximal term minus the number of terms
that precede it.

By letting t (resp. t−1) keep track of the terms after (resp. before) a maximal term, we find
that u(m, n), the number of size n and rank m sequences, satisfies1

(1.1) U(t; q) :=
∑
m,n

u(m, n)tmqn =
∞∑

n=0

(−tq; q)n(−t−1q; q)nq
n+1 = q + q2 +(t+1+ t−1)q3 + . . . ,

where (x; q)n := (1− x)(1− xq)(1− xq2) · · · (1− xqn−1) for n ≥ 1 and (x; q)0 := 1.

Example. The strongly unimodal sequences of size 5 are: {5}, {1, 4}, {4, 1}, {1, 3, 1}, {2, 3},
{3, 2}, and so u(5) = 6. Respectively, their ranks are 0,−1, 1, 0,−1, 1.

The q-series U(−1; q), the generating function for the number of size n sequences with even
rank minus the number with odd rank, is intimately related to Kontsevich’s strange function2

(1.2) F (q) :=
∞∑

n=0

(q; q)n = 1 + (1− q) + (1− q)(1− q2) + (1− q)(1− q2)(1− q3) + . . . .

The authors thank the NSF and the Asa Griggs Candler Fund for their generous support.
1In [1] u(n) is denoted u∗(n) and U(1; q) is denoted U∗(q).
2Zagier credits Kontsevich for relating F (q) to Feynmann integrals in a lecture at Max Planck in 1997.
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It is strange because it does not converge on any open subset of C, but is well-defined at all
roots of unity. Zagier [2] proved that this function satisfies the even “stranger” identity

(1.3) F (q) = −1

2

∞∑
n=1

nχ12(n)q
n2−1

24 ,

where χ12(•) =
(

12
•

)
. Neither side of this identity makes sense simultaneously. Indeed, the

right hand side3 converges in the unit disk |q| < 1, but nowhere on the unit circle. The identity
means that F (q) at roots of unity agrees with the radial limit of the right hand side.

We prove that U(−1; q), which converges in |q| < 1, also gives F (q−1) at roots of unity.

Theorem 1.1. If q is a root of unity, then F (q−1) = U(−1; q).

Example. Here are two examples: U(−1;−1) = F (−1) = 3 and U(−1; i) = F (−i) = 8 + 3i.

Remark. Th. 1.1 is analogous to the result of Cohen [3, 4] that σ(q) = −σ∗(q−1) for roots of
unity q, for the well-known q-series σ(q) and σ∗(q) that Andrews, Dyson, and Hickerson [5]
defined in their work on partition ranks.

Zagier [2] used (1.3) to obtain the following identity

(1.4) e−
t
24

∞∑
n=0

(1− e−t)(1− e−2t) . . . (1− e−nt) =
∞∑

n=0

Tn

n!
·
(

t

24

)n

,

where Glaisher’s Tn numbers (see (2.3) and A002439 in [6]) are the “algebraic factors” of
L(χ12, 2n + 2). As a companion to Th. 1.1, we use U(−1; q) to give these same L-values.

Theorem 1.2. As a power series in t, we have that

e
t
24 · U(−1; e−t) =

∞∑
n=0

Tn

n!
·
(
−t

24

)n

=
6
√

3

π2
·
∞∑

n=0

(2n + 1)!

n!
· L(χ12, 2n + 2) ·

(
−3t

2π2

)n

.

These results are related to the next theorem which gives a new quantum modular form.
Following Zagier4 [4], a weight k quantum modular form is a complex-valued function f on Q,
or possibly P1(Q) \ S for some finite set S, such that for all γ = ( a b

c d ) ∈ SL2(Z) the function

hγ(x) := f(x)− ε(γ)(cx + d)−kf

(
ax + b

cx + d

)
satisfies a “suitable” property of continuity or analyticity. The ε(γ) are roots of unity, such as
those in the theory of half-integral weight modular forms when k ∈ 1

2
Z \ Z. We prove that

(1.5) φ(x) := e−
πix
12 · U(−1; e2πix)

is a weight 3
2

quantum modular form. Since SL2(Z) = 〈( 1 1
0 1 ) , ( 0 −1

1 0 )〉 and φ(x)−e
πi
12 ·φ(x+1) = 0,

it suffices to consider ( 0 −1
1 0 ). The following theorem establishes the desired relationship on the

larger domain Q ∪H− {0}, where H is the upper-half of the complex plane.

