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Abstract. The theory of congruences for the partition function p(n) depends heavily on
the properties of half-integral weight Hecke operators. The subject has been complicated by
the absence of closed formulas for the Hecke images P (z) | T (`2), where P (z) is the relevant
modular generating function. We obtain such formulas using Euler’s Pentagonal Number
Theorem and the denominator formula for the Monster Lie algebra. As a corollary, we obtain
congruences for certain powers of Ramanujan’s Delta-function.

1. Introduction and statement of results

A partition of an integer n is a non-increasing sequence of positive integers that sum to n.
Ramanujan investigated [17, 18] p(n), the number of partitions of n, and he proved that

p(5n + 4) ≡ 0 (mod 5),

p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11).

These congruences have inspired many works (for example, see [1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13,
14, 15, 19, 20, 21] to name a few). In particular, Atkin [5] and Watson [19] proved Ramanujan’s
conjectures concerning congruences modulo powers of 5, 7 and 11.

In the 60s, Atkin [6] surprisingly discovered congruences modulo some primes M ≥ 13 by
making use of half-integral weight Hecke operators. For example, he proved that

(1.1) p(1977147619n + 815655) ≡ 0 (mod 19).

In the late 90s, the author revisited Atkin’s work using `-adic Galois representations and
Shimura’s theory of half-integral weight modular forms [15], and he proved that there are such
congruences modulo every prime M ≥ 5. Ahlgren and the author [1, 2] later extended this to
include all moduli M coprime to 6. Other recent works by Weaver and Yang [20, 21] provide
further results along these lines.

Despite these works, little is known about the action of the Hecke operators on the partition
generating function. To make this precise, we begin by recalling Dedekind’s eta-function
η(z) := q

1
24

∏∞
n=1(1 − qn) (note. q := e2πiz throughout). The modular partition generating

function is the weight −1/2 modular form

(1.2) 1/η(24z) = P (z) :=
∞∑

n=0

p(n)q24n−1.
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For primes ` ≥ 5, we have the normalized Hecke action (for example, see §3.1 of [16])

(1.3)

( ∑
n�−∞

a(n)qn

)
| T (`2) :=

∑
n�−∞

(
`3a(n`2) + `

(
−3n

`

)
a(n) + a(n/`2)

)
qn.

The general theory of partition congruences depends on the properties of P (z) | T (`2), and in
the absence of a closed formula, researchers have been required to design special arguments
which, under very special circumstances, yield congruences such as (1.1).

Here we consider the seemingly difficult problem of obtaining closed formulas for P (z) | T (`2).
We obtain a simple solution to this problem by making use of Euler’s Pentagonal Number
Theorem and the denominator formula for the Monster Lie algebra.

To state these formulas, let E4(z) and E6(z) be the usual Eisenstein series

(1.4) E4(z) := 1 + 240
∞∑

n=1

σ3(n)qn and E6(z) := 1− 504
∞∑

n=1

σ5(n)qn,

where σv(n) :=
∑

d|n dv. Let ∆(z) be Ramanujan’s weight 12 cusp form

(1.5) ∆(z) := η(z)24 = q
∞∏

n=1

(1− qn)24,

and let j(z) be Klein’s modular function

(1.6) j(z) := E4(z)3/∆(z) = q−1 + 744 + 196884q + . . . .

Finally, let (q; q)∞ be Euler’s Pentagonal Number generating function

(1.7) (q; q)∞ =
∞∏

n=1

(1− qn) =
∑
k∈Z

(−1)kq(3k2+k)/2.

Using these q-series, we define polynomials A(m; x) ∈ Z[x] as the coefficients of the series

A(q) =
∞∑

m=0

A(m; x)qm := (q; q)∞ · E4(z)2E6(z)

∆(z)
· 1

j(z)− x

= 1 + (x− 745)q + (x2 − 1489x + 160511)q2 + . . . .

(1.8)

Remark. Each A(m; x) is a monic degree m polynomial with integer coefficients.

We show that P (z) | T (`2) is obtained by multiplying P (z) with A((`2 − 1)/24; j(24z)).

Theorem 1.1. If ` ≥ 5 is prime and δ` := (`2 − 1)/24, then

P (z) | T (`2) = P (z) ·
(

`

(
3

`

)
+ A(δ`; j(24z))

)
.

Remark. For fixed ` ≥ 5, this gives a method (see Example 3.3) for computing p
(

N`2+1
24

)
. One

needs A(δ`; x) and short initial segments of j(z) and P (z). It suffices to compute

P (z) ·
(

` ·
(

3

`

)
+ A(δ`; j(24z))

)
= q−`2 + · · ·+ O(qN+1).
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Theorem 1.1 also gives the following congruences for powers of the Delta-function.

