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Abstract. If f(z) is a weight k ∈ 1
2
Z meromorphic modular form on

Γ0(N) satisfying

f(z) =
∑
n≥n0

ane
2πimnz,

where m - N , then f is constant. If k 6= 0, then f = 0. Atkin and Lehner
derived [2] the theory of integer weight newforms from this fact. We use
the geometric theory of modular forms to prove the analog of this fact
for modular forms modulo `. We show that the same conclusion holds
if gcd(N`,m) = 1 and the nebentypus character is trivial at `. We use
this to study the parity of the partition function and the coefficients of
Klein’s j-function.

1. Introduction and statement of results

The Atkin-Lehner theory of newforms relies (see Theorem 1 of [2]) on the
fact that a weight k meromorphic modular form f on Γ0(N) with a Fourier
expansion of the form

f(z) = f(q) =
∑
n≥n0

anq
mn

(note. q := e2πiz), where m - N , is constant. If k 6= 0, then f = 0. It is natural
to ask whether this phenomenon exists for modular forms modulo `. There
are some obvious exceptions. For example, if ` is prime, then the weight 12`
cusp form ∆(z)` on Γ0(1) = SL2(Z) satisfies

∆(z)` := q`
∞∏
n=1

(1− qn)24` ≡ q`
∞∏
n=1

(1− q`n)24 ≡
∑
n≥`

anq
`n (mod `).

The first author is grateful for support from the NSF and the Asa Griggs Candler Fund.
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Here we prove that the Atkin-Lehner theorem holds for modular forms
modulo ` once one excludes such examples. More precisely, we prove the
following theorem.

Theorem 1.1. Suppose that f is a meromorphic modular form of weight k ∈
1
2Z on Γ0(N) which has integral Fourier coefficients at ∞. Let ` be a prime
with the property that there is an m > 1 such that the Fourier expansion of
f at ∞ satisfies

f(q) ≡
∑
n≥n0

anq
mn (mod `).

If gcd(N`,m) = 1 and f has trivial nebentypus character at ` (i.e., f is fixed
by the diamond operators at `) if `|N , then we have that f(q) ≡ a0 (mod `).

Remark. Theorem 1.1 is a generalization of a result suggested by Serre to
Mazur which appears in the classic paper on the Eisenstein ideal (see p. 83 of
[7]). Naomi Jochnowitz has also informed the authors that she has obtained
(in unpublished work) similar results using the classical theory of modular
forms modulo p as developed by Serre.

We give two applications involving the parity of the coefficients of mod-
ular forms. The parity of the partition function p(n) seems to be random,
and a famous open conjecture [10] asserts that “half” of its values are even
(resp. odd). Despite the difficulty of this conjecture, there are some results.
For example, Subbarao’s Conjecture [12] has been proved by the works of
the first author and Radu [8, 11]. For every progression r (mod t), there are
infinitely many m (resp. n) for which p(tm+r) (resp. p(tn+r)) is even (resp.
odd).

We study an analog of Subbarao’s Conjecture for certain quadratic poly-
nomials. Let h(−D) be the class number of the imaginary quadratic field
Q(
√
−D). Using Theorem 1.1 and generalized Borcherds products of the au-

thor and Bruinier [3, 9], we prove the following.

Theorem 1.2. If 1 < D ≡ 23 (mod 24) is square-free, then the following are
true:

(1) There are infinitely many m coprime to 6 for which p
(
Dm2+1

24

)
is even.

Furthermore, the smallest one is bounded by (12h(−D)+2)
∏
p|D prime(p+1).

(2) There are infinitely many n coprime to 6 for which p
(
Dn2+1

24

)
is odd if

there is at least one such n. Furthermore, the smallest one (if any) is bounded
by 12h(−D) + 2.

Remark. We note that (Dm2 + 1)/24 is an integer whenever m is coprime to
6.

Theorem 1.1 allows us to refine work of Alfes [1] on the coefficients of
Klein’s j-function

j(z) =

∞∑
n=−1

cnq
n = q−1 + 744 + 196884q + . . . . (1.1)
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Although it is simple to see that cn is even for n 6≡ 7 (mod 8), little is known
for the remaining n. Numerics suggest that “half” of these coefficients are
odd. We prove the following theorem which builds on recent work of Alfes
[1].