3As Zagier points out in Section 6 of [2], the right hand side of the identity is essentially the “half-derivative”
of Dedekind’s eta-function, which then suggests that the series may be related to a weight 3/2 modular object.

4Zagier’s definition of a quantum modular form is intentionally vague with the idea that sufficient flexibility
is required to allow for interesting examples. Here we modify his defintion to include half-integral weights k and
multiplier systems ε(γ).
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Theorem 1.3. If x ∈ Q ∪H− {0}, then

φ(x) + (−ix)−
3
2 φ(−1/x) = h(x),

where (ix)−
3
2 is the principal branch and

h(x) :=

√
3

2πi

∫ i∞

0

η(τ)

(−i(x + τ))
3
2

dτ − i

2
e

πix
6 (e2πix; e2πix)2

∞ ·
∫ i∞

0

η(τ)3

(−i(x + τ))
1
2

dτ.

Here η(τ) := e
πiτ
12 (e2πiτ ; e2πiτ )∞ is Dedekind’s eta-function. Moreover, taking η(x) = 0 for

x ∈ R, h : R → C is a C∞ function which is real analytic everywhere except at x = 0, and
h(n)(0) = (−πi/12)n · Tn, where Tn is the nth Glaisher number.

Remark. Zagier [2] proved that e
πix
12 ·F (e2πix) is a quantum modular form. Th. 1.3 gives a dual

quantum modular form, one whose domain naturally extends beyond Q to include H. This is
somewhat analogous to the situation for σ(q) and σ∗(q) discussed above. Zagier constructed a
quantum modular form from these q-series in Example 1 of [4].

Remark. Th. 1.3 implies that Φ(z) := η(z)φ(z) behaves analogously to a weight 2 modular
form for SL2(Z) for z ∈ H with a suitable error function. Namely, Φ(z + 1) = Φ(z) and
Φ(z)− z−2Φ

(
−1

z

)
= η(z)h(z), see also Th. 1.1 of [7].

It turns out that U(1; q) and U(±i; q) also possess deep properties. We have that U(1; q) [1]
is a mixed mock modular form, and U(±i; q) is a mock theta function (see [8, 9, 10]). We use
these facts to study congruences for certain enumerative functions.

Theorem 1.4. If 3 < ` 6≡ 23 (mod 24) is prime, δ(`) := (`2 − 1)/24 and ` - k, then for all n

u(`2n + k`− δ(`)) ≡ 0 (mod 2).

Example. If ` = 7, then Th. 1.4 gives u(49n + a) ≡ 0 (mod 2) for a ∈ {5, 12, 19, 26, 33, 40}.

The nature of Th. 1.4 suggests the existence of a Hecke-type identity for U(−1; q) analogous
to those obtained for σ(q) and σ∗(q) in [5]. Here we obtain such an identity.

Theorem 1.5. We have that

U(−1; q) =
∑
n>0

∑
6n≥|6j+1|

(−1)j+1q2n2− j(3j+1)
2 + 2

∑
n,m>0

∑
6n≥|6j+1|

(−1)j+1q2n2+mn− j(3j+1)
2 .

These congruences appear to have refinements modulo 4. In analogy with the theory of
partition ranks [11, 12, 13], we suspect that ranks also “explain” these congruences. Namely,
let u(a, b; n) be the number of size n strongly unimodal sequences with rank ≡ a (mod b).

Conjecture 1.6. If ` ≡ 7, 11, 13, 17 (mod 24) is prime and
(

k
`

)
= −1, then for all n we have

(1.6) u(`2n + k`− δ(`)) ≡ 0 (mod 4).

Moreover, for a ∈ {0, 1, 2, 3} we have u(a, 4; `2n + k`− δ(`)) ≡ 0 (mod 2) and

(1.7) u(0, 4; `2n + k`− δ(`)) ≡ u(2, 4; `2n + k`− δ(`)) (mod 4).
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We have that u(1, 4; n) = u(3, 4; n), and so the truth of (1.7) is a proposed explanation
of (1.6). Therefore, it is natural to study U(±1; q) and the 3rd order mock theta function
[14, 15, 16]

U(±i; q) = Ψ(q) =
∞∑

n=1

qn2

(q; q2)n

=
∞∑

n=0

(−q2; q2)nq
n+1 =

q

(q4)∞
·
∑
n∈Z

(−1)nq6n(n+1)

1− q4n+1
.

Using this mock theta function we are able to obtain the following related congruences.