Corollary 1.2. If ` ≥ 5 is prime, then we have that

∆(z)δ` ≡ 1

A(δ`; j(z))
(mod `).

In Section 2 we recall the denominator formula for the Monster Lie algebra, and we then
use a classical lemma due to Atkin on P (z) to then prove Theorem 1.1. In Section 3 we give
some examples of Theorem 1.1 and Corollary 1.2.

2. Proofs

Here we prove Theorem 1.1 and Corollary 1.2. We begin by recalling Faber polynomials, a
sequence of polynomials whose generating function is essentially equivalent to the denominator
formula for the Monster Lie algebra.

2.1. Faber polynomials. If p := e2πiτ , then the denominator formula for the Monster Lie
algebra is

j(τ)− j(z) = p−1
∏

m>0 and n∈Z

(1− pmqn)c(mn).

Here the exponents c(n) are the coefficients of j(z). This identity may be reformulated in
terms of a sequence of modular functions jm(z). We let j0(z) := 1 and j1(z) := j(z)−744. For
m ≥ 2 we let jm(z) be the unique modular function on SL2(Z) with an expansion of the form

(2.1) jm(z) = q−m +
∞∑

n=1

cm(n)qn.

It is not difficult to show that the denominator formula is equivalent to

j(τ)− j(z) = p−1 · exp

(
−

∞∑
n=1

jn(z) · pn

n

)
.

The modular functions jm(z) are specializations of polynomials Jm(x) which were previously
defined by Faber [9] (also see [4]). These polynomials are defined by the generating function

(2.2)
∞∑

m=0

Jm(x)qm :=
E4(z)2E6(z)

∆(z)
· 1

j(z)− x
= 1+(x−744)q+(x2−1488x+159768)q2 + . . . .

Here we recall some of the main properties of these polynomials (see [4, 9, 22]).

Theorem 2.1. Assuming the notation above, the following are true.

(1) If m ≥ 0, then jm(z) = Jm(j(z)).
(2) If m ≥ 2, then

jm(z) = J1(j(z)) | T0(m),

where T0(m) is the normalized mth weight 0 Hecke operator.
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2.2. Proof of Theorem 1.1. If ` ≥ 5 is prime, then define F`(z) by

(2.3) F`(24z) := η(24z) ·
(
P (z) | T (`2)

)
.

The nonzero coefficients are supported on exponents which are multiples of 24. After letting
z → z/24, a standard argument involving the definition of T (`2) and the transformation law
for Dedekind’s eta-function implies that F`(z) is a modular function on SL2(Z). (note. This
fact was previously observed by Atkin (see Lemma 2 of [6])). Since F`(z) is holomorphic on
the upper half of the complex plane, it is a polynomial in j(z).

By direct calculation, we have that

P (z) | T (`2) = q−`2 + `

(
3

`

)
q−1 + O(q23).

Euler’s Pentagonal Number Theorem then gives

F`(24z) = q1−`2 + `

(
3

`

)
+

∞∑
k=1

(−1)k ·
(
q1−`2+24ω(k) + q1−`2+24ω(−k)

)
+ O(q23),

where ω(k) := (3k2 + k)/2. By letting z → z/24, we obtain

F`(z) = q−δ` + `

(
3

`

)
+

∞∑
k=1

(−1)k
(
q−δ`+ω(k) + q−δ`+ω(−k)

)
+ O(q).

We now show that this polynomial in j(z) is A(δ`; j(z)). By Euler’s Pentagonal Number
Theorem, Theorem 2.1, (1.8), (2.1) and (2.2), it follows that A(δ`; j(z)) is a modular function
on SL2(Z) with the property that

`

(
3

`

)
+ A(δ`; j(z))− F`(z) = O(q).

This modular function must then be a polynomial in j(z). Since every nonconstant modular
function on SL2(Z) has a pole, and since this function does not have a pole at infinity, we have

`

(
3

`

)
+ A(δ`; j(z)) = F`(z).

After letting z → 24z, the theorem follows from (2.3) by dividing A(δ`; j(24z)) by η(24z) =
q(q24; q24)∞. The proof is complete because of the fact that P (z) = 1

η(24z)
.

2.3. Proof of Corollary 1.2. If ` ≥ 5 is prime, then Theorem 1.1 implies that

P (z) | T (`2) ≡ P (z) · A(δ`; j(24z)) (mod `).