Theorem 1.3. If 1 < D ≡ 7 (mod 8) is square-free, then the following are
true:

(1) There are infinitely many odd m for which cDm2 is even. Furthermore,
the smallest one is bounded by

(
h(−4D) + 1

6

)
·
∏
p|4D prime(p+ 1).

(2) There are infinitely many odd n for which cDn2 is odd if there is at least
one such n. Furthermore, the smallest one (if any) is bounded by h(−4D).

Remark. Theorem 1.3 is equivalent to a statement about the parity of traces
of certain singular moduli. By work of Zagier [13], the proof generalizes to
further singular moduli.

The proof of the original Atkin-Lehner theorem [2] breaks down for mod-
ular forms modulo `. Therefore, we adopt a geometric viewpoint. In Section 2
we recall features of the theory of geometric modular forms, which we use
to prove Theorem 1.1 in Section 3. In Section 4 we then prove Theorems 1.2
and 1.3 by combining Theorem 1.1 with the theory of Borcherds products.
These two theorems improve upon earlier work by the first author [9] and
Alfes [1].

Acknowledgements

The authors thank Brian Conrad and Barry Mazur for their suggestions, and
they thank Claudia Alfes and Christelle Vincent for comments on an earlier
version of this paper.

2. Background on geometric modular forms

Integer weight modular forms arise as sections of line bundles on modular
curves, which allows them to be interpreted in terms of relative differen-
tials. Since modular curves are moduli spaces of generalized elliptic curves
equipped with a prescribed torsion point, we may view modular forms geo-
metrically. We prove Theorem 1.1 from this perspective. The proof essentially
follows from a calculation involving the Tate elliptic curve, which allows us
to geometrically study q-expansions of modular forms as moduli problems for
elliptic curves.

Here we briefly recall the geometric theory of integer weight modular
forms. This account is far from comprehensive, and is intended to cover the
major facts that will be used to prove Theorem 1.1. We shall frequently refer
to papers of Conrad, Katz, and Mazur [4, 5, 6].



4 Ken Ono and Nick Ramsey

2.1. Modular forms and modular curves

Denote by H the upper-half of the complex plane, and let H := H ∪ Q ∪
{∞}. Let f be a classical modular form of weight k ∈ Z for Γ1(N). The
automorphy factor by which f transforms defines a cocycle that gives rise to
a natural line bundle L(k) on the quotient Γ1(N)\H of which f is a section.
This Riemann surface can be compactified by adding cusps to a compact
Riemann surface Γ1(N)\H. The bundle L(k) extends in a natural way to
this compact Riemann surface and the growth condition on f imposed at the
cusps is tantamount to the associated section extending to a holomorphic
section on all of Γ1(N)\H. In a similar manner, a meromorphic modular
form corresponds to a meromorphic section of this bundle.

The compact Riemann surface Γ1(N)\H is the analytification of a smooth
algebraic curve X1(N)C over C. If N ≥ 5, this curve can be interpreted as a
moduli space of generalized elliptic curves equipped with a point of order N .
In these terms, we have a complex uniformization of the non-cuspidal locus
of this moduli space given by

Γ1(N)\H −→ Y1(N)C ⊂ X1(N)C (2.1)

τ 7−→
(
C/〈1, τ〉, 1

N

)
.

There is a universal generalized elliptic curve π : E → X1(N)C. Let ω denote
the locally-free sheaf given by the push-forward π∗ΩE/X1(N)C of the relative
dualizing sheaf (which is simply the sheaf of relative differentials away from
the cusps). Via the above uniformization, there is a natural identification of
L(k) with ω⊗k, and this identification extends to the cusps.

The upshot is that sections of ω⊗k on X1(N)C give rise to classical
modular forms of weight k and level N , and by Serre’s GAGA, this is a
one-to-one correspondence. In a similar way, meromorphic modular forms
correspond to rational sections (in the sense of having poles) of ω⊗k, as one
can see by arguing with ω⊗k(D) for various divisors D corresponding to poles.