Theorem 1.7. If (Q, 6) = 1, then there are arithmetic progressions An + B such that

u(0, 4; An + B) ≡ u(2, 4; An + B) (mod Q).

Example. For Q = 5 the cusp form in the proof of Th. 1.7 is annihilated by T (112), and so if

a(24n− 1) := u(0, 4; n)− u(2, 4; n) (mod 5)

(note. a(n) = 0 if n 6≡ 23 (mod 24)), then for every n ≡ 23, 47 (mod 120) we have that

a(121n)−
( n

11

)
a(n) + a(n/121) ≡ 0 (mod 5).

Since
(

n
11

)
= 0 and a(n/121) = 0 when 11||n, this gives congruences such as

u(0, 2; 73205n + 721) ≡ u(2, 4; 73205n + 721) (mod 5).

2. Quantum properties of U(−1; q)

Here we prove the quantum properties of U(−1; q). We first prove Th. 1.1 relating the values
of Kontsevich’s F (q) and U(−1; q) at roots of unity. We then prove Th. 1.2 giving a new
representation of Zagier’s L-value generating function, and we conclude with a proof of Th. 1.3.

2.1. Proof of Theorem 1.1. For ξ a fixed kth root of unity, define the polynomial

C(X) =
k−1∑
n=0

(X − ξ−1) · · · (X − ξ−n).

We have the identity

(2.1) C(ξ−1X) = (X − 1)2C(X)−X(Xk − 1) + X.

Define the functions ua(X) for a ≥ 1 by

(2−Xk)ua(ξ
−aX) = C(ξ−aX)− (1−X)2 · · · (1− ξ−(a−1)X)2C(X).

Hence for a = k we have

(2.2) XkC(X) = uk(X).

Then we have

(2−Xk) (ua+1(X)− ua(X)) = (1− ξX)2 · · · (1− ξaX)2(C(ξaX)− (1− ξa+1)2C(ξa+1X)).

By (2.1), we have

C(ξaX) = (1− ξa+1X)2C(ξa+1X) + ξa+1.
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Letting X = 1 gives ua+1(1)− ua(1) = ξa+1(1− ξ)2 · · · (1− ξa)2. Induction and (2.2) gives

C(1) =
k−1∑
n=0

ξn+1(1− ξ)2 · · · (1− ξn)2.

2.2. Proof of Theorem 1.2. By the results of Andrews, Zwegers and the fourth author [7]
(see (9.2) and Prop. 9.2 and 9.3) with q = e−2πz, we have

qv(q) =
∞∑

n=0

qn+1

(qn+1; q)2
∞

=
e

π
6
( 1

z
− 3

2
z)

√
3z

∫ ∞

−∞
xe−

πx2

3z ·
sinh(2πx

3
)

cos(πx)
dx · (1 + O(zN))

for any positive N where v(q) =
∑∞

n=0
qn

(qn;q)2∞
. Since we have U(−1; q) = (q; q)2

∞qv(q) and

(q; q)2
∞ = e−

π
6
( 1

z
−z)z−1(1 + O(zN)) for any positive N , we have

q−
1
24 U(−1; q) =

1
√

3z
3
2

∫
R

xe−
πx2

3z ·
sinh(2πx

3
)

cos(πx)
dx
(
1 + O

(
zN
))

for any N . The Glaisher’s T -numbers are given by

(2.3)
sinh(2πx

3
)

cosh(πx)
=

2

i

∞∑
n=0

Tn

(2n + 1)!

(
iπx

3

)2n+1

.

We also have the identity ∫
R

x2je−
πx2

3z dx =
(2j)!

2jj!

(
3

2π

)j √
3zzj.

Combining these identities and then setting t = 2πz completes the proof.

2.3. Proof of Theorem 1.3. Define G(z) := (e2πiz; e2πiz)∞U(−1; e2πiz). Th. 1.1 of [7] gives

G(z)− i

2
η(z)3

∫ i∞

−z

η(τ)3

(−i(z + τ))
1
2

dτ +

√
3

2πi
η(z)

∫ i∞

−z

η(τ)

(−i(τ + z))
3
2

dτ

= z−2

(
G

(
−1

z

)
− i

2
η

(
−1

z

)3 ∫ i∞

1
z

η(τ)3

(−i(−1
z

+ τ))
1
2

dτ +

√
3

2πi
η

(
−1

z

)∫ i∞

1
z

η(τ)

(−i(τ − 1
z
))

3
2

dτ

)
.