By (1.3), we have that

P (z) | T (`2) ≡
∞∑

n=0

p(n)q(24n−1)`2 ≡ P (`2z) (mod `).

Putting these together, we find that

1

A(δ`; j(24z))
≡ P (z)

P (`2z)
(mod `).
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By direct calculation we have

P (z)

P (`2z)
=

η(24`2z)

η(24z)
≡ η(24z)`2−1 = ∆(24z)δ` (mod `),

and so the corollary follows by letting z → z/24.

3. Examples

Here we illustrate the results described in the introduction.

Example 3.1. Here we illustrate Theorem 1.1 for ` = 7. Then we have that

A(δ7; x) = A(2; x) = x2 − 1489x + 160511.

Therefore, we find that

7 ·
(

3

7

)
+ A(2; j(24z)) = q−48 − q−24 − 8 + 42790636q24 + 40470415636q48 + . . . ,

which in turn gives

P (z) ·
(

7 ·
(

3

7

)
+ A(2; j(24z)

)
= q−49 − 7q−1 + 42790629q23 + 40513206258q47 + . . . .

This illustrates Theorem 1.1 since one directly finds that

P (z) | T (72) = q−49 − 7q−1 + 42790629q23 + 40513206258q47 + . . . .

Example 3.2. Here we illustrate Corollary 1.2 for ` = 13. We have that

A(δ13; x) = A(7; x) = x7 − 5209x6 + 10250531x5 − 9444792416x4 + 4084546595190x3

− 721470585282643x2 + 35089738412615282x− 104996593133311511,

which in turn gives

1

A(7; j(z))
= q7 + q8 + 2q9 + · · · − 2854208487467q15 − . . .

≡ q7 + q8 + 2q9 + 3q10 + 5q11 + 7q12 + 11q13 + 2q14 + 9q15 + 4q16 + . . . (mod 13).

This illustrates Corollary 1.2 because

∆(z)δ13 = ∆(z)7 = q7 − 168q8 + 13860q9 − 748160q10 + . . .

≡ q7 + q8 + 2q9 + 3q10 + 5q11 + 7q12 + 11q13 + 2q14 + 9q15 + 4q16 + . . . (mod 13).

Example 3.3. Here we illustrate how one may efficiently compute partition numbers of the

form p
(

N`2+1
24

)
. We consider the simple case where N = 71 and ` = 5, and so our aim is to

calculate p(74). We compute p(74) using p(0), . . . , p(4), the first five coefficients of j(z), and
the polynomial A(δ5; x) = x− 745. By (1.2) and (1.3), if we let∑

n�−∞

a5(n)qn := P (z) | T (52),
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then we find that

a5(71) = 53 · p
(

71 · 52 + 1

24

)
− 5p

(
71 + 1

24

)
= 53 · p(74)− 5p(3).

By Theorem 1.1, we have that

P (z) | T (52) = P (z) · (j(24z)− 750)

=
(
q−1 + q23 + 2q47 + 3q71 + 5q95 + . . .

)
·
(
q−24 − 6 + 196884q24 + . . .

)
= q−25 − 5q−1 + 196880q23 + 21690635q47 + 886187485q71 + . . . .

Since a5(71) = 886187485 and p(3) = 3, we then find that p(74) = 7089500.

References

[1] S. Ahlgren, The partition function modulo composite integers M , Math. Ann. 318 (2000), pages 793-803.
[2] S. Ahlgren and K. Ono, Congruence properties for the partition function, Proc. Natl. Acad. Sci., USA

98 (2001), pages 12882-12884.
[3] G. E. Andrews, The theory of partitions, Cambridge Univ. Press, Cambridge, 1984.
[4] T. Asai, M. Kaneko, and H. Ninomiya, Zeros of certain modular functions and an application, Comm.

Math. Univ. Sancti Pauli 46 (1997), pages 93-101.
[5] A. O. L. Atkin, Proof of a conjecture of Ramanujan, Glasgow Math. J. 8 (1967), pages 14-32.
[6] A. O. L. Atkin, Multiplicative congruence properties and density problems for p(n), Proc. London Math.

Soc. (3) 18 (1968), pages 563-576.
[7] A. O. L. Atkin and J. N. O’Brien, Some properties of p(n) and c(n) modulo powers of 13, Trans. Amer.

Math. Soc. 126 (1967), pages 442-459.
[8] A. O. L. Atkin and H P. F. Swinnerton-Dyer, Some properties of partitions, Proc. London Math. Soc.

66 No. 4 (1954), pages 84-106.
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