This description of modular forms opens the door for a discussion of
modular forms over a host of fields and rings other than C, since the moduli
problems involved make sense in those contexts. In particular, if K is any
field of characteristic zero, there is (still assuming N ≥ 5) a fine moduli vari-
ety X1(N)K classifying generalized elliptic curves over K-algebras equipped
with a point of order N , and this variety is a smooth proper curve over
K. Moreover, this claim holds verbatim if the characteristic of K is positive
and relatively prime to N (see Theorems 3.2.7 and 4.2.1 of [4]). Note that
this already furnishes a perfectly natural notion of modular forms in positive
characteristic, at least at coprime level.

On the other hand, if the characteristic of K is positive and divides N ,
then the situation is less straight-forward, owing to the different nature of
the N -torsion on an elliptic curve in characteristics dividing N . Here this
phenomenon arises in a slightly different context, namely, reducing a moduli
scheme defined over a certain ring of integers modulo a prime. We will also
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be looking at a slightly different moduli problem. In particular, fix a rational
prime ` - N and let us work over the local ring Z(`). Consider the Γ(N ; `r)
problem (in the notation of [4]) that classifies triples (E,P,C) where E is a
generalized elliptic curve, P is a point of order N , and C is a cyclic subgroup
of order `r. The precise definitions of these notions in this context can be
found in [6] or [4]. By Theorem 4.2.1 of [4], there is a fine moduli scheme
X1(N ; `r)Z(`)

representing this moduli problem. By Theorem 1.2.1 of [4], this
scheme is regular and is a proper relative curve over Z(`) with geometrically
connected fibers.

The generic fiber of X1(N ; `r)Z(`)
is a smooth irreducible curve over Q

as above. By Theorem 13.4.7 of [6], the reduction of X1(N ; `r)Z(`)
modulo `

is geometrically connected, but is comprised of r+1 geometrically irreducible
components intersecting at the supersingular points. These components are
indexed by pairs (a, b) of non-negative integers with a+b = r, where, roughly
speaking, the “a” measures how much of the cyclic subgroup C comes from
the kernel of Frobenius. In particular, on the (r, 0) component, C is the kernel
of the r-iterated relative Frobenius map (away from supersingular points and
cusps).

2.2. q-expansions and the Tate curve

The q-expansion of a geometric modular form at a cusp is the image of the
form in the completed local ring at that cusp. Since these modular curves are
moduli spaces, these completed local rings (being points of the scheme with
values in a power series ring) themselves have a moduli interpretation. Let
Tate(q) denote the Tate elliptic curve as defined in [5] or [4], which we will
regard for the moment as being defined over the ring Z((q)) of Laurent series
over Z (though in general Z will be replaced by the ambient ring or field of
definition). By [5], the N -torsion on the Tate curve is given by

ζiNq
j/N , 1 ≤ i, j ≤ N

and is all defined over the ring Z[ζN ]((q1/N )). We recall also that the curve
Tate(q) comes equipped with a canonical differential ωcan (see the first Ap-
pendix A.1.2 of [5]).

Consider again the Γ1(N) problem in characteristic prime to N . By the
moduli interpretation of X1(N) and ω, a geometric modular form f can be

viewed as a rule that assigns to each pair (E,P ) an element of Ω⊗kE on E
subject to some natural compatibilities (see [5]). Thus, given a point P of
order N on the Tate curve, we may consider the value

f(Tate(q), P ) =
(∑

an(q1/N )n
)
ω⊗kcan.

These series (for varying P ) are the q-expansions of f at the various cusps.
Roughly speaking, the cusp associated to a point P is obtained as the “de-
generate fiber” q = 0 of the classifying map to X1(N) associated to the pair
(Tate(q), P ). In the geometric setting, we prefer to refer to the q-expansion
at a pair (Tate(q), P ) as above, rather than the associated cusp.



6 Ken Ono and Nick Ramsey

Via (2.1), the classical cusp∞ corresponds to the pair (Tate(q), e2πi/N ),
and this pair is defined over the ring C((q)). In particular, if f is a classical
modular form of level N , its classical q-expansion at ∞ is obtained as

f(Tate(q), e2πi/N ) =
(∑

anq
n
)
ω⊗kcan.