(2.4)

Note that using η
(
−1

z

)
=
√
−izη(z) we have

η

(
−1

z

)3 ∫ i∞

1
z

η(τ)3

(−i
(
τ − 1

z

)
)

1
2

dτ =(
√
−iz)3η(z)3

∫ 0

−z

η
(
− 1

τ

)3(
−i
(
−1

z
− 1

τ

)) 1
2

τ−2dτ(2.5)

=(
√
−iz)3η(z)3

∫ 0

−z

(√
−iτη(τ)

)3
(−zτ)

1
2

(−i(z + τ))
1
2

τ−2dτ

=− z2η(z)3

∫ −z

0

η(τ)3

(−i(z + τ))
1
2

dτ.
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Similarly, we have

η

(
−1

z

)∫ i∞

1
z

η(τ)

(−i
(
τ − 1

z

)
)

3
2

dτ =− z2η(z)

∫ −z

0

η(τ)

(−i(z + τ))
3
2

dτ.(2.6)

Combining (2.4)-(2.6) gives

G(z)− z−2G

(
−1

z

)
=

√
3

2πi
η(z)

∫ i∞

0

η(τ)

(−i(z + τ))
3
2

dτ − i

2
η(z)3

∫ i∞

0

η(τ)3

(−i(z + τ))
1
2

dτ.

Dividing by η(z) and using its modular transformation property give the result for x ∈ H.
For x ∈ Q, note that (e2πix; e2πix)∞ = 0. Moreover, Zagier, in the discussion after the theorem

of Section 6 of [2] explains how the integral
∫∞

0
η(z)(z + x)−

3
2 dz is real analytic for real x.

3. Congruence properties and the Hecke-type identity

We first prove Th. 1.4 on the parity of u(n), and we then prove Th. 1.5 giving the Hecke-type
identity for U(−1; q). We then conclude this section with the proof of Th. 1.7.

3.1. Proof of Theorem 1.4. By Th. 1 of [14] (see equation (1.2)), we have that

U(−1; q) =
1

(q; q)∞
·

(
∞∑

n=1

(−1)n−1(1 + qn)q
3n2+n

2

(1− qn)2
−

∞∑
n=1

qn

(1− qn)2
+ 2

∞∑
n=1

(−1)n−1nq
n2+n

2

1− qn

)
.

If spt(n) is the smallest parts partition function of Andrews, then by Th. 4 of [17] we have:

S(q) :=
∞∑

n=0

spt(n)qn =
1

(q; q)∞

(
∞∑

n=1

qn

(1− qn)2
+

∞∑
n=1

(−1)nq
3n2+n

2 (1 + qn)

(1− qn)2

)
.

We have used the elementary fact that

(3.1)
∞∑

n=1

∑
d|n

dqn =
∞∑

n=1

qn

(1− qn)2
=

∞∑
n=1

nqn

1− qn
.

We have U(−1; q) ≡ S(q) (mod 2), and so the theorem follows from Th. 1.2 in [18]5.

3.2. Proof of Theorem 1.5. We prove Th. 1.5 using the method of Bailey pairs. As usual,
we let (a)n := (a; q)n. Two sequences (αn, βn) form a Bailey pair for a if

βn =
n∑

r=0

αr

(q)n−r(aq)n+r

αn =
(1− aq2n)(a)n(−1)nq

n(n−1)
2

(1− a)(q)n

n∑
j=0

(q−n; q)j(aqn; q)jq
jβj.

The following Bailey pair is central to the proof of Th. 1.5.

5Th. 1.2 in [18] is not stated correctly in [18]. One must replace pm2 by p4a+1m2 where gcd(p, m) = 1. Recent
work by Andrews, Garvan, and Liang [19] gives a new proof of this result.
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Lemma 3.1. If βn = 1 and α0 = 1 and for n > 0

αn = (1− q2n)q2n2−n

(
q − 2

1− q
+

n∑
j=2

(−1)j (1− q2j−1)

(1− qj)(1− qj−1)
q−

3j(j−1)
2

)
,

then (αn, βn) is a Bailey pair with respect to 1.

Proof. We apply Th. 8 of [20] with βn = 1 for all n. By letting b, c, d → 0, and then letting
a = 1, one obtains the lemma. Some care is required for the j = 0 and j = 1 terms. �

The following is Bailey’s Lemma (for example, see [20]).