We embed the cyclotomic field Q(ζN ) in C by sending the primitive root
ζN to e2πi/N . The q-expansion principle ([5], Corollary 1.6.2) implies that, if
an ∈ Q(ζN ) for all n, then f is defined over Q(ζN ). Moreover, the classical
q-expansion of f is recovered from f(Tate(q), ζN ).

Remark. We have considered the Γ1(N) problem for simplicity. We note that
analogous results hold for all of the usual moduli problems (in particular for
Γ1(N ; `r)).

3. The proof of Theorem 1.1

First observe that we may assume that k is an integer, since we can replace
f by a power to reduce to this case. Second, we may assume that the prime-
to-` part of the level N is at least 5, since we may artificially inflate the level
without interfering with the conditions in the theorem. From here, the flow
of the argument consists of two steps, namely:

1. We construct from f a section f̃ of ω⊗k(D0) (with k an integer and D0 a
divisor) over the ordinary locus in X1(N ′)F , where N ′ ≥ 5 is relatively
prime to m`, with the property that its q-expansion at (Tate(q), ζN ′)
(for some primitive N ′-th root ζN ′) is the reduction modulo ` of f . Here
F/F` is a finite extension.

2. We prove that such forms (still assuming that ` - m) have constant
q-expansion.

With our assumption on N , we have a fine moduli curve X1(N)C and
our form f can be realized via GAGA as a rational section of the sheaf ω⊗k.
Let N = N ′`r where ` - N ′ (and N ′ ≥ 5 by the above). Since f is fixed by
the diamond action at `, we can view f as a section on the curve X1(N ′; `r)C.
The q-expansion of f at ∞ is given by evaluating f at the triple

(Tate(q), e2πi/N
′
, 〈e2πi/`

r

〉).

Embed Q(ζN ) into C by sending ζN to e2πi/N . Then the q-expansion principle
applied at the Q(ζN ′)-rational triple (Tate(q), ζN ′ , 〈ζ`r 〉) implies that the form
f actually arises as a rational section of ω⊗k on the curve X1(N ′; `r)Q(ζN′ ).

In particular, it is a section of ω⊗k(D) for an appropriate effective divisor D
corresponding to the poles of f .

Let λ ⊆ Z[ζN ′ ] be a prime dividing `. We wish to further cut the ring of
definition of f down to the localization Z[ζN ′ ]λ. This is not a priori possible
since the moduli scheme X1(N ′; `r)Z[ζN′ ]λ has bad reduction if r > 0. We
only have knowledge of the integrality of f at one cusp, and therefore only
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on one irreducible component of the reduction of X1(N ′; `r)Z[ζN′ ]λ mod λ.
The solution is simply to remove the remaining components.

Recall that this reduction consists of r + 1 irreducible components in-
dexed by pairs (a, b) of non-negative integers with a + b = r. The datum
(Tate(q), ζN ′ , 〈ζ`r 〉) reduces to the (r, 0) component, since 〈ζ`r 〉 is the kernel
of the r-power relative Frobenius map on Tate(q).

Notation. Let X denote the subscheme of X1(N ′; `r)Z[ζN′ ]λ obtained by re-
moving the irreducible components of the special fiber indexed by (a, b) with
b > 0 (there are none if r = 0).

In particular, we have removed the supersingular points if r > 0, so X
is smooth over Z[ζN ′ ]λ in any case. It is proper if and only if r = 0.

The closure D of D in X is a relative effective Cartier divisor over
Z[ζN ′ ]λ, since its support consists of codimension one points on the regular
scheme X and the ideals of such points are locally principal (since regular local
rings are unique factorization domains). Thus we may consider the invertible
sheaf ω⊗k(D). The following is the q-expansion in spirit, but we know of no
reference that covers this case. We are grateful to Brian Conrad for explaining
to us the following argument.

Proposition 3.1. The form f extends to a section of ω⊗k(D) over X .

Proof. The section f on the generic fiber can be viewed as a rational section
of ω⊗k(D) on all of X . We claim that in order to prove that it is an integral
section, it suffices to check that it is integral at each codimension 1 point
of X . To see this, note that this can be checked locally on X , so we may
trivialize ω⊗k(D) and prove the analogous statement for the structure sheaf
of an affine open. Since X is regular, it is normal, and the result now follows
from the fact that a Noetherian normal domain is the intersection (in its
fraction field) of its localizations at height 1 primes.

Since f is a regular section on the generic fiber, we have only to check
that it is integral at the unique irreducible component of the special fiber. Let
x denote the reduction modulo λ of the cusp associated to (Tate(q), ζN ′ , 〈ζ`r 〉)
on the generic fiber, and let Spec(A) be an affine open in X containing x on
which ω⊗k(D) is trivial, so we may regard our rational section as an element
(which we will also call f) of the field of fractions K of A. It suffices to show
that f lies in the localization Ax. From the q-expansion, we know that the
image of f in the field of fractions of the completion Frac(Âx) lies in Âx itself.

The result will now follow if we can show that the intersection of K and Âx
in Frac(Âx) is Ax. Writing f = a/b ∈ K, we note that we have an inclusion
of ideals (b)̂ ⊆ (a)̂ upon passing to completion, and by faithful flatness of
completion the inclusion (b) ⊆ (a) holds in Ax, so f = a/b ∈ Ax. �

In particular, if D0 denotes the reduction of D modulo λ on X , we
obtain by reduction a section of ω⊗k(D0) on said fiber. The ordinary locus
in this fiber is identified with (on non-cuspidal points) the moduli space
over F = F (λ) (the residue field of the prime λ) classifying elliptic curves
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with a point of order N ′ and a type (r, 0) cyclic subgroup of order `r. But
there is one and only one such subgroup, namely the kernel of the r-iterated
relative Frobenius map. The result is that the ordinary locus in this fiber
is canonically identified with the ordinary locus in X1(N ′)F , which we will
denote by X1(N ′)ordF .

Thus our form f has given rise to a section f̃ of ω⊗k(D0) on X1(N ′)ordF .
Its q-expansion at the cusp associated to the datum (Tate(q), ζN ′) is the
reduction modulo ` of the q-expansion of f at (Tate(q), ζN ′ , 〈ζ`r 〉), since 〈ζ`r 〉
reduces to the kernel of the r-iterated Frobenius.

This completes step (1). We have a section f̃ of ω⊗k(D0) on X1(N ′)ordF
whose q-expansion at the cusp associated to the datum (Tate(q), ζN ′) has the
form ∑

n

anq
nm ∈ F ((q))

for an integer m > 1. We claim that such a section is necessarily constant.

Let X1(N ′;m,m)F denote the moduli curve over F that classifies (on
non-cuspidal points) isomorphism classes of quadruples (E,P,C1, C2) con-
sisting of an elliptic curve E with a point of order N ′ and a pair of cyclic
subgroups C1 and C2 of order m intersecting trivially. This curve arises as a
quotient of the space classifying points of order N ′ and full level m (in the
sense of Γ(m)) structures via the group

{(
∗ 0
0 ∗

)}
⊆ GL2(Z/mZ)

in the natural fashion. Since ` is coprime to N ′ and m, this is an irreducible
curve over F , since it is connected and smooth (by Theorem 3.2.7 of [4]).

There are two natural degeneracy maps

π1, π2 : X1(N ′;m,m)F −→ X1(N ′)F

given (on non-cuspidal points) by passage to quotient by C1 and C2, respec-
tively, and forgetting the other subgroup. Pull-back of differentials gives a
canonical identification π∗1ω

∼= π∗2ω.

Lemma 3.2. The pull-backs π∗1 f̃ and π∗2 f̃ coincide under this identification.