Lemma 3.2 (Bailey’s Lemma). If αn and βn form a Bailey pair relative to a, then

∑
n≥0

(ρ1)n(ρ2)n(aq/ρ1ρ2)
n

(aq/ρ1)n(aq/ρ2)n

αn =
(aq)∞(aq/ρ1ρ2)∞
(aq/ρ1)∞(aq/ρ2)∞

∑
n≥0

(ρ1)n(ρ2)n(aq/ρ1ρ2)
nβn.

Proof of Theorem 1.5. By Lemma 3.2 with ρ1 = x, ρ2 = x−1 and a = 1, Lemma 3.1 gives

∑
n≥0

(x)n(x−1)nq
n =

(xq)∞(x−1q)∞
(q)2

∞
+

(x)∞(x−1)∞
(q)2

∞

∑
n≥1

qn

(1− xqn)(1− x−1qn)
· αn.

Dividing by (1− x)(1− x−1) and collecting the n = 0 terms give

∑
n>0

(xq)n−1(x
−1q)n−1q

n =
1

(1− x)(1− x−1)
·
(

(xq)∞(x−1q)∞
(q)2

∞
− 1

)
+

(xq)∞(x−1q)∞
(q)2

∞

∑
n≥1

qn

(1− xqn)(1− x−1qn)
· αn.

(3.2)

To simplify the αn, we have that

1− q2j−1

(1− qj)(1− qj−1)
=

1

2
·
(

1 + qj

1− qj
+

1 + qj−1

1− qj−1

)
,

which in turn implies that

n∑
j=2

(−1)j (1− q2j−1)

(1− qj)(1− qj−1)
q−

3j(j−1)
2 =

1

2
· 1 + q

1− q
· q−3 +

(−1)n

2
· 1 + qn

1− qn
· q−

3n(n−1)
2

+
1

2

n−1∑
j=2

(−1)j+1(1 + qj)q−
3j(j−1)

2
1− q3j

1− qj
.
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Thus α0 = 1, and for n ≥ 1 we have

αn =(1− q2n)q2n2−n

(
q − 2

1− q
+

1

2

(
1 + q

1− q
· q−3 +

(−1)n(1 + qn)q−
3n(n−1)

2

1− qn

+
n−1∑
j=2

(−1)j+1(1 + qj)(1 + qj + q2j)q−
3j(j+1)

2

))

=(1− q2n)q2n2−n

(
−1 +

n−1∑
j=1

(−1)j+1(1 + qj)q−
j(3j+1)

2 +
(−1)nq−

3n(n−1)
2

+n

1− qn

)

=(1− q2n)q2n2−n

(
n−1∑

j=−n+1

(−1)j+1q−
j(3j+1)

2

)
+ (−1)n(1 + qn)q

n(n+3)
2

=(1− q2n)q2n2−n

(
n−1∑

j=−n

(−1)j+1q−
j(3j+1)

2

)
+ (−1)n(1 + qn)q

n(n+1)
2

We note that

lim
x→1

1

(1− x)(1− x−1)

(
(xq)∞(x−1q)∞

(q)2
∞

− 1

)
=
∑
n>0

qn

(1− qn)2
=
∑
n>0

(−1)n+1q
n(n+1)

2 (1 + qn)

(1− qn)2
.

Now insert these facts in (3.2), let x → 1, and use the identity 1+qn

1−qn = 1 + 2
∑

m≥1 qmn. �

3.3. Proof of Theorem 1.7. We give a sketch since it is analogous to Th. 1.5 of [12] and Th. 1
of [21]. We have

U(±i; q) = Ψ(q) =
∞∑

n=0

(u(0, 4; n)− u(2, 4; n))qn,

where Ψ(q) is one of Ramanujan’s 3rd order mock theta functions. We have that q−1Ψ(q24) is the
holomorphic part of a weight 1/2 harmonic Maass form whose shadow is a unary theta function.
Using quadratic and trivial twists modulo Q, one obtains a weight 1/2 weakly holomorphic
modular form. By work of Treneer, [22], one obtains weakly holomorphic forms of half-integer
weight which are congruent to cusp forms modulo Q. By the Shimura correspondence, we obtain
even integer weight cusp forms, which by Lemma 3.30 of [23], are annihilated modulo Q by
infinitely many Hecke operators T (p). Since the Shimura correspondence is Hecke equivariant,
it follows that infinitely many half-integral weight Hecke operators T (p2) annihilate these cusp
forms modulo Q. The proof follows from the formula for the action of these operators.
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