Proof. SinceX1(N ′;m,m)F is irreducible, it suffices to check that these forms
have the same q-expansion at a single cusp, that is, that they have the same
value on the Tate curve with some level structure. Consider the quadruple
(Tate(q), ζN ′ , 〈q1/m〉, 〈ζmq1/m〉) for some primitive m-th root of unity ζm. We
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have

π∗1 f̃(Tate(q), ζN ′ , 〈q1/m〉, 〈ζmq1/m〉) = f̃(Tate(q)/〈q1/m〉, ζN ′)

= f̃(Tate(q1/m), ζN ′)

=

(∑
n

an(q1/m)mn

)
ω⊗kcan

=

(∑
n

anq
n

)
ω⊗kcan

and

π∗2 f̃(Tate(q), ζN ′ , 〈q1/m〉, 〈ζmq1/m〉) = f̃(Tate(q)/〈ζmq1/m〉, ζN ′)

= f̃(Tate(ζmq
1/m), ζN ′)

=

(∑
n

an(ζmq
1/m)mn

)
ω⊗kcan

=

(∑
n

anq
n

)
ω⊗kcan.

Here, we are implicitly using the fact that the pull-backs of the canonical
differentials ωcan on the quotient curves (the latter having been identified with
base-changes of Tate(q) as indicated) coincide under the natural identification
π∗1ω

∼= π∗2ω. �

Unraveling this, we have shown that if E is any elliptic curve over an
F -algebra, P is a point of order N ′ on E, C1 and C2 are cyclic subgroups of
E of order m intersecting trivially, and pi : E −→ E/Ci denote the quotient
maps, then

p∗1f̃(E/C1, P/C1) = p∗2f̃(E/C2, P/C2). (3.1)

For each non-negative integer d, let

f̃(Tate(q), ζm
d

N ′ ) =

(∑
n

bn(d)qn

)
ω⊗kcan.

We apply (3.1) to (Tate(q), ζm
d

N ′ ) and the subgroups C1 = 〈ζm〉 and C2 =

〈q1/m〉. We have

p∗1f̃(Tate(q)/〈ζm〉, ζm
d

N ′ ) = p∗1f̃(Tate(qm), ζm
d+1

N ′ )

= p∗1

((∑
n

bn(d+ 1)(qm)n

)
ω⊗kcan

)

=

(∑
n

bn(d+ 1)qnm

)
mkω⊗mcan
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and

p∗2f̃(Tate(q)/〈q1/m〉, ζm
d

N ′ ) = p∗2f̃(Tate(q1/m), ζm
d

N ′ )

= p∗2

((∑
n

bn(d)(q1/m)n

)
ω⊗kcan

)

=

(∑
n

bn(d)qn/m

)
ω⊗mcan ,

and thus ∑
n

bn(d)qn/m = mk
∑
n

bn(d+ 1)qmn

for all d ≥ 0. If s denotes the order of m modulo N ′, then we may successively
use this with d = 0, 1, . . . , s (noting that bn(0) = bn(s) = an/m for all n) to
conclude that ∑

n

anq
n = mks

∑
n

an/m2sqm
2n.

It follows (consider the “least” m-divisible n with an 6= 0) that an = 0 for all
non-zero n. This completes step (2) and the proof of Theorem 1.1.

4. The proofs of Theorems 1.2 and 1.3

We now prove Theorems 1.2 and 1.3 using the strategy outlined in [9].

Proof of Theorem 1.2. Theorem 1.2 (2) is Theorem 1.2 (2) of [9]. Moreover,
Theorem 1.2 (1) of [9] asserts that if there are any m coprime to 6 for which

p
(
Dm2+1

24

)
is even, then there are infinitely many such m. Furthermore, this

result bounds the smallest such m (if any). Therefore, it suffices to show that
there is at least one such m.

We employ Theorem 1.1 of [9], which depends on generalized Borcherds
products constructed by the first author and Bruinier (see Section 8.2 of [3]).
This theorem asserts that

F̂ (D; z) :=
∑
m≥1

gcd(m,6)=1

p

(
Dm2 + 1

24

) ∑
n≥1

gcd(n,D)=1

qmn (mod 2) (4.1)

is the reduction modulo 2 of a weight 2 meromorphic modular form on Γ0(6)
whose poles are simple and are supported on CM points of discriminant −D.

Suppose that p
(
Dm2+1

24

)
is odd for every m coprime to 6. Then we have

F̂ (D; z) ≡
∑
m≥1

gcd(m,6)=1

∑
n≥1

gcd(n,D)=1

qmn (mod 2). (4.2)

This form can be described in terms of E2(z) := 1− 24
∑
d|n dq

n, the quasi-

modular weight 2 Eisenstein series. Although E2(z) is not a modular form,
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it is well known that if t ≥ 2, then E2(z) − tE2(tz) is a holomorphic weight
2 modular form on Γ0(t). If we let

E(z) :=
(E2(z)− 3E2(3z))− 2(E2(z)− 2E2(2z))

24
= q − q2 + 7q3 − 5q4 − . . . ,

then E(z) is a holomorphic weight 2 modular form on Γ0(6) with integer
coefficients satisfying

E(z) ≡
∑
m≥1

gcd(m,6)=1

∑
n≥1

qmn (mod 2). (4.3)

Since D is square-free, we then have that

F̂ (D; z) ≡
∑
δ|D

E(δz) (mod 2).

Now let p ≥ 5 be any prime dividing D. Such primes exist since D ≡ 23
(mod 24). Then we have the weight 2 holomorphic modular form

Ep(D; z) :=
∑

1≤δ|Dp

E(δz) ≡
∑
m≥1

gcd(m,6)=1

∑
n≥1

gcd(n,D/p)=1

qmn (mod 2)

on Γ0(6D/p). Consequently, we find that

F̂p(D; z) := F̂ (D; z)− Ep(D; z) ≡
∑
δ|D/p

E(δpz) (mod 2).

This q-series is a nonconstant meromorphic weight 2 modular form modulo
2 on Γ0(6D/p) whose odd coefficients are supported on exponents which are
multiples of p. By Theorem 1.1, with N = 6D/p, ` = 2, and m = p, we have
a contradiction, and this completes the proof. �

Alfes [1] recently applied this strategy to certain twisted Borcherds prod-
ucts constructed by Zagier [13]. Combining her results with Theorem 1.1
proves Theorem 1.3.

Proof of Theorem 1.3. Theorem 1.3 (2) is Theorem 1.3 (2) of [1]. Moreover,
Theorem 1.3 (1) of [1] implies that there are infinitely many odd m for which
cDm2 is even provided that there is at least one such m. Furthermore, this
result gives the stated bound for the first such m (if any). Therefore, here it
suffices to show that there is at least one such m.

Alfes (see the proof of Theorem 1.1 of [1]) uses Zagier’s Borcherds prod-
ucts to prove that

F(D; z) ≡
∑
m≥1
odd

cDm2

∑
n≥1

gcd(n,2D)=1

qmn (mod 2) (4.4)

is the reduction modulo 2 of a weight 2 meromorphic modular form modulo
2 on SL2(Z) whose poles are simple and are supported on CM points with
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discriminant −D. Suppose that cDm2 is odd for every odd m. Then we have

F(D; z) ≡
∑
m≥1
odd

∑
n≥1

gcd(n,2D)=1

qmn (mod 2). (4.5)

This form is easily described in terms of the weight 2 Eisenstein series on
Γ0(4) given by

E(z) :=
η(4z)8

η(2z)4
=
∑
n≥1
odd

∑
d|n

dqn = q + 4q3 + 6q5 + . . . . (4.6)

Here η(z) := q
1
24

∏∞
n=1(1− qn) is Dedekind’s eta-function. Since D is square-

free, we have

F(D; z) ≡
∑
δ|D

E(δz) (mod 2).

Now let p be any odd prime dividing D. Such primes exist since D ≡ 7
(mod 8). Then we have the weight 2 holomorphic modular form on Γ0(4D/p)
given by

Ep(D; z) :=
∑

1≤δ|D/p

E(δz) ≡
∑
m≥1
odd

∑
n≥1

gcd(n,2D/p)=1

qmn (mod 2).

Consequently, we find that

F(D; z)− Ep(D; z) ≡
∑

1≤δ|D/p

E(δpz) (mod 2)

is a nonconstant weight 2 modular form modulo 2 on Γ0(4D/p) with the
property that its odd coefficients are supported on exponents which are mul-
tiples of p. By Theorem 1.1, where N = 4D/p, ` = 2 and m = p, we have a
contradiction, and this completes the proof. �
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